10 research outputs found

    The Ant and the Trap: Evolution of Ant-Inspired Obstacle Avoidance in a Multi-Agent Robotic System

    Get PDF
    Interest in swarm robotics, particularly those modeled on biological systems, has been increasing with each passing year. We created the iAnt robot as a platform to test how well an ant-inspired robotic swarm could collect resources in an unmapped environment. Although swarm robotics is still a loosely defined field, one of the included hallmarks is multiple robots cooperating to complete a given task. The use of multiple robots means increased cost for research, scaling often linearly with the number of robots. We set out to create a system with the previously described capabilities while lowering the entry cost by building simple, cheap robots able to operate outside of a dedicated lab environment. Obstacle avoidance has long been a necessary component of robot systems. Avoiding collisions is also a difficult problem and has been studied for many years. As part of moving the iAnt further towards the real-world we needed a method of obstacle avoidance. Our hypothesis is that use of biological methods including evolution, stochastic movements and stygmergic trails into the iAnt Central Place Foraging Algorithm (CPFA) could result in robot behaviors suited to navigating obstacle-filled environments. The result is a modification of the CPFA to include pheromone trails, CPFA-Trails or CPFAT. This thesis first demonstrates the low-cost, simple and robust design of the physical iAnt robot. Secondly we will demonstrate the adaptability of the the system to evolve and succeed in an obstacle-laden environment

    An Efficient Multiple-Place Foraging Algorithm for Scalable Robot Swarms

    Get PDF
    Searching and collecting multiple resources from large unmapped environments is an important challenge. It is particularly difficult given limited time, a large search area and incomplete data about the environment. This search task is an abstraction of many real-world applications such as search and rescue, hazardous material clean-up, and space exploration. The collective foraging behavior of robot swarms is an effective approach for this task. In our work, individual robots have limited sensing and communication range (like ants), but they are organized and work together to complete foraging tasks collectively. An efficient foraging algorithm coordinates robots to search and collect as many resources as possible in the least amount of time. In the foraging algorithms we study, robots act independently with little or no central control. As the swarm size and arena size increase (e.g., thousands of robots searching over the surface of Mars or ocean), the foraging performance per robot decreases. Generally, larger robot swarms produce more inter-robot collisions, and in swarm robot foraging, larger search arenas result in larger travel distances causing the phenomenon of diminishing returns. The foraging performance per robot (measured as a number of collected resources per unit time) is sublinear with the arena size and the swarm size. Our goal is to design a scale-invariant foraging robot swarm. In other words, the foraging performance per robot should be nearly constant as the arena size and the swarm size increase. We address these problems with the Multiple-Place Foraging Algorithm (MPFA), which uses multiple collection zones distributed throughout the search area. Robots start from randomly assigned home collection zones but always return to the closest collection zones with found resources. We simulate the foraging behavior of robot swarms in the robot simulator ARGoS and employ a Genetic Algorithm (GA) to discover different optimized foraging strategies as swarm sizes and the number of resources is scaled up. In our experiments, the MPFA always produces higher foraging rates, fewer collisions, and lower travel and search time than the Central-Place Foraging Algorithm (CPFA). To make the MPFA more adaptable, we introduce dynamic depots that move to the centroid of recently collected resources, minimizing transport times when resources are clustered in heterogeneous distributions. Finally, we extend the MPFA with a bio-inspired hierarchical branching transportation network. We demonstrate a scale-invariant swarm foraging algorithm that ensures that each robot finds and delivers resources to a central collection zone at the same rate, regardless of the size of the swarm or the search area. Dispersed mobile depots aggregate locally foraged resources and transport them to a central place via a hierarchical branching transportation network. This approach is inspired by ubiquitous fractal branching networks such as animal cardiovascular networks that deliver resources to cells and determine the scale and pace of life. The transportation of resources through the cardiovascular system from the heart to dispersed cells is the inverse problem of transportation of dispersed resources to a central collection zone through the hierarchical branching transportation network in robot swarms. We demonstrate that biological scaling laws predict how quickly robots forage in simulations of up to thousands of robots searching over thousands of square meters. We then use biological scaling predictions to determine the capacity of depot robots in order to overcome scaling constraints and produce scale-invariant robot swarms. We verify the predictions using ARGoS simulations. While simulations are useful for initial evaluations of the viability of algorithms, our ultimate goal is predicting how algorithms will perform when physical robots interact in the unpredictable conditions of environments they are placed in. The CPFA and the Distributed Deterministic Spiral Algorithm (DDSA) are compared in physical robots in a large outdoor arena. The physical experiments change our conclusion about which algorithm has the best performance, emphasizing the importance of systematically comparing the performance of swarm robotic algorithms in the real world. We illustrate the feasibility of implementing the MPFA with transportation networks in physical robot swarms. Full implementation of the MPFA in an outdoor environment is the next step to demonstrate truly scalable and robust foraging robot swarms

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Evolving Error Tolerance in Biologically-Inspired iAnt Robots

    No full text

    How We Use Stories and Why That Matters

    Get PDF
    How We Use Stories and Why That Matters guides the reader through the tangled undergrowth of communication and cultural expression towards a new understanding of the role of group-mediating stories at global and digital scale. It argues that media and networked systems perform and bind group identities, creating bordered fictions within which economic and political activities are made meaningful. Now that computational and global scale, big data, metadata and algorithms rule the roost even in culture, subjectivity and meaning, we need population-scale frameworks to understand individual, micro-scale sense-making practices. To achieve that, we need evolutionary and systems approaches to understand cultural performance and dynamics. The opposing universes of fact (science, knowledge, education) and fiction (entertainment, story and imagination) – so long separated into the contrasting disciplines of natural sciences and the humanities – can now be understood as part of one turbulent sphere of knowledge-production and innovation. Using striking examples and compelling analysis, the book shows what the New York Shakespeare Riots tell us about class struggle, what Death Cab for Cutie tells us about media, what Kate Moss’s wedding dress tells us about authorship, and how Westworld and Humans imagine very different futures for Artificial Intelligence: one based on slavery, the other on class. Together, these knowledge stories tell us about how intimate human communication is organised and used to stage organised conflict, to test the ‘fighting fitness’ of contending groups – provoking new stories, identities and classes along the way

    How We Use Stories and Why That Matters

    Get PDF
    How We Use Stories and Why That Matters guides the reader through the tangled undergrowth of communication and cultural expression towards a new understanding of the role of group-mediating stories at global and digital scale. It argues that media and networked systems perform and bind group identities, creating bordered fictions within which economic and political activities are made meaningful. Now that computational and global scale, big data, metadata and algorithms rule the roost even in culture, subjectivity and meaning, we need population-scale frameworks to understand individual, micro-scale sense-making practices. To achieve that, we need evolutionary and systems approaches to understand cultural performance and dynamics. The opposing universes of fact (science, knowledge, education) and fiction (entertainment, story and imagination) – so long separated into the contrasting disciplines of natural sciences and the humanities – can now be understood as part of one turbulent sphere of knowledge-production and innovation. Using striking examples and compelling analysis, the book shows what the New York Shakespeare Riots tell us about class struggle, what Death Cab for Cutie tells us about media, what Kate Moss’s wedding dress tells us about authorship, and how Westworld and Humans imagine very different futures for Artificial Intelligence: one based on slavery, the other on class. Together, these knowledge stories tell us about how intimate human communication is organised and used to stage organised conflict, to test the ‘fighting fitness’ of contending groups – provoking new stories, identities and classes along the way

    Planetary Science Vision 2050 Workshop : February 27–28 and March 1, 2017, Washington, DC

    Get PDF
    This workshop is meant to provide NASA’s Planetary Science Division with a very long-range vision of what planetary science may look like in the future.Organizer, Lunar and Planetary Institute ; Conveners, James Green, NASA Planetary Science Division, Doris Daou, NASA Planetary Science Division ; Science Organizing Committee, Stephen Mackwell, Universities Space Research Association [and 14 others]PARTIAL CONTENTS: Exploration Missions to the Kuiper Belt and Oort Cloud--Future Mercury Exploration: Unique Science Opportunities from Our Solar System’s Innermost Planet--A Vision for Ice Giant Exploration--BAOBAB (Big and Outrageously Bold Asteroid Belt) Project--Asteroid Studies: A 35-Year Forecast--Sampling the Solar System: The Next Level of Understanding--A Ground Truth-Based Approach to Future Solar System Origins Research--Isotope Geochemistry for Comparative Planetology of Exoplanets--The Moon as a Laboratory for Biological Contamination Research--“Be Careful What You Wish For:” The Scientific, Practical, and Cultural Implications of Discovering Life in Our Solar System--The Importance of Particle Induced X-Ray Emission (PIXE) Analysis and Imaging to the Search for Life on the Ocean Worlds--Follow the (Outer Solar System) Water: Program Options to Explore Ocean Worlds--Analogies Among Current and Future Life Detection Missions and the Pharmaceutical/ Biomedical Industries--On Neuromorphic Architectures for Efficient, Robust, and Adaptable Autonomy in Life Detection and Other Deep Space Missions

    A New Technological Era for American Agriculture

    Get PDF
    The report concludes that these technologies have the potential to provide new solutions to many agricultural problems. The challenge, however, will be whether government, industry, and the public can strike the proper balance of direction, oversight, and use to allow these technologies to flourish. Congress will be faced with many issues and choices as American agriculture moves into this new era

    Building body identities - exploring the world of female bodybuilders

    Get PDF
    This thesis explores how female bodybuilders seek to develop and maintain a viable sense of self despite being stigmatized by the gendered foundations of what Erving Goffman (1983) refers to as the 'interaction order'; the unavoidable presentational context in which identities are forged during the course of social life. Placed in the context of an overview of the historical treatment of women's bodies, and a concern with the development of bodybuilding as a specific form of body modification, the research draws upon a unique two year ethnographic study based in the South of England, complemented by interviews with twenty-six female bodybuilders, all of whom live in the U.K. By mapping these extraordinary women's lives, the research illuminates the pivotal spaces and essential lived experiences that make up the female bodybuilder. Whilst the women appear to be embarking on an 'empowering' radical body project for themselves, the consequences of their activity remains culturally ambivalent. This research exposes the 'Janus-faced' nature of female bodybuilding, exploring the ways in which the women negotiate, accommodate and resist pressures to engage in more orthodox and feminine activities and appearances
    corecore