5 research outputs found

    Comparison of 3D Versus 4D Path Planning for Unmanned Aerial Vehicles

    Get PDF
    This research compares 3D versus 4D (three spatial dimensions and the time dimension) multi-objective and multi-criteria path-planning for unmanned aerial vehicles in complex dynamic environments. In this study, we empirically analyse the performances of 3D and 4D path planning approaches. Using the empirical data, we show that the 4D approach is superior over the 3D approach especially in complex dynamic environments. The research model consisting of flight objectives and criteria is developed based on interviews with an experienced military UAV pilot and mission planner to establish realism and relevancy in  unmanned aerial vehicle flight planning. Furthermore, this study incorporates one of the most comprehensive set of criteria identified during our literature search. The simulation results clearly show that the 4D path planning approach is able to provide solutions in complex dynamic environments in which the 3D approach could not find a solution

    Artificial Intelligence Applications for Drones Navigation in GPS-denied or degraded Environments

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Hybrid Route Optimisation for Maximum Air to Ground Channel Quality

    Full text link
    [EN] The urban air mobility market is expected to grow constantly due to the increased interest in new forms of transportation. Managing aerial vehicles fleets, dependent on rising technologies such as artificial intelligence and automated ground control stations, will require a solid and uninterrupted connection to complete their trajectories. A path planner based on evolutionary algorithms to find the most suitable route has been previously proposed by the authors. Herein, we propose using particle swarm and hybrid optimisation algorithms instead of evolutionary algorithms in this work. The goal of speeding the route planning process and reducing computational costs is achieved using particle swarm and direct search algorithms. This improved path planner efficiently explores the search space and proposes a trajectory according to its predetermined goals: maximum air-to-ground quality, availability, and flight time. The proposal is tested in different situations, including diverse terrain conditions for various channel behaviours and no-fly zones.This study was funded by Airbus Defence and Space gmbh. Universitat Politecnica de Valencia will cover publication costs.Expósito-García, A.; Esteban González, H.; Schupke, D. (2022). Hybrid Route Optimisation for Maximum Air to Ground Channel Quality. Journal of Intelligent & Robotic Systems. 105(2):1-16. https://doi.org/10.1007/s10846-022-01590-81161052Analytical Graphics, Inc. www.stk.com. Accessed: 2021-02-23DCSR algorithm implementation by Matlab. https://cutt.ly/HY45SP8. Accessed: 2021-12-18Genetic algorithm implementation by Matlab. https://cutt.ly/OY47O56. Accessed: 2021-12-18Google Maps, Aerial view of the Alicante area. https://cutt.ly/DjnLvqA. Accessed: 2021-02-23Google Maps, Aerial view of the Alps area. https://cutt.ly/KjnLWuw. Accessed: 2021-02-23Google Maps, Aerial view of the Munich area. https://cutt.ly/1jnLnyu. Accessed: 2021-02-23Nelder-mead algorithm implementation by Matlab. https://cutt.ly/DY45Wxl. Accessed: 2021-12-18Particle swarm implementation by Matlab. https://cutt.ly/PY47TPC. Accessed: 2021-12-18Ali, S.F., Nguyen, L.: UAS C2 data link performance for safe automatic flight guidance and control operation. In: AIAA/IEEE Digital Avionics Systems Conference - Proceedings. https://doi.org/10.1109/DASC.2016.7778017(2016)Besada-Portas, E., De La Torre, L., De La Cruz, J.M., De Andrés-Toro, B.: Evolutionary trajectory planner for multiple UAVs in realistic scenarios. IEEE Trans. Robot. 26(4), 619–634 (2010). https://doi.org/10.1109/TRO.2010.2048610Chaimatanan, S., Delahaye, D., Mongeau, M.: A hybrid metaheuristic optimization algorithm for strategic planning of 4d aircraft trajectories at the continental scale. IEEE Comput. Intell. Mag. 9(4), 46–61 (2014)Cotton, W.B., Wing, D.J.: Airborne trajectory management for urban air mobility. In: 2018 Aviation Technology, Integration, and Operations Conference. https://doi.org/10.2514/6.2018-3674 (2018)de la Cruz, J.M., Besada-Portas, E., Torre-Cubillo, L., Andres-Toro, B., Lopez-Orozco, J.A.: Evolutionary path planner for UAVs in realistic environments. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation - GECCO ’08. https://doi.org/10.1145/1389095.1389383, p 1477 (2008)Dandanov, N., Al-Shatri, H., Klein, A., Poulkov, V.: Dynamic self-optimization of the antenna tilt for best trade-off between coverage and capacity in mobile networks. Wirel. Pers. Commun. 92(1), 251–278 (2017)Di Caprio, D., Ebrahimnejad, A., Alrezaamiri, H., Santos-Arteaga, F.J.: A novel ant colony algorithm for solving shortest path problems with fuzzy arc weights. Alexandria Engineering Journal (2021)Dong, X., He, S., Stojanovic, V.: Robust fault detection filter design for a class of discrete-time conic-type non-linear markov jump systems with jump fault signals. IET Control Theory Applic. 14(14), 1912–1919 (2020)Elouadih, A., Oulad-Said, A., Hassani, M.M.: Design and Simulation of a PIFA Antenna for the Use in 4G Mobile Telecommunications Networks. International Journal of Communications, Network and System Sciences. https://doi.org/10.4236/ijcns.2013.67035 (2013)Exposito, A., Schupke, D., Esteban, H.: Route optimisation for maximum air to ground channel quality. IEEE Access 8, 203619–203630 (2020). https://doi.org/10.1109/ACCESS.2020.3037075Fadlullah, Z.M., Takaishi, D., Nishiyama, H., Kato, N., Miura, R.: A dynamic trajectory control algorithm for improving the communication throughput and delay in UAV-aided networks. IEEE Network. https://doi.org/10.1109/MNET.2016.7389838 (2016)Fang, H., Zhu, G., Stojanovic, V., Nie, R., He, S., Luan, X., Liu, F.: Adaptive optimization algorithm for nonlinear Markov jump systems with partial unknown dynamics. Int. J. Robust Nonlinear Control 31(6), 2126–2140 (2021)Greenberg, E., Levy, P.: Channel characteristics of UAV to ground links over multipath urban environments. In: 2017 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems, COMCAS 2017. https://doi.org/10.1109/COMCAS.2017.8244753 (2017)Grøtli, E.I., Johansen, T.A.: Path planning for UAVs under communication constraints using SPLAT! and MILP. Journal of Intelligent and Robotic Systems, Theory and Applications. https://doi.org/10.1007/s10846-011-9619-8(2012)Haas, E.: Aeronautical channel modeling. IEEE Trans. Veh. Technol. 51(2), 254–264 (2002). https://doi.org/10.1109/25.994803, http://ieeexplore.ieee.org/document/994803/Hayat, S., Yanmaz, E., Brown, T., Bettstetter, C.: Multi-objective UAV path planning for search and rescue, 5569–5574. https://doi.org/10.1109/ICRA.2017.7989656 (2017)Ingber, L.: Adaptive simulated annealing (asa): Lessons learned arXiv preprint cs/0001018 (2000)Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)Kumar, S., Tejani, G.G., Pholdee, N., Bureerat, S., Jangir, P.: Multi-objective teaching-learning-based optimization for structure optimization. Smart Science, 1–12 (2021)Kurban, R., Durmus, A., Karakose, E.: A comparison of novel metaheuristic algorithms on color aerial image multilevel thresholding. Eng. Appl. Artif. Intel. 105, 104410 (2021)Kurban, T., Civicioglu, P., Kurban, R., Besdok, E.: Comparison of evolutionary and swarm based computational techniques for multilevel color image thresholding. Appl. Soft Comput. 23, 128–143 (2014)Lagarias, J., Reeds, J., Wright, M., Wright, P.: Convergence Properties of the Nelder–Mead Simplex Method in Low Dimensions. SIAM J. Optim. 9, 112–147 (1998). https://doi.org/10.1137/S1052623496303470Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. 9(1), 112–147 (1998)Matolak, D.W., Sun, R.: Air-ground channel characterization for unmanned aircraft systems: The Hilly suburban environment. In: 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall). https://doi.org/10.1109/VTCFall.2014.6965861, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6965861, pp 1–5. IEEE (2014)Matolak, D.W., Sun, R.: Air-ground channel characterization for unmanned aircraft systems - part III: The suburban and near-urban environments. IEEE Trans. Veh. Technol. 66(8), 6607–6618 (2017). https://doi.org/10.1109/TVT.2017.2659651Matolak, D.W., Sun, R., Jamal, H., Rayess, W.: L- and C-band airframe shadowing measurements and statistics for a medium-sized aircraft. In: 2017 11th European Conference on Antennas and Propagation (EUCAP 2017), pp. 1429–1433. https://doi.org/10.23919/EuCAP.2017.7928054 (2017)Meyer, D., Wypych, T., Petrovic, V., Strawson, J., Kamat, S., Kuester, F.: An air traffic control simulator for test and development of airspace management schemes. In: 2018 IEEE Aerospace Conference, pp. 1–8. https://doi.org/10.1109/AERO.2018.8396575 (2018)Mezura-Montes, E., Coello, C.A.C.: Constraint-handling in nature-inspired numerical optimization: Past, present and future. Swarm Evol. Comput. 1(4), 173–194 (2011). https://doi.org/10.1016/j.swevo.2011.10.001, http://www.sciencedirect.com/science/article/pii/S2210650211000538Morro, J.V., Esteban, H., Soto, P., Boria, V.E., Bachiller, C., Cogollos, S., Gimeno, B.: Automated design of waveguide filters using aggressive space mapping with a segmentation strategy and hybrid optimization techniques. In: IEEE MTT-S International Microwave Symposium Digest, 2003, vol. 2, pp. 1215–1218 (2003)Nedic, N., Prsic, D., Dubonjic, L., Stojanovic, V., Djordjevic, V.: Optimal cascade hydraulic control for a parallel robot platform by pso. Int. J. Adv. Manuf. Technol. 72(5), 1085–1098 (2014)Rizzoli, P., Martone, M., Gonzalez, C., Wecklich, C., Borla Tridon, D., Bräutigam, B., Bachmann, M., Schulze, D., Fritz, T., Huber, M., Wessel, B., Krieger, G., Zink, M., Moreira, A.: Generation and performance assessment of the global TanDEM-X digital elevation model. ISPRS J. Photogram. Remote Sens. 132, 119–139 (2017). https://doi.org/10.1016/j.isprsjprs.2017.08.008, https://linkinghub.elsevier.com/retrieve/pii/S092427161730093XSahingoz, O.K.: Generation of bezier curve-based flyable trajectories for multi-UAV systems with parallel genetic algorithm. J. Intell. Robot. Syst. Theory Applic. 74 (1-2), 499–511 (2014). https://doi.org/10.1007/s10846-013-9968-6Scherer, J., Yahyanejad, S., Hayat, S., Yanmaz, E., Vukadinovic, V., Andre, T., Bettstetter, C., Rinner, B., Khan, A., Hellwagner, H.: An autonomous multi-UAV system for search and rescue. In: DroNet 2015 - Proceedings of the 2015 Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use. https://doi.org/10.1145/2750675.2750683 (2015)Schneckenburger, N., Matolak, D., Jost, T., Fiebig, U.c., del Galdo, G., Jamal, H., Sun, R.: A geometrical-statistical model for the air-ground channel. In: 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC). https://doi.org/10.1109/DASC.2017.8102054, http://ieeexplore.ieee.org/document/8102054/, pp 1–6. IEEE (2017)Sha, J., Xu, M.: Applying hybrid genetic algorithm to constrained trajectory optimization. In: Proceedings of 2011 International Conference on Electronic Mechanical Engineering and Information Technology, vol. 7, pp. 3792–3795 (2011)Shakhatreh, H., Sawalmeh, A.H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I., Othman, N.S., Khreishah, A., Guizani, M.: Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges. https://doi.org/10.1109/ACCESS.2019.2909530 (2019)ShangGuan, W., Yan, X., Cai, B., Wang, J.: Multiobjective optimization for train speed trajectory in ctcs high-speed railway with hybrid evolutionary algorithm. IEEE Trans. Intell. Transp. Syst. 16(4), 2215–2225 (2015)Singh, S., Mittal, N., Thakur, D., Singh, H., Oliva, D., Demin, A.: Nature and biologically inspired image segmentation techniques. Archives of Computational Methods in Engineering, 1–28 (2021)Sun, R., Matolak, D.W.: Air-ground channel characterization for unmanned aircraft systems part II: Hilly and mountainous settings. IEEE Trans. Veh. Technol. 66(3), 1913–1925 (2017). https://doi.org/10.1109/TVT.2016.2585504Sun, R., Matolak, D.W., Rayess, W.: Air-ground channel characterization for unmanned aircraft systems-part IV: Airframe shadowing. IEEE Trans. Veh. Technol. 66(9), 7643–7652 (2017). https://doi.org/10.1109/TVT.2017.2677884Szczerba, R.J.: Threat netting for real-time, intelligent route planners. In: 1999 Information, Decision and Control. Data and Information Fusion Symposium, Signal Processing and Communications Symposium and Decision and Control Symposium. Proceedings (Cat. No.99EX251), pp. 377–382 (1999)Wu, Q., Zeng, Y., Zhang, R.: Joint trajectory and communication design for multi-UAV enabled wireless networks. IEEE Trans. Wireless Commun. 17(3), 2109–2121 (2018). https://doi.org/10.1109/TWC.2017.2789293, 1705.02723, http://ieeexplore.ieee.org/document/8247211/Xie, P., Petovello, M.G.: Measuring GNSS Multipath Distributions in Urban Canyon Environments. IEEE Trans. Instrum. Meas. 64(2), 366–377 (2015)Xin, X., Tu, Y., Stojanovic, V., Wang, H., Shi, K., He, S., Pan, T.: Online reinforcement learning multiplayer non-zero sum games of continuous-time markov jump linear systems. Appl. Math. Comput. 126537, 412 (2022)Zeng, Y., Zhang, R., Lim, T.J.: Throughput maximization for mobile relaying systems. 2016 IEEE Globecom Workshops. GC Wkshps 2016 - Proceedings 64(12), 4983–4996 (2016). https://doi.org/10.1109/GLOCOMW.2016.7849066Zhang, G., Wu, Q., Cui, M., Zhang, R.: Securing UAV communications via trajectory optimization. 2017 IEEE Global Communications Conference GLOBECOM 2017 - Proceedings 2018-Janua, pp. 1–6. https://doi.org/10.1109/GLOCOM.2017.8254971 (2018

    On-line path planning and robust adaptive path following for underactuated autonomous underwater vehicles

    Get PDF
    Autonome Unterwasservehikel (AUV) sind für den Einsatz in maritimen Gebieten mit harschen und lebensbedrohlichen Umgebungsbedingungen sowie langen Missionshorizonten unerlässlich. Die Planung solcher Missionen erfolgt dabei oft über einen übergeordneten Missionsplanungsalgorithmus, der auf Grundlage von Umgebungsdaten, wie z.B. Wetter-, Karten- und Sensordaten, Referenzwegpunkte generiert. Aufgrund zeitlich veränderlicher Missionsziele und dynamisch variierender Hindernisse, wie z.B. andere Seefahrzeuge, ist eine flexible Anpassung dieser Referenzwegpunkte zur Laufzeit unvermeidlich. Da in den meisten Anwendungsfällen eine möglichst genaue Durchquerung der Wegpunkte mit vertretbarem Stellaufwand gewünscht ist, fokussiert diese Dissertation auf die Bahnführung von AUV, die durch eine Kombination aus on-line Bahnplanung und nichtlinearen Folgeregelungskonzepten besteht. Wegen der Anforderungen von Folgeregelungen an die Glattheit der Referenzbahn (C2) werden im ersten Teil dieser Arbeit zunächst 3D Bahnplanungsalgorithmen auf Basis von Polynomen 5. Grades vorgestellt, welche die von der Missionsplanung vorgegebenen Wegpunkte interpolieren. Zur Verbesserung der numerischen Eigenschaften sowie der Reduzierung des Rechenaufwands wird dieser Ansatz auf B-Splines übertragen. Durch eine spezielle Pufferung/Fensterung einer bestimmten Anzahl an Wegpunkten wird die zusätzliche Anforderung an die on-line Planung adressiert. Im zweiten Teil der Arbeit werden ausgehend von einer eingehenden mathematischen Modellbildung von AUVs nichtlineare Folgeregelungskonzepte für den vollaktuierten und den unteraktuierten Fall (mehr Freiheitsgrade als Stellgrößen) entwickelt. Für ersteren wird eine Feedback-Linearisierung mit beobachterbasiertem Ansatz und aktiver Störunterdrückung präsentiert. Für den zweiten Fall wird ein robustes, adaptives Regelgesetz zur Kompensation von Modellunsicherheiten und Störungen entworfen. Wegen der Unteraktuierung des Systems, stellt dies eine anspruchsvolle Aufgabe dar, welche basierend auf der direkten Methode von Lyapunov und adaptiver Backstepping-Verfahren gelöst wird. Zur Robustifizierung des adaptiven Reglers kommen Parameter-Projektions-Techniken zum Einsatz. Abschließend werden formale Nachweise der Stabilität der präsentierten Regelungen angeführt und die Leistungsfähigkeit der entwickelten Ansätze anhand von detaillierten Simulationen belegt.Autonomous underwater vehicles (AUVs) are indispensable for use in maritime areas with harsh and life-threatening environmental conditions as well as long mission horizons. The planning of such missions is often carried out via a generic mission planning algorithm. Based on environmental data, e.g. weather, map and sensor data, it generates position reference points or so-called way-points to be followed by the AUV. Due to time-varying mission objectives and dynamically varying obstacles, such as other maritime vehicles, a flexible on-line adaptation of these way-points is unavoidable. In addition, for most applications an accurate crossing of way-points is desirable. Therefore, this dissertation focuses on the path generation and following of AUVs, which consists of a combination of on-line path planning and nonlinear path following concepts. Due to the special requirements for path following controllers on the smoothness of the reference path (C2), in the first part of this thesis, we present a 3D path planning algorithm based on degree 5 polynomials which interpolates the way-points given by the mission planning. In order to improve the numerical properties and to reduce the computational effort, this approach is transferred to B-splines. Using a special buffering/windowing of a certain number of way-points, the additional requirement on the on-line planning is addressed. In the second part of the thesis, mathematical modeling of AUVs is carried out. Based on that, nonlinear path following control concepts for the fully-actuated and the under actuated case (more degrees of freedom than control inputs) are developed. For the former, a feedback linearization controller with an observer-based approach and active disturbance rejection capabilities is presented. For the second case, a robust, adaptive control law is developed for the compensation of modeling uncertainty and disturbances. Owing to the under actuation of the system, the controller design is a challenging task, which is solved based on the direct method of Lyapunov and adaptive backstepping techniques. Moreover, parameter projection is used to robustify the adaptive controller. Finally, formal proofs of the stability of the presented controllers are provided and the performance of the developed approaches is demonstrated by means of detailed simulations
    corecore