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ABSTRACT 

 Requests for communication via mobile devices can be disruptive to the 

receiver in certain social situation. For example, unsuitable incoming calls may put the 

receiver in a dangerous condition, as in the case of receiving calls while driving. 

Therefore, designers of mobile computing interfaces require plans for minimizing 

annoying calls. To reduce the frequency of these calls, one promising approach is to 

provide an intelligent and accurate system, based on context awareness with cues of a 

callee's context allowing informed decisions of when to answer a call. The processing 

capabilities and advantages of mobile devices equipped with portable sensors provide 

the basis for new context-awareness services and applications. However, context-

awareness mobile computing systems are needed to manage the difficulty of multiple 

sources of context that affects the accuracy of the systems, and the challenge of energy 

hungry GPS sensor that affects the battery consumption of mobile phone. Hence, 

reducing the cost of GPS sensor and increasing the accuracy of current context-

awareness call filtering systems are two main motivations of this study. Therefore, this 

study proposes a new localization mechanism named Improved Battery Life in Context 

Awareness System (IBCS) to deal with the energy-hungry GPS sensor and optimize 

the battery consumption of GPS sensor in smartphone for more than four hours. 

Finally, this study investigates the context-awareness models in smartphone and 

develops an alternative intelligent model structure to improve the accuracy rate. 

Hence, a new optimized context-awareness mobile computing model named 

Optimized Context Filtering (OCF) is developed to filter unsuitable incoming calls 

based on context information of call receiver. In this regard, a new extended Naive 

Bayesian classifier was proposed based on the Naive Bayesian classifier by combining 

the incremental learning strategy with appropriate weight on the new training data. 

This new classifier is utilized as an inference engine to the proposed model to increase 

its accuracy rate. The results indicated that 7% improvement was seen in the accuracy 

rate of the proposed extended naive Bayesian classifier. On the other hand, the 

proposed model result showed that the OCF model improved the accuracy rate by 14%. 

These results indicated that the proposed model is a hopeful approach to provide an 

intelligent call filtering system based on context information for smartphones. 
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ABSTRAK 

 Permintaan untuk berkomunikasi melalui peranti mudah alih boleh 
menganggu penerima dalam keadaan tertentu. Sebagai contoh, panggilan masuk 
yang tidak sesuai boleh meletakkan penerima dalam keadaan berbahaya, seperti 
menerima panggilan semasa memandu. Oleh itu, pereka antara muka 
pengkomputeran mudah alih perlu merancang untuk meminimumkan panggilan 
yang boleh memberi gangguan.  Untuk mengurangkan kekerapan gangguan ini, 
satu pendekatan perlu diperkenalkan untuk menyediakan sistem pintar dan tepat 
berdasarkan kesedaran konteks dengan isyarat dalam konteks penerima yang 
membolehkan keputusan dimaklumkan ketika menjawab panggilan. Keupayaan 
pemprosesan dan kelebihan peranti mudah alih yang dilengkapi dengan sensor 
mudah alih menyediakan asas bagi perkhidmatan dan aplikasi kesedaran konteks 
yang baru. Walau bagaimanapun, sistem pengkomputeran mudah alih kesedaran 
konteks diperlukan untuk mengurus kesukaran pelbagai sumber konteks yang 
memberi kesan kepada ketepatan sistem, dan cabaran sensor GPS yang 
menggunakan banyak tenaga yang memberi kesan kepada penggunaan bateri 
telefon bimbit. Oleh itu, mengurangkan kos sensor GPS dan meningkatkan 
ketepatan sistem penapisan panggilan bagi konteks semasa adalah dua tujuan 
utama kajian ini. Oleh itu, kajian ini mencadangkan satu mekanisme 
penyetempatan baru bernama Peningkatan Hayat Bateri dalam Sistem Kesedaran 
Konteks (IBCS) untuk menangani masalah sensor GPS dan mengoptimumkan 
penggunaan bateri sensor GPS dalam telefon pintar selama lebih dari empat jam. 
Akhir sekali, kajian ini mengkaji model kesedaran konteks dalam telefon pintar 
dan membangunkan struktur model pintar alternatif untuk meningkatkan kadar 
ketepatannya. Oleh itu, model pengkomputeran mudah alih konteks kesedaran 
yang baru bernama Penapisan Konteks yang diOptimumkan (OCF) dibangunkan 
untuk menapis panggilan masuk yang tidak sesuai berdasarkan maklumat konteks 
penerima panggilan. Dalam hal ini, pengelas Naive Bayesian lanjutan yang baru 
dicadangkan berdasarkan pengelas Naive Bayesian dengan menggabungkan 
strategi pembelajaran tambahan dengan pemberat yang sesuai pada data latihan 
baru. Pengelas baru ini digunakan sebagai enjin inferensi kepada model yang 
dicadangkan untuk meningkatkan kadar ketepatannya. Keputusan menunjukkan 
bahawa peningkatan kadar ketepatan 7% didapati dengan pengelas Bayesian baru 
ini. Sebaliknya hasil yang dicadangkan menunjukkan bahawa model OCF 
meningkatkan kadar ketepatan sebanyak 14%. Hasil ini menunjukkan bahawa 
model yang dicadangkan merupakan pendekatan yang diharapkan untuk 
menyediakan sistem penapisan panggilan pintar berdasarkan maklumat konteks 
untuk telefon pintar. 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Introduction and Motivation 

In the past few years, the mobile device and mobile services markets have been 

affected by the strong emergence of smartphones. A smartphone is a mobile phone 

built on mobile computing platforms, which offers hi-tech computing ability and 

connectivity options. As a result, its memory and processing features are also boosted 

(Gan, 2018). A majority of new mobile devices are equipped with Internet 

connectivity, Global Positioning System (GPS), wireless local area network (WLAN)-

based sensors, and other novel capabilities which have been integrated to support the 

users’ social or individual activities (You et al., 2018). 

New smartphones employ a kind of operation system that enables them to have 

new versions of mobile services. Notably, the number of these services for 

smartphones has been growing rapidly. In reality, smartphones are increasingly being 

equipped with operating systems that have similar complexity with those on desktop 

computers (Sherman and Craig, 2018). This tendency makes smartphone operating 

systems liable to a lot of threats that are also faced by desktop operating systems.  

 The availability of rich real-time information and smartphones’ sensors 

coupled with the capabilities of the mobile computing platforms present an ideal 

platform for delivering context-aware information systems. Context-aware computing 

is aimed to make mobile devices smarter by giving them the ability to recognise and 

interpret the surrounding environment, as well as to react proactively and intelligently 

(Hwang, 2014). 

Context plays an important role in universal computing. For example, context 

is crucial in location-based services (Bao et al., 2015; Champiri et al., 2015; Zhu et al., 
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2015). Context awareness is considered the most prominent approach in the progress 

of smartphone devices (Elina Jaakkola et al., 2015). In particular, it has produced more 

privacy-driven applications in smartphones (Gamecho et al., 2013; Nogueira et al., 

2017; Offen et al., 2016). This comparison vividly leads to privacy service possibility 

in mobile information systems (Schaub et al., 2015). Context-aware services make it 

possible for recipients to receive only the information that they are interested in. As a 

matter of fact, this system enhances the intelligence of mobile devices in figuring out 

and recognising the environment, in addition to responding intelligently (Perera et al., 

2014; Vaizman et al., 2017).  

Nowadays, mobile phone as a mobile communication has facilitated global 

interaction and connection among users. Nevertheless, incoming calls in unsuitable 

moments can be interruptive to the social environment or present duty; they also cause 

interruption, awkwardness, and embarrassment for the call receiver (Rosenthal et al., 

2011). Sometimes, incoming calls can also lead to an increased level of stress or 

mistakes. They may even put the receiver in a dangerous condition, as in the case of 

receiving calls while driving (Oviedo-Trespalacios et al., 2017). 

In the middle of the evolving movement, intelligent context-aware mobile 

computing systems to filter inappropriate incoming calls have obtained rising 

recognition as an emerging technology for novel generation of mobile devices. These 

systems interact with unsuitable incoming calls by sensing clues about the situational 

context of the users and allowing expected interaction between the caller and callee. 

In fact, these systems could decrease unsuitable calls by identifying the context of the 

users and select a more appropriate moment to call (Guangxing and Qingsheng, 2011; 

Zhu et al., 2015).  

With the embedded sensors in today’s mobile phones such as accelerometer 

and GPS sensor, the user’s context can be sensed and estimated to some extent using 

machine learning techniques. Zhu et al. (2015) stressed the importance of accuracy for 

context-aware mobile computing systems. They suggested that the systems need to 

take a more practical approach in their performance to predict and adjust the 

requirements of their users, instead of being static and waiting for user’s commands. 
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Nonetheless, planning and developing context-aware mobile computing models to 

filter inappropriate incoming calls in a reasonable, predictable, accurate and timely 

way pose a huge engineering challenge (Elina Jaakkola et al., 2015). Even though the 

development of this kind of systems have made significant progress, there are 

insufficient methodologies and tactics on how to intelligently model and implement 

these systems with a high accuracy rate that have to manage sizable amounts of context 

information in the mobile phone.  

On other hand, context-aware mobile computing systems needed to manage 

the challenge of energy-hungry and context sensors limitations in mobile phones. 

Context-aware location-based applications have become increasingly popular on 

smartphones over the past years. The dynamic utilization of these frameworks and 

systems cause the device’s battery to deplete because of their powerful location-

sensing operations. In the current context-aware mobile computing systems, location 

context plays an important role (Böhmer et al., 2014; Offen et al., 2016; Razzaque and 

Clarke, 2016), which is mostly obtained by GPS sensor. GPS is broadly utilized for 

the location-based service (LBS) of mobile phones. This sensor significantly increase 

the power consumption of mobile phones due to its substantial overhead calculation 

(Carroll, 2017). Cell tower-based localisation (CBL) could be an option to achieve 

LBS in energy-effective way; however, its appropriation is constrained because of the 

low positioning precision. 

Lack of the location context information could lead to inaccuracy of these 

context-aware systems (Sarwat et al., 2015). Additionally, GPS sensor could decrease 

smartphone’s battery life to less than nine hours (Man and Ngai, 2014). When the 

battery power is reduced at a fast rate from the permanent process of multiple sensors 

on the smartphone, especially the GPS sensors, the inconvenience of frequent battery 

recharge often outweighs the advantage of using these systems. Hence, a new 

mechanism to optimize the energy consumption of GPS sensor and manage the GPS 

sensor limitation in these systems is inevitable. 



4 

1.2 Background of Study 

Context-aware computing research is stated by ubiquitous computing, which 

was created by Want et al. (1995). It had also been discussed as pervasive computing, 

that is a computing standard to make different computing devices accessible all 

through the surrounding environment and successfully imperceptible to the users. 

Several researchers studied “context” (Balan et al., 2014; Cao et al., 2018; Elina 

Jaakkola et al., 2015; Galar et al., 2015) since Schilit et al. (1994) first introduced it. 

The definition of context awareness as stated by (Bao et al., 2015; Dey, 2018) 

is used to comprehend the environment, as well as the basics of context awareness and 

smartphone’s sensors. This information covers the sensors of smartphone like GPS 

and accelerometer, and user activity such as driving or studying. In addition, using AI 

techniques and new localization systems in current context-aware systems can help in 

understanding the phenomenological view of context, which depends on user’s context 

information. 

Context data infrastructure for context-aware mobile computing models had 

been studied comprehensively by researchers over the last recent years. The 

researchers had been mostly aiming at the outcome of interruption, realization, context 

sensing and accurate result (Böhmer et al., 2014; Guangxing and Qingsheng, 2011; 

Miraoui et al., 2013). They mainly had focused on gaining a comprehension of how to 

manage the inappropriate incoming calls in mobile phone accurately.  

Phithakkitnukoon and Dantu (2010) offered a context-aware mobile computing 

model known as ContextAlert. Their objective was to designed a new model that 

senses the user’s context information and accurately arranges the smartphone alert 

mode to filter inappropriate incoming calls. An overview of ContextAlert model is 

illustrated in Figure 1.1. 
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Figure 1.1 ContextAlert Overview (Phithakkitnukoon and Dantu, 2010) 

In their model, K nearest neighbour classifier was considered as a learning 

mechanism that kept a continuous adaptive rate for new learning. Three incoming call 

alert options were considered in their model: interruptible by ringtone (vehicular 

mode), uninterruptible by ringtone, and interruptible by ringtone (non-vehicular 

mode). By utilizing data that were gathered from human subjects, their model was 

evaluated in many situations. They demonstrated that the proposed model acted well 

and yielded accurate results. 

Furthermore, Miraoui et al. (2013) proposed a context-aware incoming calls’ 

indication based on context information of callee in the mobile phone in order to 

automatically and accurately configure incoming calls based on the context 

information of user in order to increase the usage comfort of the device. Their method 

contained a specific context to seek for the nearby known context information and 

modify the service indication of incoming calls in a similar way. They considered 

reference contexts by enumerating typical contexts for smartphones: battery charge 

level, nearby, time, date, noise, localization, occupation and light. These contexts can 

be detected utilizing different types of sensors: some can be recognised straight from 

the proper physical sensor (time, noise, light, etc.) and others can be logical sensors 

(occupation).  

As shown in Figure 1.2, each context was defined by composing few elements 

and they allocated the proper rate to each context information element. Apart from 
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that, they also determined the form of delivery for the incoming calls’ indication 

service. Once the smartphone noticed new context information, it searched the ten 

general contexts of information for the most related context and adjusted the service 

call indication accordingly. Their method can be offered in diverse forms of mode: 

vibration, ring tone and divert to voicemail.  

 

Figure 1.2 Operation of the Context-Aware Incoming Calls’ Indication Approach 
(Miraoui et al., 2014) 

In other hand, many researchers on context aware mobile computing systems 

mainly focused on the inference of user’s unseen information which cannot be 

achieved explicitly. They usually used users’ location information as one of the major 

contexts, which is obtained from a GPS sensor. Nevertheless, GPS sensor cannot work 

in indoor area, thus indoor-location information is unavailable in existing works on 

context awareness. The lack of indoor-location information prevents the accurate 

Nearest Context Ci 
Similarity Distance 
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inference of hidden information. In addition, collecting GPS context from smartphones 

significantly causes power consumption and reduces battery lifetime (Cho and Yu, 

2019). Hence, high battery consumption of permanent GPS localization is a huge 

challenge for context-aware mobile computing systems in mobile phones. 

Furthermore, a GPS-Accelerometer-Compass localization technique was 

designed by Vo et al. (2016). This new technique depended on utilizing the low-energy 

compass and accelerometer sensors and utilized the GPS sensor infrequently for 

management. Their result showed that the proposed technique had an exponential 

saving in mobile phone’s battery life with a linear loss in accuracy as compared to GPS 

accuracy. Plus, they assessed the effect of the different parameters on the energy-

accuracy trade-off. The proposed technique is illustrated in Figure 1.3. 

 

Figure 1.3 GPS-Accelerometer-Compass Localization Technique Overview (Vo 
et al., 2016) 

As shown in Figure 1.3, the location estimator requested the accelerometer and 

compass continually to determine the direction of the tracked object and the 

displacement and speed along this direction. This is combined with the previous 

location estimate to provide the new location estimate. Periodically, based on a present 

value, the GPS is queried to obtain a better location estimate and the current estimate 

is set to the GPS location. The GPS is also used to determine the initial position and 
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velocity. The frequency of synchronization with the GPS represents a trade-off 

between energy-consumption and error in localization. 

1.3 Problem Statement 

Nowadays, smartphone plays a significant role in people’s life but sometimes 

it comes with a price in terms of inappropriate incoming calls and interruptions. Users 

regularly need to make the decision to ignore or answer incoming calls based on not 

only their accessibility but also the benefits derived from the incoming calls by 

considering the context information of the user and the call content. For example, a 

mobile application can identify that the user is driving and block the incoming calls to 

avoid interruption. When the system is accurate enough, sensing and context inference 

stay unnoticed.   

 In order to achieve the continuous satisfaction of changing contexts, the 

development of this type of systems requires intelligent and accurate mechanisms 

(Afzal et al., 2018; Böhmer et al., 2014). Nevertheless, when system performance is 

inaccurate or faulty, users may not realize the underlying behaviour (Bulej, 2019). 

There have been remarkable models towards intelligent filtering incoming calls in 

context-aware mobile computing systems such as ContextAlert (Phithakkitnukoon and 

Dantu, 2010) and SmartNoti (Oh et al., 2015) models. However, their result indicated 

that they were not accurate and not optimized enough to infer user’s context 

information in smartphone. The ContextAlert model achieved 90.5% and the 

SmartNoti models only achieved 80 % accuracy rate. This can lead users to mistrust, 

misuse, or even abandon the system. This lack of accuracy may be countered by having 

a new intelligent method based on the AI techniques that is more accurate for the 

context-aware mobile systems (Corea, 2018; Offen et al., 2016). Accuracy is the key 

to such systems that have to intelligently distribute and manage large amounts of 

information (Böhmer et al., 2014; Grandhi and Jones, 2015; Lim et al., 2016). Even 

though there have been notable steps towards intelligent distribution methods and 

approaches on context-aware mobile computing models, the methodologies on how to 
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model and implement these systems intelligently with high accuracy rate in 

smartphones are still lacking. 

 Notably, context-aware mobile computing systems needed to manage the 

difficulties of multiple sources of context that effect on the performance of the systems, 

and the challenge of energy-hungry context sensors that effect on the battery 

consumption of mobile phone. Location context plays an important role in a majority 

of these systems (Böhmer et al., 2014; Capurso et al., 2018; Guangxing and 

Qingsheng, 2011; Miraoui et al., 2013; Sarker et al., 2016), which is mostly obtained 

by GPS sensor. However, GPS sensor’s limitation in the indoor environments and 

high-power consumption of permanent localization are a huge challenge in these 

systems (Leick et al., 2015; Oshin et al., 2012). Further, users may prefer to turn the 

GPS sensor off to avoid letting the mobile phone's battery run all the way down (Liao 

et al., 2016). In the absence of the location context information, the accuracy of the 

these systems could significantly fall off (Davoudi et al., 2014a; Noh et al., 2012). 

Therefore, a new localization mechanism to provide the location context in any 

circumstances and decrease the battery consumption of GPS sensors in context-aware 

mobile computing systems is inevitable and necessary to improve users’ trust in such 

system for smartphone.  

Accordingly, reducing the cost of GPS sensor and increasing the accuracy of 

current context-aware call filtering systems are two main challenges as mentioned 

previously. This study leads to identification of criteria from previous researches and 

aims to solve these problems through developing a new model based on AI techniques 

to increase the accuracy rate of context-aware mobile computing models and designing 

a new localization mechanism to decrease the GPS battery consumption of permanent 

localization to the current context-aware call filtering models to prevent mistrust and 

misuse of the users.  

 



10 

1.4 Research Objectives 

In this thesis, four objectives had been outlined as follows: 

(a) To propose a new context-aware mobile computing model to filter 

inappropriate incoming calls in smartphones. 

(b) To propose an extended naïve Bayesian classifier to increase the 

classification accuracy rate. 

(c) To design a new localization mechanism to optimize the battery 

consumption of the GPS sensor in the proposed model. 

(d) To evaluate the performance of the proposed model based on accuracy 

rate and battery consumption 

1.5 Research Questions 

This research is guided by these four questions: 

(a) How to filter inappropriate incoming calls in smartphones? 

(b) What are to propose an extended naïve Bayesian classifier to increase 

the classification accuracy rate?  

(c)  How to design a new localization mechanism to optimize the battery 

consumption of the GPS sensor in the proposed model? 

(d)  How is the performance of the proposed model in terms of accuracy 

rate and battery consumption?  
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1.6 Scope and Limitations 

Three categories of context could be taken into account, namely user context, 

terminal context, and communication network context; this research focuses on the 

context of the user. Nevertheless, all of these categories could be mixed when needed. 

This research is focused on the following scopes: 

(i) Context-aware call filtering systems to deal with call interruption  

(ii) Context-aware mobile computing models  

(iii) Smart phone’s accelerometer sensor 

(iv) GPS localization techniques to optimize the battery consumption of 

GPS sensor on smart phones. 

 

The deliverables of this system will benefit all smartphone users who are 

concerned about inappropriate incoming calls. This research excluded users with 

experience or technical expertise in such systems. Plus, the users were not required to 

have an understanding of the context-aware interruption system operations. Instead, 

they only need to focus on the contexts of their incoming calls and their activities. Plus, 

this study aimed to understand the factors and sensors that influence on decision 

making in filtering incoming calls. 

This research had several limitations in terms of mobile phone’s abilities and 

specifications, amount of test data available, and duration of the test. Furthermore, it 

was challenging to identify the user context for meeting the objectives and figure out 

the sensors that can provide the required information reliably. 

In addition, context acquisition remains as an issue because of the existence of 

a considerable gap between aspects that can be sensed and the actual situation in social 

interactions and people’s minds. For instance, is somebody quiet because they are deep 

in thought or are, they about to make a mathematical breakthrough. 
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1.7 Research Significance 

The significances of this research are outlined as follows:  

(i) An optimized context-aware mobile computing model named Optimize 

Context Filtering (OCF) that can sense users’ context information to 

provide a service to synchronise the incoming calls with users’ daily 

life is proposed. The service reduces the frequency of annoying calls in 

smartphone, for example, it blocks an incoming call while the user is 

driving. 

(ii) The multiple sensors embedded in smartphones which are more 

accurate in finding users’ context information were applied instead of 

the various sensors attached to different parts of users’ body. 

(iii) A new localization mechanism named Improved Battery Life in 

Context-aware Systems (IBCS) that provides the location context 

information to the proposed model in any circumstances as well as 

optimizes the battery consumption of continuous GPS localization is 

designed.  

(iv) An extended Naive Bayesian classifier is developed based on the Naive 

Bayesian classifier, which is more accurate and suitable for the 

proposed model in smartphones. 

1.8 Thesis Outline 

In Chapter 1, A brief introduction of context information, smartphone’s 

features, call interruption and context-aware computing models is provided. It also 

outlines the necessity for filtering incoming calls, the current challenges and the 

appropriate approaches to do so. In these regards, the problem statement and research 

objectives of this research are addressed. In chapter 2, smartphone capabilities are 
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inquired and reviewed. Next, an elaboration on call filtering systems and context-

aware mobile computing models which were concerned about interruption is 

conducted. Notably, the necessity of location information and accuracy in context-

aware mobile computing model systems are discussed. In this regard, the new 

localization techniques which were concerned on battery consumption are reviewed. 

Secondly, the existing context-aware computing models are studied and compared. 

After reviewed the current models, two models which were meet this research 

objective are selected and studied further. Then, current model's methods are studied 

to determine the best method to manage context information. As a result, the Naive 

Bayesian classifier is shown as the promising AI technique for context-aware mobile 

computing model to deal with interruptions. However, to overcome its weaknesses, a 

brief review of new techniques and boosting methods are reviewed. 

In chapter 3, the methodology of the proposed model that includes the research 

design, research procedure, research activities, and operational framework is 

described. Further, data collection process is also described. The process flow of the 

research was developed according to the established methodology of an optimized 

context-aware mobile computing model- Optimized Call Filtering (OCF)- to filter 

inappropriate incoming calls in smartphones. In addition, a new mechanism named 

Improved Battery life in Context-aware-system (IBCS) is designed to optimize the 

high battery consumption of Global Positioning Sensor (GPS) localization in the 

context-aware mobile computing systems. Finally, a new extended Naive Bayesian 

classifier is developed as an inference engine to achieve a higher accuracy rate and 

better performance in the proposed model. Finally, the assumptions and limitations of 

this research are discussed.  

In chapter 4, the optimized call filtering (OCF) model is developed based on 

the closest model to the research objectives, namely SmartNoti model (Oh et al., 2015). 

In this regard, the context follow diagram and data follow diagram of OCF model is 

presented. In addition, the OCF Data-Flow model is offered based on the notion that 

systems can be modelled as a visualization of the data interaction that the overall 

system. Finally, pseudo code of Extended Naïve Bayesian Classifier is presented. In 

chapter 5, the proposed localization mechanism (IBCS) is evaluated in three different 
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smartphones to measure its performance based on battery consumption. Apart from 

that, the users' impression on call filtering systems is also analysed. Next, outlines of 

an extensive study are conducted to evaluate the impact of the new extended Naive 

Bayesian classifier on accuracy rate. Lastly, the proposed model is evaluated and 

compared with SmartNoti model (Oh et al., 2015) based on the accuracy rate. Finally, 

in chapter 6, objectives of this research been outlined the novel contribution of this 

thesis and differences between this work and other previous works is described. Lastly, 

future works are recommended. 
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