3,055 research outputs found

    Reservoir of Diverse Adaptive Learners and Stacking Fast Hoeffding Drift Detection Methods for Evolving Data Streams

    Full text link
    The last decade has seen a surge of interest in adaptive learning algorithms for data stream classification, with applications ranging from predicting ozone level peaks, learning stock market indicators, to detecting computer security violations. In addition, a number of methods have been developed to detect concept drifts in these streams. Consider a scenario where we have a number of classifiers with diverse learning styles and different drift detectors. Intuitively, the current 'best' (classifier, detector) pair is application dependent and may change as a result of the stream evolution. Our research builds on this observation. We introduce the \mbox{Tornado} framework that implements a reservoir of diverse classifiers, together with a variety of drift detection algorithms. In our framework, all (classifier, detector) pairs proceed, in parallel, to construct models against the evolving data streams. At any point in time, we select the pair which currently yields the best performance. We further incorporate two novel stacking-based drift detection methods, namely the \mbox{FHDDMS} and \mbox{FHDDMS}_{add} approaches. The experimental evaluation confirms that the current 'best' (classifier, detector) pair is not only heavily dependent on the characteristics of the stream, but also that this selection evolves as the stream flows. Further, our \mbox{FHDDMS} variants detect concept drifts accurately in a timely fashion while outperforming the state-of-the-art.Comment: 42 pages, and 14 figure

    Evaluation methods and decision theory for classification of streaming data with temporal dependence

    Get PDF
    Predictive modeling on data streams plays an important role in modern data analysis, where data arrives continuously and needs to be mined in real time. In the stream setting the data distribution is often evolving over time, and models that update themselves during operation are becoming the state-of-the-art. This paper formalizes a learning and evaluation scheme of such predictive models. We theoretically analyze evaluation of classifiers on streaming data with temporal dependence. Our findings suggest that the commonly accepted data stream classification measures, such as classification accuracy and Kappa statistic, fail to diagnose cases of poor performance when temporal dependence is present, therefore they should not be used as sole performance indicators. Moreover, classification accuracy can be misleading if used as a proxy for evaluating change detectors with datasets that have temporal dependence. We formulate the decision theory for streaming data classification with temporal dependence and develop a new evaluation methodology for data stream classification that takes temporal dependence into account. We propose a combined measure for classification performance, that takes into account temporal dependence, and we recommend using it as the main performance measure in classification of streaming data

    Cache Hierarchy Inspired Compression: a Novel Architecture for Data Streams

    Get PDF
    We present an architecture for data streams based on structures typically found in web cache hierarchies. The main idea is to build a meta level analyser from a number of levels constructed over time from a data stream. We present the general architecture for such a system and an application to classification. This architecture is an instance of the general wrapper idea allowing us to reuse standard batch learning algorithms in an inherently incremental learning environment. By artificially generating data sources we demonstrate that a hierarchy containing a mixture of models is able to adapt over time to the source of the data. In these experiments the hierarchies use an elementary performance based replacement policy and unweighted voting for making classification decisions

    Multilingual Twitter Sentiment Classification: The Role of Human Annotators

    Get PDF
    What are the limits of automated Twitter sentiment classification? We analyze a large set of manually labeled tweets in different languages, use them as training data, and construct automated classification models. It turns out that the quality of classification models depends much more on the quality and size of training data than on the type of the model trained. Experimental results indicate that there is no statistically significant difference between the performance of the top classification models. We quantify the quality of training data by applying various annotator agreement measures, and identify the weakest points of different datasets. We show that the model performance approaches the inter-annotator agreement when the size of the training set is sufficiently large. However, it is crucial to regularly monitor the self- and inter-annotator agreements since this improves the training datasets and consequently the model performance. Finally, we show that there is strong evidence that humans perceive the sentiment classes (negative, neutral, and positive) as ordered
    • ā€¦
    corecore