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”Give, and it will be given to you. A good measure,
pressed down, shaken together and running over,
will be poured into your lap. For with the measure
you use, it will be measured to you”

Jesus Christ
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ZUSAMMENFASSUNG

Autonome Unterwasservehikel (AUV) sind für den Einsatz in maritimen Gebieten mit

harschen und lebensbedrohlichen Umgebungsbedingungen sowie langen Missionshori-

zonten unerlässlich. Die Planung solcher Missionen erfolgt dabei oft über einen über-

geordneten Missionsplanungsalgorithmus, der auf Grundlage von Umgebungsdaten, wie

z.B. Wetter-, Karten- und Sensordaten, Referenzwegpunkte generiert. Aufgrund zeitlich

veränderlicher Missionsziele und dynamisch variierender Hindernisse, wie z.B. andere

Seefahrzeuge, ist eine flexible Anpassung dieser Referenzwegpunkte zur Laufzeit unver-

meidlich. Da in den meisten Anwendungsfällen eine möglichst genaue Durchquerung der

Wegpunkte mit vertretbarem Stellaufwand gewünscht ist, fokussiert diese Dissertation

auf die Bahnführung von AUV, die durch eine Kombination aus on-line Bahnplanung

und nichtlinearen Folgeregelungskonzepten besteht.

Wegen der Anforderungen von Folgeregelungen an die Glattheit der Referenzbahn (C2)

werden im ersten Teil dieser Arbeit zunächst 3D Bahnplanungsalgorithmen auf Basis

von Polynomen 5. Grades vorgestellt, welche die von der Missionsplanung vorgegebenen

Wegpunkte interpolieren. Zur Verbesserung der numerischen Eigenschaften sowie der

Reduzierung des Rechenaufwands wird dieser Ansatz auf B-Splines übertragen. Durch

eine spezielle Pufferung/Fensterung einer bestimmten Anzahl an Wegpunkten wird die

zusätzliche Anforderung an die on-line Planung adressiert.

Im zweiten Teil der Arbeit werden ausgehend von einer eingehenden mathematischen

Modellbildung von AUVs nichtlineare Folgeregelungskonzepte für den vollaktuierten und

den unteraktuierten Fall (mehr Freiheitsgrade als Stellgrößen) entwickelt. Für ersteren

wird eine Feedback-Linearisierung mit beobachterbasiertem Ansatz und aktiver Störun-

terdrückung präsentiert. Für den zweiten Fall wird ein robustes, adaptives Regelgesetz

zur Kompensation von Modellunsicherheiten und Störungen entworfen. Wegen der Un-

teraktuierung des Systems, stellt dies eine anspruchsvolle Aufgabe dar, welche basierend

auf der direkten Methode von Lyapunov und adaptiver Backstepping-Verfahren gelöst

wird. Zur Robustifizierung des adaptiven Reglers kommen Parameter-Projektions-

Techniken zum Einsatz.

Abschliessend werden formale Nachweise der Stabilität der präsentierten Regelungen

angeführt und die Leistungsfähigkeit der entwickelten Ansätze anhand von detaillierten

Simulationen belegt.
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ABSTRACT

Autonomous underwater vehicles (AUVs) are indispensable for use in maritime areas

with harsh and life-threatening environmental conditions as well as long mission hori-

zons. The planning of such missions is often carried out via a generic mission planning

algorithm. Based on environmental data, e.g. weather, map and sensor data, it gener-

ates position reference points or so-called way-points to be followed by the AUV. Due to

time-varying mission objectives and dynamically varying obstacles, such as other mar-

itime vehicles, a flexible on-line adaptation of these way-points is unavoidable. In ad-

dition, for most applications an accurate crossing of way-points is desirable. Therefore,

this dissertation focuses on the path generation and following of AUVs, which consists

of a combination of on-line path planning and nonlinear path following concepts.

Due to the special requirements for path following controllers on the smoothness of

the reference path (C2), in the first part of this thesis, we present a 3D path planning

algorithm based on degree 5 polynomials which interpolates the way-points given by

the mission planning. In order to improve the numerical properties and to reduce

the computational effort, this approach is transferred to B-splines. Using a special

buffering/windowing of a certain number of way-points, the additional requirement on

the on-line planning is addressed.

In the second part of the thesis, mathematical modeling of AUVs is carried out. Based

on that, nonlinear path following control concepts for the fully-actuated and the un-

deractuated case (more degrees of freedom than control inputs) are developed. For the

former, a feedback linearization controller with an observer-based approach and active

disturbance rejection capabilities is presented. For the second case, a robust, adaptive

control law is developed for the compensation of modeling uncertainty and disturbances.

Owing to the underactuation of the system, the controller design is a challenging task,

which is solved based on the direct method of Lyapunov and adaptive backstepping

techniques. Moreover, parameter projection is used to robustify the adaptive controller.

Finally, formal proofs of the stability of the presented controllers are provided and

the performance of the developed approaches is demonstrated by means of detailed

simulations.
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Chapter 1

Introduction

Due to the growing need to explore and operate in risky, dangerous and extreme deep

underwater environments, for civil or military purposes, the study of the Autonomous

Underwater Vehicles (AUVs) and their related control techniques becomes more and

more popular and an attractive research field [1, 2]. The wide range of applications of

the AUVs in hard and hazardous environments, such as the exploration of oil and other

underwater resources, inspection and studying of the water quality and fish feeding,

has increased the effort to study AUVs in robotics and control research in the past two

decades [3, 4, 5].

In this chapter, we expose in the first section the state of the art for the path planning

and control approaches of the AUVs, then we introduce the main contributions of this

thesis, in the last section, we explore the structure of this work.

1.1 State of the Art

The key problem of the AUVs is actually the planning of the path and the associated

trajectories. The path following problem can be expressed by means of two tasks: The

geometric task, which is concerned with the position of the vehicle, that must track a

desired path, which is parametrized by a so-called path variable σ, and the dynamic

task, that forces the velocity of the vehicle to converge to a desired velocity profile. The

combination of both above mentioned tasks refers to the trajectory tracking. Moreover,

the path following approach can be restricted to a trajectory tracking one by predefining

the path variable σ as a function of time. Therefore, more flexibility can be gained from

utilizing the path following approach compared to trajectory tracking [6, 7, 8].

The AUV path planning problem can be solved off-line if prior information of the under-

water environment is available [9, 10]. On the other hand, this problem can be conceived
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under lack of information about the environment in which the AUV moves. The path

planning algorithm may be adapted to generate the path on-line as in [11, 12].

Due to their optimality, the Dubins curves (interpolations) are widely used in the 3D

path planning for the AUVs and UAVs (Unmanned Aerial Vehicles) [13, 14]. Actually,

the Dubins curves interpolate a set of data-points by concatenation of circular arcs of

maximum curvature (minimum radius) and straight lines (their tangents) [15].

Owing to their simplicity, the polynomial interpolation is wildly used in the path plan-

ning, but some downsides come into sight in such polynomials like oscillations, which

increase with the degree of the polynomial (related to the number of the interpolated

data-points and the boundary conditions), as well the Runge’s phenomenon. Those

disadvantages can be avoided by utilizing the piecewise interpolation (splines) and the

Chebyshev interpolation [16, 17]. Another approach in this field are the Hermite poly-

nomials which represent curves that do not include wiggling or zigzagging since the

way-points can only be represented by a non-smooth function [18, 19, 20].

The path following problem in underactuated marine vehicles (ships and submarines)

has been researched extensively. For example in ships, despite of availability of just

two controls, surge force and yaw moment, the controllers can steer the ship to follow a

designed 2D path using two independent aft thrusters or with one main aft thruster and

a rudder [21]. The stabilization problem of underactuated ships has been investigated

in [22, 23, 24, 25].

Utilizing the feedback linearization, the output tracking controller of ships was designed

in [26] and [27]. This controller guarantees the global exponential stability of the refer-

ence trajectories. Here, both position variables converge to their reference trajectories

while the control of the course angle was not achieved. In [28], the nonlinear ship model

is used to design a controller which guarantees the global exponential stability in some

arbitrarily small neighborhood about of the desired trajectory for the position as well

as for the course angle.

The ship model is transformed into a triangular-like form using a coordinate transfor-

mation [21]. That allows to use the integrator backstepping technique to find a tracking

controller, which guarantees an exponential stability of the desired trajectory.

In [29] a methodology was presented for integrated design of guidance and control sys-

tems for autonomous vessels. This methodology was actually borrowed from the theory

of gain-scheduling control and leads to design of a tracking controller for the unmanned

2



aerial vehicles.

For a simplified underactuated ship model, in [30] a feed-forward technique combined

with linear quadratic regulator has been introduced to solve the control task. Moreover

a nonlinear model predictive controller was designed to obtain local results on “track-

keeping”.

In [7] a robust recursive controller was developed for uncertain nonlinear plants in the

strict-feedback form. The output maneuvering problem was addressed in two tasks. In

the first one, the system output is forced to converge to a reference parametrized path

and the second is to satisfy a desired dynamic behavior along the path, i.e. the system

output has to follow the desired velocity.

In [31] a methodology based on Lyapunov theory and backstepping techniques was pro-

posed to design a 3D path following controller for the AUVs in the Serret-Frenet path

frame. The proposed controller guarantees a global convergence to a small arbitrary

neighborhood about the desired paths, but not at the origin due to the kinematic sin-

gularity at this point.

For fully-actuated and underactuated AUVs the problem of path following was presented

in [6]. There, a novel guidance-based approach was used to design a nonlinear controller,

which consists of a model-based velocity and an attitude controller.

In the presence of model uncertainties, the problem of position trajectory tracking and

path following for underactuated autonomous vehicles was presented in [32] where an

adaptive switching and a nonlinear Lyapunov-based tracking controllers were combined

to force the position tracking error to converge to an arbitrarily small neighborhood

about of the origin.

The Receding Horizon Controller (RHC) of a nonholonomic mobile robots was extended

to deal with the tracking control problem of a group of underactuated AUVs in [33].

In presence of the constant ocean current, a control approach was presented in [34] to

allow underactuated underwater vehicles to follow a 3D straight line. The proposed

controller was designed based on a modified three-dimensional Line-of-Sight (LOS) al-

gorithm with an integral action controller.

The control strategy of AUVs introduced in [35], which is borrowed essentially from [36]

and [37], is a combination of the conventional path following and trajectory tracking

control. The proposed controller is designed using Lyapunov’s direct method to stabilize

3



the kinematics of the AUV. This controller is extended to control the dynamics of AUVs

based on the backstepping technique. The resulting nonlinear control law guarantees a

global asymptotic convergence of the AUV to the desired path.

1.2 Contribution of the Dissertation

This work was partially supported by the European Regional Development Fund of the

European Union via the Thuringian Coordination Office TNA.

Since, the guidance and the navigation do not belong to this work, we focus on the

path/ trajectories generation based on the data-points (way-points) that are provided

from a guidance generator which delivers the way-points on-line according to weather

and obstacles information.

The main contributions of this work can be summarized in the following points:

• On-line path planning

– Polynomial splines: A flexible on-line trajectory planning algorithm is dis-

cussed. For dynamically allocated way-points and surge velocities, an on-line

algorithm computes polynomials of degree 5 that smoothly link the paths

between these way-points. Iteratively, the algorithm interpolates the way-

points within a certain window. This window is shifted point by point to

cover all of the considered points and generates the desired path.

– B-splines: To enhance the numerical robustness for the above mentioned

algorithm, modifications of B-spline interpolation are employed, which sig-

nificantly reduce the computational cost.

• Combination of the on-line path planning algorithm with controller for

– Fully-actuated case: Based on feedback linearization a PD-controller is de-

signed to force the AUV to follow the reference path. For the attenuation of

large disturbances a generalized extended state observer (GESO) is employed,

that helps improve the tracking performance.

– Underactuated case: In presence of modeled and unmodeled uncertainties

in the AUV, an adaptive robust backstepping controller is designed to steer
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the AUV to an arbitrarily small neighborhood about the on-line generated

reference path and to force the AUV to move along the path with a desired

speed profile. The unknown plant parameters are estimated on-line, to avoid

parameter drifts due to the time-varying disturbance. A Lipschitz continu-

ous projection algorithm is used for updating the estimate of the unknown

parameters. Figure 1.1 shows the proposed path generation and the control

algorithm which are developed in this work. The controller lets the per-

turbed AUV follow the desired position ηd and the desired orientation γd

with desired velocity u0.

Path

generator

Parameter

estimator

Controller Plant

Disturbance

ηd, u0 τ η,ν
+ +
−

Way-
points

γd

Fig. 1.1: Block diagram of path generator and path following controller

• Mathematically rigorous stability proofs: A main contribution of this work is

the formal and detailed proofs of the closed-loop stability, which have not been

provided in the literature before.

1.3 Organization of the Dissertation

The dissertation is divided into the following chapters:

• Chapter 1, Introduction: This chapter gives an overview about the existing path

planning techniques and path following methods for autonomous vessels.
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• Chapter 2, On-Line Path Planning: In this chapter we discuss techniques of gener-

ating the reference path for an AUV using the polynomial splines and the B-splines

interpolation.

• Chapter 3, Modeling of Marine Vessels: This chapter deals with the kinematics and

dynamics of the AUV, and introduces some simplification of dynamic modeling

due to the geometric features of the considered underwater vehicle.

• Chapter 4, Previous Approaches for the Fully-Actuated AUVs: In this chapter,

we devise a tracking controller which compensates the nonlinearities of the rigid-

body dynamics and renders it linear in closed-loop. For the attenuation of large

disturbances the generalized extended state observer is employed to improve the

tracking performance.

• Chapter 5, Controller Design: This chapter is concerned with the design of a path

following controller. The first part of this chapter explains the necessity of using

an adaptive feedback control in lieu of the static feedback one and then states the

idea of the robust adaptive controller. Hereafter, the second and the third parts

illustrate the robust adaptive backstepping technique and the projection operator.

In the next part we define the path following problem in the error coordinates.

Finally, in the last part of this chapter, relying on the robust adaptive backstepping

approach we design a tracking controller for the considered AUV.

• Chapter 6, Stability Analysis: In this chapter we analyze in detail the stability

of the complex closed-loop system. To this end, we divide the entire system

into subsystems, then we investigate extensively the stability of each regarded

subsystem.

• Chapter 7, Simulation Results: We demonstrate the effectiveness of the proposed

path planning and control schemes. Moreover, the robustness under modeled and

unmodeled uncertainties for on- and off-line path planning is validated.

• Chapter 8, Conclusions: In this chapter we conclude this thesis and list some

recommendations for prospective work and future research.

• Chapter 9, Appendix: Finally, simulation studies on real-world vehicle data un-

derscore the usability of the advocated approach for the fully-actuated AUV.
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Chapter 2

On-Line Path Planning

In way-point guidance systems for marine vessels, depending on the weather and obstacle

information, the guidance and navigation systems generate Cartesian way-points to be

followed by both ships and underwater vehicles. In this work, we limit ourselves to the

path/trajectory generation relying on the way-points, which are supplied on-line from

the guidance system.

Owing to its benefit in avoiding the problem of Runge’s phenomenon and the undesired

oscillations, which can occur between interpolated points if high degree polynomials are

used, the spline (piecewise interpolation) is prevalently preferred over the polynomial

interpolation. Figure 2.1 exemplifies the overall function s (σ) (spline trajectory) of the

path variable σ which interpolates N + 1 points [38, 39, 40].
Depending on the required degree of continuity of s (σ) at the considered points qk

for k = 1, . . . , N − 1, the adequate polynomial degree at each segment between each

consecutive two points qk and qk+1 is chosen. In order to obtain the continuity of

velocities and accelerations at the σk instants, polynomials of degree five must be used.

To this end, we introduce an on-line capable technique which generates an appropriate

path of the way-points. The basic idea of our approach is to define a window (buffer) that

comprises a certain number of way-points that are interpolated (spline interpolation).

Then, the first segment in the window (between first and second point in the window) is

dispatched to the control system. Afterwards, in the next step we shift this window by

one point and reiterate the process until the very last point in the mission is reached.

For C2 continuity the polynomial interpolation can be used, but for a high number of

way-points, numerical problems may crop up. Therefore, the B-splines (Basis-Splines)

can be used to contribute to more numerical robustness and to downgrade the compu-

tational cost within calculation of the on-line path.
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s (σ)

q0

q1
q2

qk qk+1

qN−2

qN−1 qN

σ
σ0 σ1 σ2 σk σk+1 σN−2 σN−1 σNTk

. . . . . .

Fig. 2.1: A spline interpolation of N + 1 way-points

2.1 On-Line Path Planning using Polynomial

Due to their apparently uncomplicated computational features, piecewise polynomials

are widely used to generate the paths for the marine vessels [41]. According to the

requirements of our control approach, C2 continuity is needed in the reference path.

Therefore, the use of polynomials with degree five is a convenient choice since we have

four boundary conditions at each segment (two for the velocity and two for the accel-

eration) [42]. Moreover, depending on the generated path and by imposing the desired

surge velocity profile u0, the time dependent reference trajectories on the X, Y and Z

axes are created.

The challenge is how to generate an appropriate path when new way-points are sub-

joined on-line to the predefined way-points, that is, during the mission. Four way-points

are considered to generate a twice continuously differentiable function of σ that satisfies

the boundary conditions for the velocity and acceleration at the way-points. Therefore,

three polynomials with degree five are generated for the considered window where four

way-points are regarded in each window. In each iteration (window/buffer), just the

first polynomial (between the first and the second way-point) is considered, and the two

polynomials (between second way-point and third way-point) as well as the polynomial

(between third way-point and fourth way-point) are neglected as long as the fourth

way-point is not the last one in the mission. Iteratively, we get a polynomial for each
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new added way-point to the path. When the last point in the mission is reached then

the three polynomials interpolated between the four considered way-points are taken

into account. In other words, for all iterations just the first polynomial (between first

and second point in the considered window) is regarded, but for the last iteration all of

the three polynomials need to be regarded.

Figure 2.2 illustrates the algorithm for the generation of the polynomial s(σ) referring

to N + 1 = 6 way-points: In the first iteration j = 1, merely the polynomial of degree

5 (with its parameter vector p1
0) is considered, whereas for j = 2 just p2

1 is considered.

However in the last iteration j = 3 are regarded p3
2,p

3
3 and p3

4 and build together the

desired function for this window.

Therefore, the polynomials parameter vectors p1
0,p

2
1,p

3
2,p

3
3 and p3

4 construct the entire

desired function between q0 and way-point q5. Since the vectors p1
0, p1

1 and p1
2 are cal-

culated in the first iteration, thus, the demanded initial velocity and acceleration for the

next iteration in the way-point q1 can be computed. The velocity and acceleration in

the first way-point (in the first iteration) is regarded as an initial velocity and accelera-

tion for the second one, and the velocity and acceleration in the first way-point (in the

second iteration) is considered as a initial velocity and initial acceleration for the third

one, and so forth. This means, that the boundary conditions for velocity and acceler-

ation are guaranteed in each way-point and subsequently, we get a twice continuously

differentiable function between the starting way-point q0 and the final one q5.

0 1 2 3 4 5

q0
q1 q2

q3

q4

q5

p1
0 p1

1 p1
2

p2
1 p2

2 p2
3

p3
2 p3

3

j = 1
j = 2

j = 3 σ

p3
4

Fig. 2.2: On-line path planning

Generally, we apply the above presented approach for generating a function which inter-

polates N+1 way-points. For this purpose, let us consider that the polynomial between
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two successive points for jth window is given through

sji (σ) = pji,5σ
5 + pji,4σ

4 + pji,3σ
3 + pji,2σ

2 + pji,1σ + pji,0 (2.1)

for i = 0, . . . , N − 1, j = 1, . . . , N − 2, where N is the number of the polynomials, σ is

the path variable and the parameter vector is

pji =
(
pji,5, p

j
i,4, p

j
i,3, p

j
i,2, p

j
i,1, p

j
i,0

)
. (2.2)

By applying this algorithm we calculate the desired trajectories xd(σ), yd(σ) and zd(σ)
of the path variable σ, consequently, we compute on-line the desired 3D underwater

path for the AUV. To this end, the functions xd (σ) , yd (σ) and zd (σ) can be expressed

through the polynomials

xji,d(σ) = aji,5σ
5 + aji,4σ

4 + aji,3σ
3 + aji,2σ

2 + aji,1σ + aji,0 (2.3)

yji,d(σ) = bji,5σ
5 + bji,4σ

4 + bji,3σ
3 + bji,2σ

2 + bji,1σ + bji,0 (2.4)

zji,d(σ) = cji,5σ
5 + cji,4σ

4 + cji,3σ
3 + cji,2σ

2 + cji,1σ + cji,0 (2.5)

with the parameter vectors at the jth iteration

aji =
(
aji,5, a

j
i,4, a

j
i,3, a

j
i,2, a

j
i,1, a

j
i,0

)
bji =

(
bji,5, b

j
i,4, b

j
i,3, b

j
i,2, b

j
i,1, b

j
i,0

)
cji =

(
cji,5, c

j
i,4, c

j
i,3, c

j
i,2, c

j
i,1, c

j
i,0

) (2.6)

where i refers to the first way-point of the four considered way-points in the jth iteration,

and i starts at the value i = j−1. For example, for second iteration (j = 2), the indices

of the regarded four way-points are 1, 2, 3 and 4 (we start at point 1). For each iteration

j the four way-points qi, qi+1, qi+2, qi+3 are considered to obtain the coefficients for the

three polynomials between those points to incorporate the boundary conditions at each

way-point as well as at start and end way-points.

Now, we define the parameter vectors for position, velocity, acceleration, jerk and snap

regarding to the path variable σ as

p(σj) =
(

(σj)5, (σj)4, (σj)3, (σj)2, σj, 1
)
, (2.7)

v(σj) =
(

5(σj)4, 4(σj)3, 3(σj)2, 2σj, 1, 0
)
, (2.8)
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a(σj) =
(

20(σj)3, 12(σj)2, 6σj, 2, 0, 0
)
, (2.9)

r(σj) =
(

60(σj)2, 24(σj), 6, 0, 0, 0
)
, (2.10)

s(σj) =
(

120(σj), 24, 0, 0, 0, 0
)
. (2.11)

Then, the procedure of the on-line path planning motioned above can be applied

within the jth window, and the coefficients of the regarding parameter vectors qjcoeff =(
pjj−1,p

j
j,p

j
j+1

)>
are obtained by solving the following linear system:

qjcoeff = A−1qjway (2.12)

where

A(σj, . . . , σj+3) =



a(σj) O O

v(σj) O O

p(σj) O O

p(σj+1) O O

O p(σi+1) O

−v(σj+1) v(σj+1) O

−a(σj+1) a(σj+1) O

−r(σj+1) r(σj+1) O

−s(σj+1) s(σj+1) O

O p(σj+2) O

O O p(σj+2)
O −v(σj+2) v(σj+2)
O −a(σj+2) a(σj+2)
O −r(σj+2) r(σj+2)
O −s(σj+2) s(σj+2)

O O a(σj+3)
O O v(σj+3)
O O p(σj+3)



∈ R18×18

where

O =
(

0, 0, 0, 0, 0, 0
)

(2.13)
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and

qjway =
(
aj, vj, qj, qj+1, qj+1, 0, 0, 0, 0, qj+2, qj+2, 0, 0, 0, 0, 0, 0, qj+3

)>
(2.14)

where the values qj, vj and aj represent respectively the position, velocity and the ac-

celeration at the considered points.

It is profitable in this context to refer to two points, first, that the start velocity vi

as well as the start acceleration ai can be calculated from the previous iteration, and

second, that the end velocity and end acceleration for each iteration is zero. In the

light of this consideration we can define a frame with specific features to be shifted

over the entire range of the way-points, iteratively, where initial values of velocity and

acceleration at the start of the mission can be set by the user, and the final velocity and

acceleration are set to be zero, i.e. “end of the mission”. Thus, for a mission consisting

of four way-points in the jth iteration, we obtain a vector of 18 polynomial coefficients

and the considered path will be described through three resulting polynomials. Once a

new way-point is available, only the first polynomial is regarded and the two others are

neglected such that the algorithm may be iterated again for four way-points. The first

three of them are the last three points of the previous iteration and the fourth one is

the new added way-point. The iteration starts from the (i+ 1)th way-point and ends in

the (i+5)th way-point. It means that for any new way-point added on-line to the path,

a suitable intermediate path will be generated. For a 2D plane, only the polynomials

(2.3) and (2.4) are considered to generate the desired path, that interpolates the given

way-points in the Cartesian plane.

The generated path of the path variable σ is transformed to a time dependent trajectory

by imposing the desired surge velocity profile u0 (assuming roll and pitch equal to zero).

It can be shown that σ may be obtained as the solution of the scalar differential equation

σ̇ = u0 (t)√
(∂xd (σ)/∂σ)2 + (∂yd (σ)/∂σ)2 + (∂zd (σ)/∂σ)2

(2.15)

where u0 is the desired tangent velocity profile, which the AUV moves along the gen-

erated path (xd, yd, zd). Thus, with the solution σ = σ(t) we obtain a coordinate

description in terms of time, hence trajectories, xd = xd(t), yd = yd(t) and ψd = ψd(t).

For a 3D path planning, the polynomials (2.3), (2.4) and (2.5) are taken into consider-

ation to generate the path variable σ (t) as a function of time.
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Although this approach is relatively uncomplicated to implement, numerical problems

may occur in the implementation if the number of the considered way-points is relativity

high. Therefore, to improve the numerical features of this approach, we introduce the

B-splines technique, which leads to more robust calculation of the desired path even for

a high number of interpolated way-points.

2.2 On-Line Path Planning using B-Splines

Increasing the number of interpolated way-points using piecewise polynomials may lead

to a numerical problem. To avoid this problem, an efficient and numerically robust

technique for the calculation of splines by utilizing so-called B-splines or Basic-splines is

presented in this section. Due to their positive geometrical features, they are particularly

suitable for the calculation of multidimensional curves. In many real-world industrial

applications, the determination of the geometric path is often constructed by means of

motion primitives, such as straight lines, arcs, etc. Regrettably, when linear and arcual

motions are mixed in order to obtain complex paths, discontinuities in the acceleration

profile are unavoidable.

Only in the case of zero velocity at the transition points between linear and circular

motions the problem of the discontinuity can be avoided, but this is not always desired

in many real-word applications. A feasible alternative approach is relying on approxi-

mating the path with an ultimately continuous function, for instance based on B-spline

curves. There, the desired path (consists of primitives, such as straight lines, circles)

can be sampled, and then interpolated using B-splines. Thus, the problem of the dis-

continuity in the acceleration is effectively avoided [43, 44, 39].

As we mentioned before, the most important advantage of using the B-splines technique

is the avoidance of the numerical problems during the on-line calculation of the inverse

of the matrix (2.1), that means, it is not a problematic issue to use a high number of

way-points (samples of the desired path), which means in turn, that the desired path

can be appropriately approximated since we are not restricted by using a maximum

number of way-points in each regarded window. Moreover, the manifest benefit of the

B-splines is that the resulting matrix is the same for each iteration which decisively

reduces the calculation complexity.

The B-spline functions are given as a linear combination of a proper number of basis
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functions [39]

s (σ) =
m̄∑
l=0

plB
g
l (σ) , defined for σmin ≤ σ ≤ σmax, (2.16)

where s (σ) is the B-spline curve which interpolates the way-points and pl is the coef-

ficient (control point), which is calculated based on the values of the way-points, and

Bg
l (σ) is the B-spline basis function of degree g, which is determined from the values

of the path variable (the independent variable σ) at the considered way-points. The

number m̄ is determined relying on the so-called knots vector which can be defined in

different ways [39]. The knots vector can be set up according to the degree of the basis

function g as follows:

If g is an even number then the knots vector is given through

σknot =

σ0, . . . , σ0︸ ︷︷ ︸
g+1

,
σ0 + σ1

2 , . . . ,
σk−1 + σk

2 , . . . ,
σN−1 + σN

2 , σN , . . . , σN︸ ︷︷ ︸
g+1

 (2.17)

with k = 2, . . . , N − 1. In this case, the number m̄ is given as summation of the degree

of the B-spline function g and the number of the interpolated way-points N , that is

m̄ = N + g.

For odd g, the knots vector is taken as

σknot =

σ0, . . . , σ0︸ ︷︷ ︸
g+1

, σ1, . . . , σN−1, σN , . . . , σN︸ ︷︷ ︸
g+1

 (2.18)

where for this case m̄ = N + g − 1.

Actually, one is free to choose the knots vector either according to (2.17) or (2.18), but

for better interpolation results it is preferred to utilize (2.17) for odd degree and (2.18)
for even degree [45].
The lth B-spline basis function of degree g can be determined iteratively using “De

Boor’s algorithm” as per:

For the degree 0 we have:

B0
l (σ) =

1, for σl ≤ σ ≤ σl+1

0, otherwise
(2.19)
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and generally, the basic function of degree g is given as

Bg
l (σ) =

σ − σl
σl+g − σl

Bg−1
l (σ) +

σl+g+1 − σ
σl+g+1 − σl+1

Bg−1
l+1 (σ), g > 0. (2.20)

According to the relationships (2.19), (2.20) and (2.17) we can determine, for example,

the basis function of degree g = 1 and g = 2, for 4 sampling points at time instants

(0, 1, 2, 3). The number of splines for g = 1 is m̄ = 4, and for g = 2 is m̄ = 5 as Figure

2.3 shows. The piecewise polynomial Bg
l (t) is defined ∀t ∈ [0, 3] and is equal to zero

everywhere except for the interval t ∈ [tl, tl+g+1] of the considered knots vector. The

knots vector tknot for g = 1 is given by tknot = (0, 0, 0.5, 1.5, 2.5, 3, 3) and for g = 2 it is

tknot = (0, 0, 0, 0.5, 1.5, 2.5, 3, 3, 3).
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0
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0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3
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0.6

0.8

1

time (sec) time (sec)

Fig. 2.3: B-spline basis functions of degree one and two

The derivative of the B-splines polynomial s (σ) reads

s (σ)(1) =
m̄∑
l=0

plB
g(1)
l (σ) , σmin ≤ σ ≤ σmax. (2.21)

The calculation of the kth derivative for the basis functions yields

B
g(n)
l (σ) = g!

(g − n)!

n∑
i=0

bn,iB
g−n
l+i (σ) (2.22)

with

b0,0 = 1, bn,0 =
bn−1,0

σl+g−n+1 − σl
, bn,i = bn−1,i − bn−1,i−1

σl+g+i−n+1 − σl+i
, i = 1, ..., n− 1,
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and bn,n =
− bn−1,n−1

σl+g+q − σl+n
.

The B-spline function is given as a sum of multiplications of polynomial parameters by

the basis functions (B-spline) at the instant σk as

s (σk) =
m̄∑
l=0

plB
g
l (σk) (2.23)

and the nth derivative of B-spline polynomial at the considered point σk is given through

s(n)(σk) =
m̄∑
l=0

plB
g(n)
l (σk) (2.24)

where the derivatives of the B-spline function are calculated from (2.22).

To determine the coefficients pl for l = 0, . . . , m̄ of the B-spline curve with boundary

conditions in velocity and acceleration, we can construct a linear system of m̄ + 1
equations for N + 1 way-points. At each way-point qk this yields

qk =
(
Bg

0 (σk) , Bg
1 (σk) , . . . , Bg

m̄−1 (σk) , Bg
m (σk)

)(
p0, p1, . . . , pm̄−1, pm̄

)>
(2.25)

and the velocity at the point σk is

vk =
(
B
g(1)
0 (σk) , Bg(1)

1 (σk) , . . . , Bg(1)
m̄−1 (σk) , Bg(1)

m (σk)
)(
p0, p1, . . . , pm̄−1, pm̄

)>
(2.26)

and the acceleration is obtained through

ak =
(
B
g(2)
0 (σk) , Bg(2)

1 (σk) , . . . , Bg(2)
m̄−1 (σk) , Bg(2)

m (σk)
)(
p0, p1, . . . , pm̄−1, pm̄

)>
.

(2.27)

The parameter vector p = (p0, p1, . . . , pm̄−1, pm̄)> is given through

p = A−1 (σ0, . . . , σN) q. (2.28)

Herein, we can recognize two different ways to define the matrix A(σ0, . . . , σN) and the

vector q in (2.28) in order to obtain a unique solution of the parameter vector p. Thus,

if g is an even number, i.e. the matrix A(σ0, . . . , σN) has m̄ = N + g columns, this

matrix is square and the solution is unique only for additional g boundary conditions.

For g = 4 for instance, we need 4 conditions (2 for each velocity and acceleration) and
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in this case the matrix is given as

A(σ0, . . . , σN) =



Bg
0(σ0) Bg

1(σ0) · · · Bg
m̄(σ0)

B
g(1)
0 (σ0) B

g(1)
1 (σ0) · · · B

g(1)
m̄ (σ0)

B
g(2)
0 (σ0) B

g(2)
1 (σ0) · · · B

g(2)
m̄ (σ0)

Bg
0(σ1) Bg

1(σ1) · · · Bg
m̄(σ1)

...
...

...

Bg
0(σN−1) Bg

1(σN−1) · · · Bg
m̄(σN−1)

B
g(2)
0 (σN) B

g(2)
1 (σN) · · · B

g(2)
m̄ (σN)

B
g(1)
0 (σN) B

g(1)
1 (σN) · · · B

g(1)
m̄ (σN)

Bg
0(σN) Bg

1(σN) · · · Bg
m̄(σN)



(2.29)

and the vector q = (q0, v0, a0, q1, . . . , qN−1, aN , vN , qN)>.

On the other side, if g is an odd number, just g− 1 additional boundary conditions are

required, since m̄ = N + g − 1. For g = 3 for example, two conditions for the velocity

or the acceleration are necessary for obtaining a unique solution. For two boundary

conditions in the velocity for instance this yields

A(σ0, . . . , σN) =



Bg
0(σ0) Bg

1(σ0) · · · Bg
m̄(σ0)

B
g(1)
0 (σ0) B

g(1)
1 (σ0) · · · B

g(1)
m̄ (σ0)

Bg
0(σ1) Bg

1(σ1) · · · Bg
m̄(σ1)

...
...

...

Bg
0(σN−1) Bg

1(σN−1) · · · Bg
m̄(σN−1)

B
g(1)
0 (σN) B

g(1)
1 (σN) · · · B

g(1)
m̄ (σN)

Bg
0(σN) Bg

1(σN) · · · Bg
m̄(σN)



(2.30)
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with the vector q = (q0, v0, q1, . . . , qN−1, vN , qN)>.

Hence, the construction of the matrix A is relying on the way we define the knots

vector and the degree of the basis functions we use. Let us consider that, the B-spline

interpolation of degree g = 3 (C2 continuity in each segment) takes place for two points,

that means N = 1. Here, we can choose the knots vector according to (2.17) or (2.18)
to make the matrix A as simple as possible (that enhances the numerical features of

on-line path generation). We use the relation (2.18) despite of g is odd which leads to

good results in the experiment.

We return to the algorithm of the on-line path generation, which is presented in Figure

2.2. For four way-points at each window, the curve which interpolates the considered

way-points is calculated using the B-splines. To determine this curve at the jth iteration

(window), we define a matrix A and a related vector qjway as

A(σj, . . . , σj+3) =



p1,j (σj) O O

v1,j (σj) O O

a1,j (σj) O O

p1,j (σj+1) O O

O p2,j (σj+1) O

−v1,j (σj+1) v2,j (σj+1) O

−a1,j (σj+1) a2,j (σj+1) O

O r2,j (σj+1) O

O p2,j (σj+2) O

O O p3,j (σj+2)
O −v2,j (σj+2) v3,j (σj+2)
O −a2,j (σj+2) a3,j (σj+2)
O O r3,j (σj+2)

O O p3,j (σj+3)
O O v3,j (σj+3)



, qjway =



qj

vj

aj

qj+1

qj+1

0
0
0

qj+2

qj+2

0
0
0

qj+3

0



where, qj, . . . , qj+3 are the values of the considered way-points to be interpolated at the

jth iteration (window), vj and aj are the initial velocity and acceleration of the jth

iteration. Moreover, O = (0, 0, 0, 0, 0) and p1,j,p2,j,p3,j are the first, the second and

18



the third B-spline functions of the jth iteration respectively. They are defined as

pi,j (σj) =
(
B3
i,0(σj), B3

i,1(σj), B3
i,2(σj), B3

i,3(σi), B3
i,4(σj)

)
, i = 1, 2, 3, (2.31)

where the components of the vector pi,j (σj) are determined according to (2.19) and

(2.20). v1,j,v2,j,v3,j are the first derivative functions of p1,j,p2,j,p3,j with respect to

the path variable σ respectively and given through

vi,j (σj) =
(
B

3(1)
i,0 (σj), B3(1)

i,1 (σj), B3(1)
i,2 (σj), B3(1)

i,3 (σj), B3(1)
i,4 (σj)

)
, i = 1, 2, 3. (2.32)

Following the same consideration, we can define the second and the third derivative of

p1,j,p2,j,p3,j as

ai,j (σj) =
(
B

3(2)
i,0 (σj), B3(2)

i,1 (σj), B3(2)
i,2 (σj), B3(2)

i,3 (σi), B3(2)
i,4 (σj)

)
, i = 1, 2, 3, (2.33)

and

ri,j (σj) =
(
B

3(3)
i,0 (σj), B3(3)

i,1 (σj), B3(3)
i,2 (σj), B3(3)

i,3 (σj), B3(3)
i,4 (σj)

)
, i = 1, 2, 3, (2.34)

where the components of the vectors vi,j (σj) , ai,j (σj) and ri,j (σj) are calculated using

the relation (2.24).

Thus, we can determine the coefficient vectors for the three polynomials by solving the

following linear system at each iteration (window)

pj = A−1 (σj, . . . , σj+3) qjway (2.35)

where

pj =
(
pj0 , pj1 , pj2 , pj3 , pj4︸ ︷︷ ︸
coefficients of polynomial 1

, pj+1
0 , pj+1

1 , pj+1
2 , pj+1

3 , pj+1
4︸ ︷︷ ︸

coefficients of polynomial 2

, pj+2
0 , pj+2

1 , pj+2
2 , pj+2

3 , pj+2
4︸ ︷︷ ︸

coefficients of polynomial 3

)>
(2.36)

Remark 2.2.1 By using this algorithm we may generate on-line a C2 continuous path.

If a continuous jerk is required then it is necessary to set g = 4, while setting g = 5
guarantees also the continuity of the snap. Moreover, the matrix A (σj, . . . , σj+3) must

be adapted to guarantee the required degree of continuity and also the uniqueness of
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the solution pj of (2.35). In our algorithm the matrix A (σj, . . . , σj+3) is complemented

by using the jerk vector ri,j in order to obtain a unique solution of (2.35).

Remark 2.2.2 The significant convenience of using the B-splines in this algorithm is,

that the resulting matrix A (σj, . . . , σj+3) is constant for all iterations, which means

low computational cost. This comes by virtue of the B-spline functions, since they are

calculated in equivalently distributed instances of the path variable σ = 0, 1, . . . .

Remark 2.2.3 Since this algorithm provides numerically robust results even if the

number of the interpolated way-points is large, it is possible to utilize it to approximate

desired paths if we use an adequate number of sampling points of the considered paths.

That means we can regenerate the desired path on-line which is needed to avoid obstacles

or to follow a certain primitives in the 3D space.

The path primitives (lines and circles) can be sampled and then regenerated on-line

using this B-spline interpolation algorithm as Figure 2.4 demonstrates. As illustrated
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Fig. 2.4: Path primitive generation by interpolation of way-points

in Figure 2.5, the way-points are given in 3D space on-line. The path is generated via

interpolation of the way-points on each axis. For perfect regeneration of the primitives, a

20



-50

0

50

-50

0

50
20

15

10

5

0

xd (m)yd (m)

z d
(m

)

Fig. 2.5: 3D path

large (appropriate) number of way-points is necessary to attain more information about

the path, consequently a good approximation. That is what Figure 2.6 indicates.
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Fig. 2.6: Effect of the number of way-points

21



Chapter 3

Modeling of Marine Vessels

The investigation of the mathematical model of the AUVs can be divided into two parts:

Kinematics, which deals with the geometrical aspects of the motion, and dynamics which

studies the moments and the forces causing the motion. We will present the model of

the AUV in vectorial form, due to the fact that this representation makes it easier to

design MIMO controllers and observers for marine vessels [41, 46].

3.1 Kinematics

3.1.1 Coordinate Frames

Figure 3.1 depicts the relation of the body-fixed frame X0Y0Z0, attached to the vehicle,

with the earth-fixed frame XY Z. The origin of the body-fixed frame is chosen to

coincide with the center of gravity of the moving vehicle. This definition of coordinate

frames is a convenient approach for analyzing the motion of marine vessels in 6 DOF

(degree of freedom). The body-fixed axes are defined as follows [47]:

• X0: Longitudinal axis (directed from aft to fore)

• Y0: Transverse axis (directed to starboard)

• Z0: Normal axis (directed from top to bottom)

The position and orientation of the vessel are described in the earth-fixed frame XY Z.

The linear and angular velocities of the vehicle are expressed in the body-fixed coordinate

system X0Y0Z0.
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X0

u (surge)

p (roll)

r (yaw)

w (heave)

Z0

q (pitch)

v (sway)
Y0

O

Body-fixed

Earth-fixed
X

ZY

Fig. 3.1: Body-fixed and earth-fixed reference frames

The geometry of the motion is analyzed in terms of Euler angles. Using the same

notation as in [48], we define the vectors:

• η1 = (x, y, z)>: Position of the origin of the frame X0Y0Z0 with respect to the

inertial reference frame XY Z

• η2 = (φ, θ, ψ)>: Angles of roll, pitch and yaw which describe the orientation of

the frame X0Y0Z0 with respect to the frame XY Z

• v1 = (u, v, w)>: Linear velocities (surge, sway and heave) of the origin O in the

body-fixed frame X0Y0Z0

• v2 = (p, q, r)>: Angular velocities (roll, pitch and yaw) of the origin O in the

body-fixed frame X0Y0Z0

• τ 1 = (X, Y, Z)>: X, Y and Z are the forces along X0, Y0 and Z0, respectively

• τ 2 = (K,M,N)>: K,M and N are the torques about X0, Y0 and Z0, respectively

In compact vectorial form, we write

η =
(
η>1 ,η

>
2

)>
,v =

(
v>1 ,v

>
2

)>
and τ =

(
τ>1 , τ

>
2

)>
. (3.1)

The entries of the above motioned vectors are summarized in Table 3.1 according to

the notation of the Society of Naval Architectures and Marine Engineers [48] for marine

vehicles.
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DOF
forces &

torques

linear & angu-

lar velocities

position &

Euler angles

1 motion in the x-direction (surge) X u x

2 motion in the y-direction (sway) Y v y

3 motion in the z-direction (heave) Z w z

4 motion about the x-axis (roll) K p φ

5 motion about the y-axis(pitch) M q θ

6 motion about the z-axis(yaw) N r ψ

Table 3.1: Notation for marine vessels

3.1.2 Euler Angles and Rotation

To determine the relation between the translation velocities η̇1 = (ẋ, ẏ, ż)> in the earth-

fixed frame and the velocities v1 = (u, v, w)> in the body-fixed frame the linear velocity

transformation matrix J1(η2) is introduced which consists of a sequences of three ro-

tation. Those rotations transform the body-fixed to the earth-fixed coordinates. The

transformation matrix J1(η2) is obtained by multiplication of three rotation matrices,

over yaw (ψ), pitch (θ) and roll (φ) angles. The rotation matrix between body-fixed

and earth-fixed frame is given as

J1 (η2) =


cψcθ −sψcφ + sφsθcψ sψsφ + sθcψcφ

sφcθ cψcφ + sφsθsψ −cψsφ + sθsψcφ

−sθ sφcθ cφcθ

 (3.2)

with cφ = cos (φ) , cθ = cos (θ) , cψ = cos (ψ) , sφ = sin (φ) , sθ = sin (θ) and sψ = sin (ψ).
The angular velocity transformation matrix is given by [49]

J2 (η2) =


1 sφsθ/cθ cφsθ/cθ

0 cφ −sφ
0 sφ/cθ cφ/cθ

 (3.3)

and relates the body-fixed angular velocity v2 = (p, q, r)> with roll, pitch, and yaw

rates η̇2 =
(
φ̇, θ̇, ψ̇

)>
in earth-fixed frame under the assumption θ 6= ±π/2. This is

fulfilled in most of the AUVs applications because of physical constraints. However, in

some applications the AUV needs to be operated near to this critical angle. Then it is
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possible to get rid of this singularity problem by using the quaternion representation

or by defining two Euler angle representations with different singularities and switching

between these two representations [41, 47].

Finally, the kinematic equation can be expressed in the form

η̇ = J (η2) v⇐⇒

η̇1

η̇2

 =
J1(η2) 0

0 J2(η2)

v1

v2

 . (3.4)

3.2 Dynamics

The dynamics of an AUV, typically, is described by a rigid-body movement in viscous

media [46, 47]. The 6 DOF nonlinear dynamic model is

Mv̇ =− (C (v) + D (v)) v− g (η) + τ + τ d. (3.5)

this dynamics is deduced from the Newton-Euler equation of a rigid-body in fluid, with

M: Inertia matrix (including added mass)

C (v): Matrix of Coriolis and centripetal terms (including added mass)

D (v): Damping matrix

g (η): Vector of gravitational forces and moments

τ : Vector of control inputs

τ d: Vector of disturbances.

The inertia matrix, hydrodynamic damping, Coriolis and centripetal matrices, and grav-

itation restoring force, control input and disturbance vectors are illustrated in the fol-

lowing sections.

3.2.1 Inertia Matrix

The inertia matrix consists of two matrices MRB and MA, i.e. M = MRB + MA where

MRB is the rigid-body inertia matrix and MA is the added mass inertia matrix. The

rigid-body inertia matrix is given through [41, 49]
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MRB =
MRB1 MRB2

MRB3 MRB4

 =



m 0 0 0 mzG −myG

0 m 0 −mzG 0 mxG

0 0 m myG −mxG 0
0 −mzG myG Ixx Ixy −Ixz

mzG 0 −mxG −Iyx Iyy −Iyz
−myG mxG 0 −Izx −Izy Izz


(3.6)

where MRBi ∈ R3×3 for i = 1, 2, 3, 4. Furthermore, m is the mass of the vehicle and

Ixx, Iyy, Izz are the moments of inertia about X0-, Y0- and Z0-axis, respectively. Ixy = Iyx

is the product of inertia about X0-axis, Y0-axis, Ixz = Izx is the product of inertia about

X0-axis and Z0-axis and Iyz = Izy is the product of inertia about Y0-axis and Z0-axis.

Moreover, the center of gravity is cG = (xG, yG, zG).

Remark 3.2.1 The matrix MRB can be simplified by choosing the origin of the body-

fixed coordinate system according to the following criteria: The origin O of the AUV

coincides with the center of gravity that gives cG = (xG, yG, zG) = (0, 0, 0), i.e. MRB2 =
MRB3 = 0. Further, by allowing the body-fixed frame axes of the vehicle to coincide

with the principle axes of inertia or the longitudinal, literal and normal symmetry axes

of the AUV. This implies that Ixz = Izx = Iyz = Izy = Iyz = Izy = 0 which means that

the matrix MRB4 is diagonal [47].

Hence, under these assumptions motivated above, the rigid-body inertia matrix reads

MRB =
MRB1 MRB2

MRB3 MRB4

 =



m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ixx 0 0
0 0 0 0 Iyy 0
0 0 0 0 0 Izz


. (3.7)

When an AUV accelerates in a fluid (water), the surrounding water is also accelerated.

That means, an additional force is required to accelerate some volume of the fluid around

the AUV. This extra force relates to the acceleration of the AUV and its so-called added
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mass by Newton’s second law. For an AUV which accelerates in all six DOF, this yields

FA = MAAA (3.8)

where

FA = (XA, YA, ZA, KA,MA, NA)> (3.9)

is part of the total external forces and moments acting on the generalized axes of the

AUV. AA is the generalized acceleration vector of the AUV and given by

AA = (u̇, v̇, ẇ, ṗ, q̇, ṙ)> . (3.10)

It is important to understand the added mass as a virtual mass only. It is a conve-

nient way of describing the extra force required to move a body through the water

[47, 48, 50, 51]. The added mass matrix for an AUV in six DOF is given by

MA =
MA1 MA2

MA3 MA4

 = −



Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ


(3.11)

where MAj ∈ R3×3 for j = 1, 2, 3, 4.

The components of the matrix MA are called added mass derivatives and they are

functions only of the AUV shape and the density of the fluid (water). We use the

convention of the Society of Naval Architects and Marine Engineers [48] to describe

the matrix MA, for example, the part of hydrodynamic added mass force XA along the

X0-axis due to an acceleration ẇ in the Z0-direction, given as

Xẇẇ where Xẇ = ∂XA

∂ẇ
. (3.12)

The added mass derivatives are determined in detail in [41] and [51].

Remark 3.2.2 In underwater vehicle applications, practically, the AUVs move at low

speed. Additionally, if the vessel also has three planes of symmetry then the off-diagonal

elements of matrix (3.11) may be neglected [47].
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Hence, matrix MA is simplified to

MA =
MA1 MA2

MA3 MA4

 = −



Xu̇ 0 0 0 0 0
0 Yv̇ 0 0 0 0
0 0 Zẇ 0 0 0
0 0 0 Kṗ 0 0
0 0 0 0 Mq̇ 0
0 0 0 0 0 Nṙ


. (3.13)

By noting Remarks 3.2.1 and 3.2.2, the mass inertia matrix (including added mass) can

be written as

M =
M1 0

0 M2

 =



m−Xu̇ 0 0 0 0 0
0 m− Yv̇ 0 0 0 0
0 0 m− Zẇ 0 0 0
0 0 0 Ixx −Kṗ 0 0
0 0 0 0 Iyy −Mq̇ 0
0 0 0 0 0 Izz −Nṙ


(3.14)

with M1,M2 ∈ R3×3.

3.2.2 Coriolis and Centripetal Matrix

The Coriolis and centripetal matrix is the sum of the rigid-body Coriolis and centripetal

matrix CRB (v) and the added mass Coriolis and centripetal matrix CA (v), i.e.

C (v) = CRB (v) + CA (v) (3.15)

where

CRB (v) =
CRB1 (v) CRB2 (v)

CRB3 (v) CRB4 (v)

 , CRBi (v) ∈ R3×3, i = 1, 2, 3, 4 (3.16)

and

CA (v) =
CA1 (v) CA2 (v)

CA3 (v) CA4 (v)

 , CAj (v) ∈ R3×3, j = 1, 2, 3, 4 (3.17)
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where

CRB1 (v) =


0 0 0
0 0 0
0 0 0

 , CRB2 (v) =


m(yGq + zGr) −m(xGq − w) −m(xGr + v)
−m(yGp+ w) m(zGr + xGp) −m(yGr − u)
−m(zGp− v) −m(zGq + u) m(xGp+ yGq)


(3.18)

CRB3 (v) =


−m(yGq + zGr) m(yGp+ w) m(zGp− v)
m(xGq − w) −m(zGr + xGp) m(zGq + u)
m(xGr + v) m(yGr − u) −m(xGp+ yGq)

 , (3.19)

CRB4 (v) =


0 −Iyzq − Ixzp+ Izzr Iyzr + Ixyp− Iyyq

Iyzq + Ixzp− Izzr 0 −Ixzr − Ixyq + Ixxp

−Iyzr − Ixyp+ Iyyq Ixzr + Ixyq − Ixxp 0

 . (3.20)

According to Remark 3.2.1, matrices CRB2,CRB3 and CRB4 can be simplified as

CRB2 (v) = CRB3 (v) =


0 mw −mv
−mw 0 mu

mv −mu 0

 (3.21)

and

CRB4 (v) =


0 Izzr −Iyyq
−Izzr 0 Ixxp

Iyyq −Ixxp 0

 . (3.22)

Hence, the hydrodynamic Coriolis and centripetal matrix is given by

CA (v) =
CA1 (v) CA2 (v)

CA3 (v) CA4 (v)

 =



0 0 0 0 −h3 h2

0 0 0 h3 0 −h1

0 0 0 −h2 h1 0
0 −h3 h2 0 −l3 l2

h3 0 −h1 l3 0 −l1
−h2 h1 0 −l2 l1 0


(3.23)

with

h1 = Xu̇u+Xv̇v +Xẇw +Xṗp+Xq̇q +Xṙr,

h2 = Xv̇u+ Yv̇v + Yẇw + Yṗp+ Yq̇q + Yṙr,

h3 = Xẇu+ Yẇv + Zẇw + Zṗp+ Zq̇q + Zṙr,
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l1 = Xṗu+ Yṗv + Zṗw +Kṗp+Kq̇q +Kṙr,

l2 = Xq̇u+ Yq̇v + Zq̇w +Kq̇p+Mq̇q +Mṙr,

l3 = Xṙu+ Yṙv + Zṙw +Kṙp+Mṙq +Nṙr.

According to Remark 3.2.2, matrix CA (v) can be reduced to

CA (v) =
CA1 (v) CA2 (v)

CA3 (v) CA4 (v)

 =



0 0 0 0 −Zẇw Yv̇v

0 0 0 Zẇw 0 −Xu̇u

0 0 0 −Yv̇v Xu̇u 0
0 −Zẇw Yv̇v 0 −Nṙr Mq̇q

Zẇw 0 −Xu̇u Nṙr 0 −Kṗp

−Yv̇v Xu̇u 0 −Mq̇q Kṗp 0


,

(3.24)

therefore, the total Coriolis matrix is given as

C (v1) =
 0 C1 (v1)

C1 (v1) C2 (v1)

 (3.25)

where

C1 (v1) = CRB1 (v1) + CA1 (v1) =


0 (m− Zẇ)w − (m− Yv̇) v

− (m− Zẇ)w 0 (m−Xu̇)u
− (m− Yv̇) v − (m−Xu̇)u 0



C2 (v1) = CRB4 (v1) + CA4 (v1) =


0 (Izz −Nṙ) r − (Iyy −Mq̇) q

− (Izz −Nṙ) r 0 (Ixx −Kṗ) p
(Iyy −Mq̇) q − (Ixx −Kṗ) p 0


(3.26)

with
m1 = m−Xu̇, m2 = m− Yv̇, m3 = m− Zẇ,

m4 = Ixx −Kṗ, m5 = Iyy −Mq̇, m6 = Izz −Nṙ.
(3.27)

It should be noticed that m1,m2,m3,m4,m5,m6 > 0 since the hydrodynamic derivatives

Xu̇, Yv̇, Zẇ, Kṗ,Mq̇, Nṙ < 0 and Ixx, Iyy, Izz > 0 [41].
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Hence, the matrices M1,M2,C1 (v1) and C2 (v1) can be written as

M1 =


m1 0 0
0 m2 0
0 0 m3

 , M2 =


m4 0 0
0 m5 0
0 0 m6

 , (3.28)

C1 (v1) =


0 m3w −m2v

−m3w 0 m1u

m2v −m1u 0

 , C2 (v1) =


0 m6r −m5q

−m6r 0 m4p

m5q −m4p 0

 . (3.29)

3.2.3 Hydrodynamic Damping Matrix

The hydrodynamic damping in the AUVs basically consists of potential, skin friction,

wave drift damping and the damping due to vortex shedding and contains the drag and

lift forces. The total damping matrix D (v) of an AUV which is moving in ideal fluid

can be expressed as a sum of the linear damping matrix Dl (describing the effect of the

linear skin friction) and the nonlinear damping matrix Dn (v) [41, 52].

Remark 3.2.3 In an AUV which is performing low speed, shows a non-coupled motion

and has three planes of symmetry, the lift forces are negligible compared to the drag

forces. The damping terms of second order and higher can be also neglected [41, 46, 47].

Therefore, according to Remark 3.2.3, the linear damping matrix Dl is given by

Dl = −



Xu 0 0 0 0 0
0 Yv 0 0 0 0
0 0 Zw 0 0 0
0 0 0 Kp 0 0
0 0 0 0 Mq 0
0 0 0 0 0 Nr


(3.30)

where Xu is the surge drag force derivative with respect to u, etc.. Again according to

Remark 3.2.3 the nonlinear damping matrix Dn (v) takes the following form
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Dn (v) = −



Xu|u| |u| 0 0 0 0 0
0 Yv|v| |v| 0 0 0 0
0 0 Zw|w| |w| 0 0 0
0 0 0 Kp|p| |p| 0 0
0 0 0 0 Mq|q| |q| 0
0 0 0 0 0 Nr|r| |r|


(3.31)

where Xu|u| is the surge drag force derivative with respect to u |u| (u is the surge velocity

of the AUV).

For example, the surge drag force XD can be modeled as

XD = −
(1

2ρCdAc

)
u |u| = Xu|u|u |u| (3.32)

where Ac is the projected cross-sectional area, Cd is the drag-coefficient based on the

representative area and ρ is the water density [53]. The drag force derivative in surge

direction with respect to u |u| is given by

Xu|u| =
∂XD

∂ (u |u|) = −1
2ρCdAc. (3.33)

The total damping matrix of the AUV has a diagonal form and is given as

D (v) = Dl + Dn (v) =
D1 (v) 0

0 D2 (v)

 (3.34)

where

D1 (v) = −


Xu +Xu|u| |u| 0 0

0 Yv + Yv|v| |v| 0
0 0 Zw + Zw|w| |w|



D2 (v) = −


Kp +Kp|p| |p| 0 0

0 Mq +Mq|q| |q| 0
0 0 Nr +Nr|r| |r|


(3.35)

with Xu, Yv, Zw, Kp,Mq, Nr, Xu|u|, Yv|v|, Zw|w|, Kp|p|,Mq|q|, Nr|r| < 0.
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Now, by defining

d1 = −Xu, d2 = −Yv, d3 = −Zw, d4 = −Kp, d5 = −Mq, d6 = −Nr,

du = −Xu|u|, dv = −Yv|v|, dw = −Zw|w|, dp = −Kp|p|, dq = −Mq|q|, dr = −Nr|r|

the matrices D1 (v) and D2 (v) in (3.35) can be rewritten in new parameters as

D1 (v) =


d1 + du |u| 0 0

0 d2 + dv |v| 0
0 0 d3 + dw |w|

 , (3.36)

D2 (v) =


d4 + dp |p| 0 0

0 d5 + dq |q| 0
0 0 d6 + dr |r|

 (3.37)

with d1, d2, d3, d4, d5, d6, du, dv, dw, dp, dq, dr > 0.

3.2.4 Restoring Forces and Moments

The restoring forces acting on the AUV have two parts: The first one is the gravitational

force fG ∈ R3 which is acting on the center of gravity of the underwater vehicle cG =
(xG, yG, zG), while the second is the buoyant force fB ∈ R3 that is acting on the center

of buoyancy cB = (xB, yB, zB). The gravitational and buoyant forces may produce

moments about cG and cB respectively.

The gravitational weight W of the underwater vehicle is given in the earth-fixed coor-

dinates as W = mgac, where m is the mass of the vessel and gac is the acceleration of

gravity. On the other hand, the buoyancy force is defined as B = ρgac∇ where ρ is the

density of water and ∇ is the volume of the water displaced by the vessel. To describe

the restoring forces fG and fB acting on the vehicle in the body-fixed frame, the forces

W and B can be transformed into forces in the body-fixed frame using transformation

matrix (3.2). We obtain

fG (η2) = J−1
1 (η2) (0, 0,W )> , fB (η2) = J−1

1 (η2) (0, 0,−B)> (3.38)

by noting that the z-axis is taken to be positive downwards. According to [46, 47], the
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restoring force and moment vector in the body-fixed frame is

g (η2) = −
 fG (η2) + fB (η2)

cG × fG (η2) + cB × fB (η2)

 (3.39)

and substituting the relationships (3.38) into (3.39) yields

g (η2) =
(
g>1 (η2) ,g>2 (η2)

)>
(3.40)

where

g1 (η2) =


(W −B) sθ
− (W −B) cθsφ
− (W −B) cθcφ

 ,

g2 (η2) =


− (yGW − yBB) cθcφ+ (zGW − zBB) cθsφ

(zGW − zBB) sθ + (xGW − xBB) cθcφ
− (xGW − xBB) cθsφ − (yGW − yBB) sθ

 .
(3.41)

Remark 3.2.4 A neutrally buoyant underwater vehicle will satisfy B = W .

The distance between the center of gravity cG and the center of buoyancy cB in the

body-fixed frame can be represented as

BG =
(
BGx, BGy, BGz

)>
= (xG − xB, yG − yB, zG − zB)> . (3.42)

Therefore, using (3.42) and observing Remark 3.2.4, relation (3.41) can be simplified to

g1 (η2) =


0
0
0

 , g2 (η2) =


−BGyWcθcφ+BGzWcθsφ

BGzWsθ +BGxWcθcφ

−BGxWcθsφ −BGyWsθ

 . (3.43)

Remark 3.2.5 In many underwater vehicles the center of gravity cG and the center of

buoyancy cB are located vertically on the fixed-body Z0-axis with xG = xB and yG = yB.

According to Remark 3.2.5, the restoring forces and moments (3.43) can be simplified
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to

g1 (η2) =


0
0
0

 , g2 (η2) =


αgsφcθ

αgsθ

0

 (3.44)

where αg = BGzW > 0 if the distance BGz is positive. Actually, this is positive because

in underwater vehicles the center of buoyancy locates above the center of gravity. It

generates a stabilizing moment about the pitch and roll axis, otherwise, the submarine

turns upside down, therefore, they are also known as restoring forces. On the contrary,

in ships, the center of gravity is above the center of buoyancy, which helps to stabilize

the ship statically [54, 47].

3.2.5 Control Input and Disturbance Vector

Forces and torques generated by the propellers allow the underwater vehicle to move

along the desired path in the 3D underwater space. If the propellers can produce forces

and torques along and about all of the body-fixed axes, then we are talking about a

fully-actuated system. Actually, in many AUV applications there are no actuators in

the sway and heave directions. In such case the AUV is so-called underactuated.

We have seen, according to the notation of the Society of Naval Architectures and Marine

Engineers [48] that the control input vector is

τ = (X, Y, Z,K,M,N)> . (3.45)

This notation could be confused with the notation of the variables throughout of this

thesis. To avoid this confusion for the rest of this thesis we will use the notation

τ =
(
τ>1 , τ

>
2

)>
, τ 1 = (τu, τv, τw)> , τ 2 = (τp, τq, τr)> (3.46)

where τu, τv, τw, τp, τq and τr are the control force and torques in surge, sway, heave, roll,

pitch and yaw, respectively. For the underactuated case the controls in sway and heave

are missing, that means τv = τw = 0.

The environmental disturbances (currents for instance) acting on the generalized axes
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of the AUV are

τ d =
(
τ>1d, τ

>
2d

)>
, τ 1d = (τud (t) , τvd (t) , τwd (t))> , τ 2d = (τpd (t) , τqd (t) , τrd (t))>

(3.47)

where τud (t) , τvd (t) , τwd (t) , τpd (t) , τqd (t) and τrd (t) are the disturbance forces and

torques acting on surge, sway, heave, roll, pitch and yaw directions of the vehicle,

respectively.

In line with reality we assume that the disturbances are bounded as follows:

|τud (t)| ≤ τmax
ud <∞, |τvd (t)| ≤ τmax

vd <∞, |τwd (t)| ≤ τmax
wd <∞

|τpd (t)| ≤ τmax
pd <∞, |τqd (t)| ≤ τmax

qd <∞, |τrd (t)| ≤ τmax
rd <∞.

(3.48)

Summing up, the kinematics (3.4) and the dynamics (3.5) of the underwater vehicle can

be represented in vectorial form as per

η̇1 = J1(η2)v1

η̇2 = J2(η2)v2

M1v̇1 = −C1 (v1) v2 −D1 (v1) v1 + τ 1 + τ 1d

M2v̇2 = −C1 (v1) v1 −C2 (v2) v2 −D2 (v2) v2 − g2 (η2) + τ 2 + τ 2d.

(3.49)

This representation of the system in (3.49) is convenient for designing a controller based

on the backstepping technique, as we will see later.
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Chapter 4

Previous Approaches for the
Fully-Actuated AUV

In the first section of this chapter we discuss a flexible on-line trajectory planning algo-

rithm for fully-actuated autonomous underwater vehicles relying on the path generation

using polynomial splines of degree 5, which is presented in Section (2.1). For dynamically

allocated way-points and surge velocities, an on-line algorithm computes polynomials

that smoothly link the paths between these way-points. In the next section, we devise

a tracking controller that compensates for the nonlinearities of the rigid-body dynamics

in order to render it linear in closed-loop. In the third section, we employ an extended

state observer that helps improving the tracking performance and attenuating large

disturbances.

4.1 Path and Trajectory Planning

4.1.1 Vertical Maneuver

We assume that the initial and final positions as well as the initial and final orientations

(zero roll) are given for two way-points (x0, y0, z0) and (x0, y0, zf). To get a smooth

transition, a polynomial of degree 5 is adopted to satisfy six boundary conditions (in

position, velocity, and acceleration). Therefore, a stationary rest to rest transition

from z(t0) = z0 and z(tf) = zf with zero boundary values for velocity and acceleration

determines the six coefficients of the polynomial

zd(t) = α5(t− t0)5 + α4(t− t0)4 + α3(t− t0)3 + α2(t− t0)2 + α1(t− t0) + α0 (4.1)

For unknown final time tf the coefficients may be obtained by introducing a maximum

value of the heave velocity for the vertical motion wmax, reached at time (tf − t0)/2. In

37



this case, see [55], we have tf = 15hz
8wmax

and with Tz = tf − t0, hz = zf− z0 the coefficients

are given as

α5 = 12hz
2T 5

z

, α4 = −30hz
2T 4

z

, α3 = 20hz
2T 3

z

, α2 = α1 = 0, α0 = z0. (4.2)

Subject to the same assumptions, the trajectories for the angles θ(t) and ψ(t) may be

determined similarly. For example, the transition between the yaw angles ψ0 and ψf

may be planned with the polynomial

ψd(t) = β5(t− t0)5 + β4(t− t0)4 + β3(t− t0)3 + β2(t− t0)2 + β1(t− t0) + β0 (4.3)

where the coefficients are

β5 = 12hψ
2T 5

z

, β4 = −30hψ
2T 4

z

, β3 = 20hψ
2T 3

z

, β2 = β1 = 0, β0 = ψ0 (4.4)

with hψ = ψf − ψ0.

This way we may design the desired trajectories zd(t), ψd(t), and φd(t) just involving

the initial and final values of position and orientation, and the maximum value of w

if needed. At the end of this maneuver the AUV is located at the stationary point

(x0, y0, zf) with orientation (0, θf , ψf), as desired.

4.1.2 2D- and 3D-Maneuver

Based on the kinematics (4.6) to (4.11) and under the assumption of zero roll, φ ≡ 0,

trajectories may be designed for a path, which passes through a certain set of Carte-

sian way-points (xk, yk, zk), with k = 0, 1, . . . , N − 1, where N is the number of way-

points. To this end, by introducing a path variable σ we get the parameterized path

(xd(σ), yd(σ), zd(σ)) using a polynomial of degree 5 to interpolate the pre-defined way-

points [55], and subsequently may determine σ as a function of time in order to match

the desired surge velocity profile in the path planning procedure [41].

For a 2D-maneuver, polynomials (2.3) and (2.4) are considered to generate the desired

path that passes through the given way-points in the Cartesian plane. Such a path

is transformed to a time dependent trajectory by imposing the desired surge velocity

profile u0(t) (assuming sway and heave equal to zero). It can be shown that σ may be
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obtained as the solution of the scalar differential equation

σ̇ = u0(t)
cosψd(σ)x′d(σ) + sinψd(σ)y′d(σ) (4.5)

with σ(0) = 0, (·)′ = ∂
∂σ

(·) and ψd(σ) = arctan
(
y′d(σ)
x′d(σ)

)
. Finally, with the solution σ =

σ(t) we obtain a coordinate description in terms of time, hence trajectories, xd = xd(t),
yd = yd(t) and ψd = ψd(t).

For a 3D-maneuver, polynomials (2.3), (2.4), (2.5) and the kinematics (4.6) – (4.11) are

required (supposing roll is zero). By means of the desired profile of the longitudinal ve-

locity u0(t), the time-dependent path variable σ = σ(t) is obtained as the solution of the

scalar differential equation. Thus, (u, v, w) are the translation velocities in body-fixed

frame coordinates and (p, q, r) the respective angular velocities related to X0, Y0, Z0. For

zero velocities in sway and heave (v ≡ 0 and w ≡ 0) and with θ 6= ±π/2+hπ, h = 0, . . . ,
u is the longitudinal velocity and under the assumptions v = 0 and w = 0, p, q and r

are the angular velocities about the body-fixed axises. Under the assumption that the

roll is zero φ ≡ 0 the kinematics of the moving vehicle, that is η̇ = J(η)v from (3.4),
may be expressed in the following six differential equations [56]

ẋ = u cos(θ) cos(ψ) (4.6)

ẏ = u cos(θ) sin(ψ) (4.7)

ż = −u sin(θ) (4.8)

φ̇ = p+ q sin(φ) tan(θ) + r cos(φ) tan(θ) (4.9)

θ̇ = q cos(φ)− r sin(φ) (4.10)

ψ̇ = q
sin(φ)
cos(θ) + r

cos(φ)
cos(θ) . (4.11)

By means of the desired profile of the longitudinal velocity u0(t), the time-dependent

path variable σ = σ(t) is obtained as the solution of the scalar differential equation

σ̇ = u0 (t)√
(x′d(σ))2 + (y′d(σ))2 + (z′d(σ))2

. (4.12)
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In view of

θd(σ) = arctan
 −z′d(σ)√

(x′d(σ))2 + (y′d(σ))2

 , ψd(σ) = arctan
(
y′d(σ)
x′d(σ)

)
(4.13)

we may eventually obtain the desired trajectories xd = xd(t), yd = yd(t), zd = zd(t),
θd = θd(t), and ψd = ψd(t).

For a 3D-maneuver we apply the algorithm introduced in Section 2.1 with polynomials

of degree 5.

4.2 Tracking Controller Design

For the fully-actuated system, the control design idea is based on the compensation of

all the nonlinear terms of the vehicle dynamics and designing a suitable continuous or

(discrete) PD- or PID-controller to force the error dynamics to converge asymptotically

to zero. Whenever the system is not perturbed, it is well-known that a conventional

PD-controller may do the task. For the more realistic perturbed case, we advocate the

use of a GESO approach (Generalized Extended State Observer [57], [58], [59]) for the

on-line estimation and attenuation of the disturbance-induced adverse effects in order

to improve the performance and stability of the closed-loop system. In this section we

restrict ourselves to design a discrete controller (SALMON project [42]), which stabi-

lizes the closed-loop system about the given reference trajectories. Therefore, we have

extended the algorithm of the continuous computed torque and the GESO algorithm to

cover the discrete case. These generated trajectories are imposed on the AUV dynam-

ics invoking a discrete computed torque controller. To this end, based on the forward

Euler discretization [41] a discrete 6 degrees of freedom nonlinear model is obtained

from (3.49). With a slight abuse of denotation from the continuous model, we may then

express the discrete equations of motion as follows

η(k + 1) = η(k) + TJ(η(k))v(k) (4.14)

v(k + 1) = v(k)− TM−1
(
C(v(k)) + D(ν(k))

)
v(k)− TM−1g(η(k))

+ TM−1(τ (k) + d(k)) (4.15)
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where T denotes the sampling time and d(k) refers to the disturbance (additional input

forces and torques). After substituting (4.15) in the shifted version of (4.14) we obtain

η(k + 2) = η(k + 1) + T
(
η(k + 1)

)(
v(k)− TM−1g(η(k))

− TM−1
(
C(v(k)) + D(v(k))

)
v(k) + TM−1

(
τ (k) + d(k)

))
.

(4.16)

Now, we devise the nominal controller (disturbance-free case, d(k) ≡ 0) such that with

a new input γ(k) the dynamics in closed-loop shows double integrating behavior

1
T 2

(
η(k + 2)− 2η(k + 1) + η(k)

)
= γ(k) . (4.17)

By comparison of (4.17) with (4.16), this means that the compensator is chosen as

τ (k) = g(η(k)) +
(
C(v(k)) + D(v(k))− 1

T
M
)
v(k)

+ MJ−1
(
η(k + 1)

)(
γ(k) + 1

T
J(η(k))v(k)

) (4.18)

where the new input γ(k) may be selected as a nominal discrete PD-controller with a

feed-forward term, say γ(k) = γ̄(k), which is sufficient in the nominal case. Hence with

KP,KD ∈ R6×6 as gain matrices the nominal PD-controller reads

γ̄(k) = 1
T 2

(
ηd(k + 2)− 2ηd(k + 1) + ηd(k)

)
−KP(η(k)− ηd(k))

− KD

T

(
η(k + 1)− η(k)− ηd(k + 1) + ηd(k)

)
.

(4.19)

Note that in this equation as well as in (4.18) expression η(k + 1) may be expressed in

variables at instant k using equation (4.14).

In order to assess the values of the gains, we may substitute γ̄(k) in (4.17) which then

yields the dynamics in terms of the error e(k) = η(k)− ηd(k), i.e.

e(k + 2) + (TKD − 2I)e(k + 1) + (I + T 2KP − TKD)e(k) = 0 (4.20)

with I ∈ R6×6 the identity matrix. Choosing diagonal gains for suppressing the error

coupling, equation (4.20) may be rewritten as six single equations

ei(k+ 2) + (TKD,i− 2)ei(k+ 1) + (1 + T 2KP,i− TKD,i)ei(k) = 0, i = 1, . . . , 6 (4.21)
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The error dynamics are asymptotically stable whenever the zeros of all i = 1, . . . , 6
polynomials

λ2 + (TKD,i − 2)λ+ (1 + T 2KP,i − TKD,i) = 0 (4.22)

lie within the unit circle of the complex plane. Let those zeros be λ1 and λ2. Then KD,i

and KP,i is given by

KD,i = 1
T

(2− λ1 − λ2) (4.23)

KP,i = 1
T 2 (λ1λ2 − λ1 − λ2 + 1) (4.24)

Hence, for a deadbeat controller: KD,i = 2
T

and KP,i = 1
T 2 .

4.3 Disturbance Rejection

In general, disturbance d(k) will not be constant or piecewise constant. In case of a

measurable disturbance, using the extended nominal control law

γ(k) = γ̄(k)− J(η(k + 1))M−1d(k) (4.25)

together with the compensator (4.18) leads to the nominal error dynamics (4.20). How-

ever, disturbances are not measurable in a realistic setup. Therefore, the controller shall

further be extended to reject dynamic disturbances by means of an additional discrete

observer to estimate the disturbances. To this end, enhance (4.17) with the disturbance

to obtain the disturbed discrete linear system

x(k + 1) = A x(k) + Bγ(k) + G(x(k)) d(k) (4.26)

where the state is defined as x(k) :=
 η(k)
η(k + 1)

 ∈ R12 and

A=
 0 I

−I 2I

, B=
 0

T 2I

, G(x(k))=
 0

T 2J(x2(k))M−1


with dimensions A ∈ R12×12 and both B,G ∈ R12×6. In view of (4.26) and by noting

that G(x(k)) is bounded due to J(x2(k)) is bounded. This justifies the use of d̄(k) =
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G(x(k)) d(k) and let ˆ̄d(k) denote its asymptotic estimate. Then using the pseudo

inverse and the disturbance estimate leads to the control law

γ(k) := γ̄(k)− 1
T 2

(
0 I

)ˆ̄d(k) . (4.27)

For estimating the disturbance we devise a discrete version of a Generalized Extended

State Observer (GESO) that we adopt from the design procedure for continuous time

systems [57, 60, 59]. Along these lines, we treat the quantity d̄(k) in (4.26) as an

extended system state in order to incorporate time derivatives of signal d̄(t) up to order

` in an extended system using a discrete Euler approximation [61]. Therefore, for the

unknown disturbance q1(k) = d̄(k) we have the dynamics

q1(k + 1) = q1(k) + T q2(k)

q2(k + 1) = q2(k) + T q3(k)
... = ...

q`−1(k + 1) = q`−1(k) + T q`(k)

q`(k + 1) = d̄(k)(`).

These variables together with (4.26) define the extended state

κ>(k) =
(
x>1 (k),x>2 (k),q>1 (k), . . . ,q>` (k)

)
∈ R6(`+2)

of the extended system

κ(k + 1) = Aeκ(k) + Bγγ(k) + Bd d̄(k)(`)

y(k) = Ceκ(k) (4.28)

with

Ae =



0 I 0 0 0 · · · 0

−I 2I T 2I 0 0 · · · 0

0 0 I T I 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · · · · · · · I T I 0

0 · · · · · · · · · · · · I T I

0 · · · · · · · · · · · · · · · 0


, Bγ =



0

T 2I

0
...

0


, Bd =



0

0
...

0

I


,
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and Ce =
(
I 0 · · · 0

)
of appropriate size; I and 0 are 6 × 6 identity and zero

matrices, respectively. Clearly, the pair (Ce,Ae) is observable and y(k) = η(k) the

measured output.

As a consequence, the state κ(k) of the extended state space representation (4.28), thus

also the unknown disturbance, may be estimated with an observer of the form

κ̂(k + 1) = Ae κ̂(k) + Bγ γ(k) + L (y(k)−Ceκ̂(k)) (4.29)

where the observer state κ̂(k) denotes the estimate of state κ(k) and L ∈ R6(`+2)×6 is the

observer gain. From (4.28) and (4.29) it is obvious that the estimation error dynamics

reads

κ̃(k + 1) = (Ae − L Ce) κ̃(k) + Bd d̄(k)(`)

with estimation error κ̃(k) = κ(k)− κ̂(k). Therefore, given that d̄(k)(`) is bounded, L

serves for placing the eigenvalues of Ae−L Ce in the unit circle of the complex plane, e.g.

by using Ackermann’s formula. Choosing the eigenvalues in the vicinity of the origin,

the resulting observer forces the estimation error κ̃(k) to asymptotically converge to a

small neighborhood of the origin of the error space. Finally, in control law (4.27) we

may employ the disturbance estimate ˆ̄d(k) =
(
κ̂13(k), . . . , κ̂18(k)

)
for an asymptotic

disturbance compensation.

Remark 4.3.1 The simulation results of this chapter are summarized in the appendix

(Chapter 9).
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Chapter 5

Controller Design for
Underactuated AUVs

In this chapter we consider that the AUV is underactuated, i.e. there are no actuators

in sway and heave direction. Before we start with designing a path following controller,

which forces the AUV to follow the reference path designed in Chapter 2, we introduce

some basic concepts. These pave the comprehension of the motivation behind the design

of path following controller based on the backstepping approach.

First we review some classical adaptive control approaches for linear (or linearized)

plants, then we shed light on the advantage of using the dynamic (adaptive) feedback

control against the conventional (static) one. For nonlinear plants, the adaptive back-

stepping control technique will be introduced in detail. To avoid the shifting, which

may occur during the estimation of the control and plant parameter, we will employ

the projection operator. In the following section we focus on the AUV dynamics and

transform it into error dynamics for both position and orientation of the AUV. In the

last section of this chapter, relying on the robust adaptive backstepping technique we

design a path following controller, which forces the AUV to follow the reference path

and to compel it to move along this path according to a predefined velocity profile.

5.1 Adaptive Control Approaches

A lot of dynamic plants to be controlled have constant or slowly-varying uncertain pa-

rameters. For those plants there are various examples like fire-fighting aircraft, power

systems and underwater vehicles. To control such systems, often, the conventional con-

trollers can not achieve the desired performance and can not stabilize suchlike systems.

Therefore, adaptive controllers are applied to control systems with uncertainties which

provide techniques for automatic adjustment of the controller (estimate uncertain plant
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parameters) in real-time, in order to fulfill the aimed requirements when the parameters

of the dynamic system are unknown and/or changing in time [62].
The design of the adaptive controller relies mainly on the plant dynamics to be con-

trolled. For linear or linearized nonlinear plant models, many techniques are developed

to control those plants under uncertainties in their parameters, among them, are:

• Gain Scheduling Control,

• Self-Tuning Regulator (STR) and

• Model Reference Adaptive Control (MRAC).

Gain Scheduling was developed, originally, for trajectory control of aircrafts. The non-

linear plant is linearized at certain operating points which cover the whole desired oper-

ation range. At each point, a linear feedback controller with constant gains is designed

to achieve the control requirements at the considered point. The global controller of

the nonlinear plant over the regarded range is then an interpolation or a scheduling of

the linear controllers at the chosen operating points. The main disadvantage of this

technique is that a rapid changing in the controller gain, may lead to instability in the

closed-loop system. In addition to its simplicity, for many applications in which the

gains are changing slowly, this technique is a convenient control approach. The Gain

Scheduling Control is not an actual adaptive control, but it is a kind of open-loop adap-

tive control, where the controller gain is adapted depending on auxiliary measurements

and off-line look-up tables [62, 63, 64, 65].

An on-line adaptation approach (Self-Tuning Regulator (STR)) is introduced in [62, 63].
This Regulator consists of a controller, designed based on pole placement, PID, LQR

(Linear Quadratic Regulator), . . . , and an estimator, which could be designed with

many techniques, the most common one is the least squares method.

In STRs, the parameters of the controller are designed based on the estimation of the

plant parameters, by replacing the real values of the plant parameters with the estimated

parameters, which is known as the certainty equivalent principle. This controller is able

to tune its own parameters, therefore is called self-tuning. Beside the flexibility with

designing the controller and the estimator, the applicability of this controller to control

of minimum and non-minimum phase systems is actually an obvious advantage. On the

downside, the analyzing of the (STR) is not simple.

In [64, 65] the so-called Model Reference Adaptive Control (MRAC) is introduced. The
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MRAC consists of an adaptation law, a controller and a reference model. The idea of the

MRAC, indeed, is based on the canceling of the zeros of the plant transfer function and

replacing them with those of the reference model by using a feedback controller. This

implies that the plant must be minimum phase (stable zeros) because the cancellation

of unstable zeros leads to unbounded signals. The MRAC system can be constructed in

two different ways, the MRAC-series high-gain scheme and the MRAC-parallel scheme.

The most used one is the parallel structure because it has more benefits in comparison

with the MRAC-series high-gain which despite its simplicity has some problems such

as oscillation and saturation due to high-gain. In the MRAC-parallel scheme one can

distinguish two loops: A regulator loop, which involves the unknown plant (but the

structure is known) and the ordinary controller, and an adaptation loop that adjusts

the parameters of the controller using a certain adaptation mechanism. The goal of the

adaptation loop is to estimate the controller parameters such that the error between the

output of the plant and the output of the reference model is zero.

A combination of robust control techniques, which deal with the unmodeled uncertain-

ties and/or disturbances, and adaptive control techniques, which handle the structural

uncertainties, gives a new field of work: robust adaptive control [65]. In this kind of

combination, the robust controller would be enhanced by using an adaptive controller

which increases the operation range of the closed loop system. On the other side, the

robust controller may enhance the performance of the adaptive one as well [62]. An

example for this combination is the Adaptive Sliding Mode Control (ASMC) [66] which

can deal with a wide range of perturbed linear or nonlinear plants with uncertainties.

The above mentioned approach of adaptive control, can be extended to cover many

classes of nonlinear systems.

Remark 5.1.1 In the approach of Self-Tuning Regulation (STR) and the Model Ref-

erence Control (MRAC) the plant parameters can be estimated and then the controller

parameters are computed. Such a scheme is called usually indirect (explicit) adaptive

control, because, one must translate the estimated parameters of the plant into controller

tuning parameters. In other approaches it is possible to eliminate this intermediate step

of the computation by reparameterizing the plant dynamics using the controller param-

eters which are also unknown and to be adjusted. Therefore, this kind of adaptation is

called a direct (implicit) adaptive control.

Remark 5.1.2 There are related techniques which deal with linear and nonlinear plants

such as the Extremum Seeking method, which is presented in [67].
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Remark 5.1.3 It is worth noticing, that the important difference between the STR and

MRAC techniques lies in regarding the parameter estimation. The parameter estimation

of the plant in STR can be understood, actually, as the procedure of finding (estimation)

a set of parameters that matches the available input-output data from a plant. But on

the other hand, this is unlike the parameter adaptation in MRAC systems, where the

parameters in MRAC are adjusted so that the tracking errors converge to zero.

5.2 Static and Dynamic Feedback

To illustrate the idea of adaptation as a dynamic feedback and the difference between

static and dynamic controller design we consider the following nonlinear dynamics1 [68]

ẋ = u+ θ φ(x) (5.1)

where θ an unknown constant parameter and φ(x) is a known basis function. We

distinguish between a static feedback controller and dynamic (adaptive) one:

Let a static feedback be

u = −c x− k x φ2(x) (5.2)

to investigate the stability of the system (5.2) we define Lyapunov function V = 1
2x

2. By

placing (5.2) into system (5.1) and utilizing the completion of squares we can determine

the derivative of the Lyapunov function as

V̇ = x ẋ = x
(
−c x− k x φ2(x) + θ φ (x)

)
= −c x2 − k

(
xφ (x)− θ

2k

)2

+ θ2

4k ≤ −c x
2 + θ2

4k
(5.3)

which means that x(t) converges to the interval

|x| ≤ |θ|
2
√
k c

. (5.4)

This interval can be reduced by increasing the gains k and c, but x(t) will not converge

to zero if θ is a nonzero constant. Excessive increase of these gains enlarges the system

bandwidth, which is undesirable. Our task is therefore to achieve limt→∞ x(t) = 0

1The notation in this example is not to be confused with the notation of the variables throughout
the remainder of this thesis
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without increasing k and c. In fact, we will first accomplish this task with k = 0 and

then use k > 0 to improve the transients. To achieve regulation of x(t), we design a

dynamic feedback controller with adaptation. If θ was known, the control

u = −θ φ(x)− c x, c > 0 (5.5)

would yield the derivative of V (x) = 1
2x

2 negative definite: V̇ = −c x2.

Of course, the control law (5.5) can not be implemented, since θ is unknown. Let θ̂ be

an estimation of the unknown parameter θ. Now we apply the certainty equivalence

principle which amounts to replacing the unknown parameter θ with its estimate θ̂ in

the control law. We get

u = −θ̂φ(x)− c x. (5.6)

Replacing the control law (5.6) into the system (5.1), we get the closed-loop system

ẋ = −c x+ θ̃ φ(x) (5.7)

with θ̃ = θ − θ̂ the parameter error. Then we get the derivative of the corresponding

Lyapunov function V (x) = 1
2x

2 as

V̇ = −c x2 + θ̃ x φ(x). (5.8)

One can notice that this choice of the Lyapunov function candidate would not help

guaranteeing the stability of the closed-loop system since the term θ̃ x φ(x) in (5.8) is

indefinite. To get around this problem, one can extend the Lyapunov function candidate

as

V1(x, θ̃) = 1
2x

2 + 1
2γ θ̃

2 (5.9)

where γ > 0 is a gain. The time derivative of the extended Lyapunov function

V̇1 = xẋ+ 1
γ
θ̃ ˙̃θ = −c x2 + θ̃ x φ(x) + 1

γ
θ̃ ˙̃θ = −c x2 + θ̃

[
xφ(x) + 1

γ
˙̃θ
]
. (5.10)

By defining the new estimator dynamics

˙̂
θ = − ˙̃θ = γ x φ(x) (5.11)
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and inserting it in (5.10) guarantees that

V̇1 ≤ −c x2 ≤ 0. (5.12)

+

+

∫ x

φ (·)θ

−c

φ (x)φ (x) γ
∫θ̂

Adaptive controller

Plant

u

−

Fig. 5.1: The closed-loop adaptive system (5.13)

The resulting adaptive system consists of the system (5.1), the control law (5.6) and the

update law (5.11). We can write the closed-loop system and its update law as

ẋ = −c x2 + θ̃φ (x)
˙̃θ = −γ x φ(x).

(5.13)

The structure of the closed-loop system is illustrated in Figure 5.1. Since V̇1 ≤ 0, the

equilibrium x = 0, φ̃ = 0 of (5.13) is globally stable. In addition, the desired regulation

property limt→∞ x (t) = 0 follows from Krasovskii’s theorem [68].

From this example, we have seen that the adaptive controller is more effective than

conventional feedback in presence of parameter uncertainties. The adaptive controller
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is adjusted automatically in real-time, based on the system signals, in order to achieve or

maintain a desired performance, when the parameters of the plant are unknown and/or

changing in time.

5.3 Adaptive Backstepping Control

In this section we will introduce the approach for designing a robust adaptive con-

troller and the backstepping approach. Finally, we will see how to combine those two

approaches to design a robust and adaptive backstepping controller.

5.3.1 Robust Adaptive Control

In order to introduce the idea of designing the desired controller, let us start with an

example, in which we will design a robust adaptive controller for a scalar system.

Consider a nonlinear model

χ̇ = g0 uc + Ῡ~ (χ) + Ξ̄ (χ, t) (5.14)

where g0 is an unknown constant positive parameter, Ῡ is an unknown constant param-

eter, ~ is a known smooth function, Ξ̄ is an unknown function, and uc is the control

input. We assume that the nominal system (without Ξ (χ, t)) has an equilibrium point

at χ = 0, which suggests that ~ (χ) = 0.

The system (5.14) has two types of uncertainty: The parametric uncertainty caused by

the unknown parameter Ῡ and the nonlinear uncertainty that appears due to Ξ̄ (χ, t).
The latter could arise because of unmodeled dynamics, measurement noise or exter-

nal disturbance. To design the controller one needs at least the bounds for nonlinear

uncertainty. Therefore, we assume that Ξ̄ (χ, t) is bounded, i.e.

∣∣∣Ξ̄ (χ, t)
∣∣∣ ≤ ∆̄, ∀χ ∈ R, ∀t ∈ R+ (5.15)

where ∆̄ is a known positive constant. The dynamics (5.14) can be rewritten as

χ̇ = g0

(
uc + Ῡ

g0
~ (χ) + Ξ̄ (χ, t)

g0

)
(5.16)
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or

χ̇ = g0 (uc + Υ~ (χ) + Ξ (χ, t)) (5.17)

with Υ =
Ῡ
g0

and Ξ (χ, t) =
Ξ̄ (χ, t)
g0

.

To design a stabilizing control law uc for the system (5.17) we consider the Lyapunov

function candidate

V = 1
2g0

χ2 + 1
2c1

Υ̃2 + 1
2c2

∆̃2 (5.18)

where Υ̃ = Υ̂−Υ and ∆̃ = ∆̂−∆ are the estimation errors, Υ̂ and ∆̂ are the estimates

of Υ and ∆, respectively, and c1, c2 are positive constants, where ∆ = ∆̄/g0. The time

derivative of the Lyapunov function is:

V̇ = 1
g0
χχ̇+ 1

c1
Υ̃ ˙̃Υ + 1

c2
∆̃ ˙̃∆. (5.19)

As a control law, we consider

uc = −
(
kcχ+ Υ̂~ (χ) + %

(
χ, ∆̂

))
(5.20)

where kc > 0 is a design constant and the control constituent %
(
χ, ∆̂

)
deals with the

uncertainty Ξ (χ, t). Now, placing (5.20) and (5.17) into (5.19), we obtain

V̇ ≤χ
(
−kcχ− Υ̃~ (χ)− %

(
χ, ∆̂

)
+ Ξ (χ, t)

)
+ 1
c1

Υ̃ ˙̂Υ + 1
c2

∆̃ ˙̂∆

≤− kcχ
2 + Υ̃

( 1
c1

˙̂Υ− ~ (χ)χ
)

+ 1
c2

∆̃ ˙̂∆− %
(
χ, ∆̂

)
χ+ χΞ (χ, t)

≤− kcχ
2 + Υ̃

( 1
c1

˙̂Υ− ~ (χ)χ
)

+ 1
c2

∆̃ ˙̂∆− %
(
χ, ∆̂

)
χ+ |χ| |Ξ (χ, t)|

≤ − kcχ
2 + Υ̃

( 1
c1

˙̂Υ− ~ (χ)χ
)

+ 1
c2

∆̃ ˙̂∆− %
(
χ, ∆̂

)
χ+ χsgn (χ) ∆

(5.21)

where the function sgn (·) is the sign function defined as

sgn (χ) =

 1 if χ ≥ 0

−1 if χ < 0.
(5.22)

Let the control component %
(
χ, ∆̂

)
be defined as

%
(
χ, ∆̂

)
= ∆̂ sgn (χ) . (5.23)
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Now, by placing (5.23) into the last inequality of (5.21) we get

V̇ ≤− kcχ
2 + Υ̃

( 1
c1

˙̂Υ− ~ (χ)χ
)

+ 1
c2

∆̃ ˙̂∆− χsgn (χ) ∆̂ + χsgn (χ) ∆

≤− kcχ
2 + Υ̃

( 1
c1

˙̂Υ− ~ (χ)χ
)

+ ∆̃
( 1
c2

˙̂∆− χsgn (χ)
)
.

(5.24)

To make the time derivative of the Lyapunov function negative semidefinite, V̇ ≤ 0, we

choose the adaptation laws as

˙̂Υ = c1~ (χ)χ
˙̂∆ = c2χsgn (χ)

(5.25)

by means of which we get

V̇ ≤− kcχ
2 ≤ 0, (5.26)

which implies that Υ,∆ and χ are uniformly bounded. Moreover using LaSalle’s invari-

ance principle [69] the origin is asymptotically stable and χ (t) goes to zero, as t goes

to infinity. We insert (5.23) in (5.20) and obtain

uc = −
(
kcχ+ Υ̂~ (χ) + ∆̂ sgn (χ)

)
. (5.27)

In the control law (5.27), the chattering problem may emerge due to the sign function

because in real-world implementation the measurements of χ can be perturbed [70]. For

the backstepping procedure, to design the controller for the entire system, we need to

derivate the intermediate control law (it may be the control (5.27)). This will lead to

a singularity. Therefore, to avoid those two problems we approximate the sign function

by tanh (hyperbolic tangent) function [71, 72], which means

sgn (χ)→ tanh
(
χ

εχ

)
, εχ > 0. (5.28)

In doing so, we obtain a new control component % and a new adaptation law by replacing

sgn (χ) function with tanh
(
χ
εχ

)
function in (5.23) as well in (5.25).

Now, in light of this modification in the controller, we analyze the stability of the closed

loop system. Thus, the component of the controller, which compensates the unmodeled
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uncertainties will be given as

%
(
χ, ∆̂

)
= ∆̂ tanh

(
χ

εχ

)
. (5.29)

Finally, by placing (5.29) in the last inequality of (5.21) we get

V̇ ≤− kcχ
2 + Υ̃

( 1
c1

˙̂Υ− ~ (χ)χ
)

+ 1
c2

∆̃ ˙̂∆− χ tanh
(
χ

εχ

)
∆̂ + χsgn (χ) ∆

≤− kcχ
2 + Υ̃

( 1
c1

˙̂Υ− ~ (χ)χ
)

+ ∆̃
(

1
c2

˙̂∆− χ tanh
(
χ

εχ

))

+ ∆
(
|χ| − χ tanh

(
χ

εχ

)) (5.30)

where |χ| = sgn (χ)χ.

To render V̇ negative, the adaptation laws in (5.30) can be chosen as

˙̂Υ = c1~ (χ)χ and
˙̂∆ = c2χ tanh

(
χ

εχ

)
. (5.31)

Note that we may use the inequality (it will be proved in 5.3.1)

0 ≤ |χ| − χ tanh
(
χ

εχ

)
≤ kχ εχ, kχ ' 0.2785, εχ > 0. (5.32)

Then the time derivative of the Lyapunov function in (5.30) is given as

V̇ ≤ 0.2785 ∆ εχ (5.33)

where the positive constant εχ can be chosen arbitrary small.

Remark 5.3.1 By utilizing the tanh function we avoid the chattering as well as the

singularity problem. On the other side, the value of χ (t) will never converge to zero,

but to an arbitrary neighborhood around the zero.

Now, we introduce a proof of the inequality (5.32).

Proof 5.3.1 Based on the Lemma 3.3 in [73]we have that:
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For any εχ > 0 there exists a smooth function gχ such that gχ (0) = 0 and

|χ̄| ≤ χ̄gχ (χ̄) + εχ, ∀χ̄ ∈ R. (5.34)

Let the smooth function in (5.34) be

gχ (χ̄) = tanh
(
kχχ̄

εχ

)
, kχ > 0 (5.35)

then

|kχχ̄| − kχχ̄ tanh
(
kχχ̄

εχ

)
≤ kχεχ (5.36)

where |kχχ̄| ≤ kχ |χ̄|. Letting kχχ̄ = χ ∈ R we obtain

|χ| − χ tanh
(
χ

εχ

)
≤ kχεχ. (5.37)

The inequality (5.37) holds for a certain interval of values of kχ. To determine this

interval of kχ we can show that

0 ≤ |χ| − χ tanh
(
χ

εχ

)
. (5.38)

This is true due to

χ tanh
(
χ

εχ

)
≥ 0, and tanh

(
χ

εχ

)
∈ (−1,+1) , ∀χ ∈ R (5.39)

which shows inequality (5.38). Then, to proof that

|χ| − χ tanh
(
χ

εχ

)
≤ kχ εχ (5.40)

we define

f (χ) =
∣∣∣∣∣ χεχ

∣∣∣∣∣− χ

εχ
tanh

(
χ

εχ

)
≤ kχ. (5.41)

It must be shown that this function has a maximum. Owing to f (χ) = f (−χ) function

f (χ) is an even function. Therefore, it is sufficient to investigate the maximum of f (χ)
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just for χ > 0. Thus, by defining a new variable ω =
χ

εχ
, we get

f (ω) = ω − ω tanh (ω) (5.42)

and the derivative of f (ω) with respect to ω

df (ω)
dω

= 1− tanh (ω)− ω
(
1− tanh2 (ω)

)
= (1− tanh (ω)) (1− ω (1 + tanh (ω)))

(5.43)

Letting
df (ω)

dω
= 0 in (5.43), we obtain either

tanh (ω) = 1⇒ ω → +∞ (5.44)

which means f (χ) tends to zero in this case, or

ω + ω tanh (ω) = 1. (5.45)

To find the solution of (5.45), first recall that, tanh (ω) =
eω − e−ω

eω + e−ω
and (5.45) will result

in

(2ω − 1) e(2ω−1) = e−1. (5.46)

The equation (5.46) belongs to the class of function with the following general form [74]

yey = α (5.47)

where y is so-called Lambert function and the solution of this class of functions is given

as

y = Lambert W (α) . (5.48)

Applying that on the equation (5.46) we obtain

2ω − 1 = Lambert W
(
e−1

)
⇒ ω = 1

2 Lambert W
(
e−1

)
+ 1

2 (5.49)

which yields

χ =
(1

2 Lambert W
(
e−1

)
+ 1

2

)
εχ. (5.50)
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Inserting (5.50) into (5.41), we obtain the value of the Extremum of f (χ) at this point.

Remark 5.3.2 The Lambert function may be calculated through

Lambert W (α) =
∞∑
n=1

(−n)(n−1)

n! ᾱn. (5.51)

The series (5.51) converges for −e−1 ≤ α ≤ e−1, see [74]. Therefore, the solution of

(5.45) exists and converges, since α = e−1, with sufficiently large value of n in (5.51).
Let n = 200 for instance, then we get Lambert W (e−1) = 0.2784645428. Now we can

calculate the solution of (5.45): ω ' 0.6392. Thus, we have χ ' 0.6392 εχ.

It can be shown that the second derivative of the function f (χ) wrt. χ evaluated at

χ = 0.6392 εχ (5.52)

is less than zero
(
actually it equals−0.8712468223/ε2χ < 0

)
which implies a maximum

at the considered point.

By evaluating the function f (χ) at χ = 0.6392 εχ and by noticing (5.41) we obtain

f (χ) = 0.2784645428 ' 0.2785 ≤ kχ. (5.53)

This means that kχ ' 0.2785 is the smallest value for which the inequality (5.32) is

satisfied. Then

0 ≤ |χ| − χ tanh
(
χ

εχ

)
≤ 0.2785 εχ, εχ > 0. (5.54)

This completes the proof of (5.32).

5.3.2 Backstepping Control

For a special class of nonlinear dynamical systems (triangular-like structure) a so-called

backstepping controller is designed to stabilize a system of subsystems. The controllers

of the subsystems are designed using some control techniques and then, recursively, the

final external control for the entire system is attained [68].

In this subsection we will state the idea of the backstepping approach by introducing the

so-called strict-feedback backstepping control. To this end, we will start with presenting
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the simplest case: The integrator backstepping. Then we extend it to a more general

form which is the strict-feedback backstepping.

5.3.2.1 Integrator Backstepping

To illustrate the idea of the integrator backstepping we consider the following nonlinear

system [69]

κ̇ = f(κ) + g(κ)ζ (5.55)

ζ̇ = uκ (5.56)

yκ = κ (5.57)

where κ, ζ, yκ ∈ R and uκ ∈ R, and the functions f (κ) , g (κ) are known. Now, we

design a state feedback controller uκ to force the output to converge to zero as t goes to

infinity. The controller will stabilize the equilibrium point of the system (5.55)− (5.56)

(κR, ζR) =
(

0,−f (0)
g (0)

)
, g (0) 6= 0. (5.58)

The structure of this system suggests that the system can be seen as connection of two

components or subsystems in cascade manner, as shown in Figure 5.2.

uκ ∫
× +

∫ κ

f (·)

g (·)

ζ

Fig. 5.2: The block diagram of the system (5.55)− (5.56)

The controller design is processed recursively in two steps: Suppose we can find a smooth

stabilizing function ακ (κ) which stabilizes the subsystem (5.55) at the origin κ = 0.

Now, in the first step, we choose the state ζ as a virtual control input of the subsystem
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(5.55). This yields

ζ =ακ + (ζ − ακ)

=ακ + ζ̄
(5.59)

where ζ̄ = ζ −ακ is a new state variable. Hence, by replacing the virtual control (5.59)
into the first subsystem (5.55) we obtain

κ̇ = f (κ) + g (κ)ακ (κ) + g (κ) ζ̄ . (5.60)

Moreover, we suppose that a smooth and positive definite Lyapunov function V (κ)
exists. Then by using the stabilizing function ακ we obtain the following inequality

V̇ (κ) = ∂V

∂κ
[
f (κ) + g (κ)ακ (κ)

]
≤ −W (κ) , ∀κ ∈ R (5.61)

where W (κ) is a positive definite term. Furthermore, by differentiating (5.59) and using

(5.60) the new input

νκ = uκ − α̇κ (5.62)

we obtain the new system in the new coordinates

κ̇ = f (κ) + g (κ)ακ (κ) + g (κ) ζ̄
˙̄ζ = νκ.

(5.63)

This is depicted in Figure 5.4. In view of Figures 5.3 and 5.4, the function ακ (κ) is

backstepping through the integrator. We can observe clearly that the first subsystem in

(5.63) has an asymptotically stable origin when its input is identically zero, i.e. ζ̄ = 0.

Now, the task is to design a stabilizing controller νκ to stabilize the state variable ζ̄ at

the origin. When we find this controller, then the overall system can be stabilized. To

achieve this we use the Lyapunov function candidate

Vκ (κ, ζ) = V (κ) + 1
2 ζ̄

2. (5.64)

Its derivative is given as

V̇κ = ∂V

∂κ
[f (κ) + g (κ)ακ (κ)] + ∂V

∂κ
g (κ) ζ̄ + νκ ζ̄

= −W (κ) + ∂V

∂κ
g (κ) ζ̄ + νκ ζ̄

(5.65)

59



which by choosing the control law

νκ = −∂V
∂κ

g (κ)− kζ ζ̄ , kζ > 0 (5.66)

yields

V̇κ ≤ −W (κ)− kζ ζ̄2. (5.67)

Thus, the origin
(
κ = 0, ζ̄ = 0

)
is asymptotically stable. Also equivalently, the equilib-

rium

(κR, ζR) =
(

0,−f (0)
g (0)

)
(5.68)

is asymptotically stable regarding the original coordinate system (κ, ζ).

f (·) + g (·)ακ (·)

∫
+×+

∫

−ακ (·)

g (·)

κuκ ζ ζ̄

Fig. 5.3: Introducing ακ the stabilizing function of the subsystem (5.55)

f (·) + g (·)ακ (·)

∫
+×+

∫

−α̇κ (·)

g (·)

κuκ ζ̄νκ

Fig. 5.4: Backstepping of −ακ (·) through the integrator
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Inserting (5.66) into (5.62) we obtain the feedback control law for the system (5.55) −
(5.56) as

uκ = ∂ακ

∂κ
[
f (κ) + g (κ) ζ

]
− ∂V

∂κ
g (κ)− kζ

[
ζ − ακ (κ)

]
. (5.69)

Remark 5.3.3 If the backstepping controller is performed for the nonlinear system

(5.55)− (5.56), and if the Lyapunov function for the subsystem (5.55) is chosen as

V = 1
2κ

2 (5.70)

then the stabilizing function is the feedback linearizing controller [75]

ακ = − 1
g (κ) (f (κ) + kκκ) . (5.71)

The dynamics in the closed loop in
(
κ, ζ̄

)
coordinates reads

κ̇˙̄ζ
 =

−kκ 0
0 −kζ


︸ ︷︷ ︸

diagonal matrix

κ
ζ̄

+
 0 g (κ)
−g (κ) 0


︸ ︷︷ ︸

skew-symmetrical matrix

κ
ζ̄


(5.72)

or

ζ̇ = −Kζζ + S (ζ) ζ (5.73)

with ζ =
(
κ, ζ̄

)>
, Kζ = diag (kκ, kζ) positive definite, and

S (ζ) = − (S (ζ))> =
 0 g (κ)
−g (κ) 0

 . (5.74)

To investigate the stability of the equilibrium ζ = 0 of the autonomous system (5.73)
we define the Lyapunov function

Vζ = 1
2ζ
>ζ

⇒ V̇ζ = ζ> [−Kζζ + S (ζ) ζ]

= −ζ>Kζζ.

(5.75)

Thus, according to Lyapunov’s direct method the equilibrium ζ = 0 in the transformed
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coordinates, or equivalently the equilibrium

(κR, ζR) =
(

0,−f (0)
g (0)

)
(5.76)

in the origin coordinates, is a globally asymptotically stable equilibrium point (GAS).

Moreover, we can show that this equilibrium point is globally exponentially stable

(GES), see Theorem 5 in Appendix A of [75].

5.3.2.2 Strict-Feedback Backstepping

Now, we extend the above discussed integrator backstepping technique to cover a class of

nonlinear systems which are given in so-called strict-feedback form. The strict-feedback

form differs from the so-called pure-feedback form, where in the first form the control

inputs of the subsystems appear explicit in the right-hand side of the differential equa-

tions, while they emerge implicit in the second form. Since our considered system has

the strict-feedback structure, we limit ourselves to the class of strict-feedback form.

Let the triangular-like system be given in the strict-feedback form

κ̇1 = f1(κ1) + g1(κ1)κ2

κ̇2 = f2(κ1,κ2) + g2(κ1,κ2)κ3

...
...

...

κ̇n−1 = fn−1(κ1, ...,κn−1) + gn(κ1, ...,κn−1)un

(5.77)

where, κ1, . . . ,κn−1 ∈ R are the states of the system, un ∈ R is the input, and the

output is y1 = κ1. We assume that the functions f1, g1, . . . , fn−1, gn−1 are nonlinear

known functions. The equilibrium of this system can be determined recursively. For

instance in case n = 4 the equilibrium point is

(κ1R,κ2R,κ3R) =
0,−f1 (0)

g1 (0) ,−
f2
(
0,−f1(0)

g1(0)

)
g2
(
0,−f1(0)

g1(0)

)
 . (5.78)

Let us consider a nonlinear system in strict-feedback for two subsystems (n = 3), namely

κ̇1 = f1(κ1) + g1(κ1)κ2 (5.79)

κ̇2 = f2(κ1,κ2) + g2(κ1,κ2)u2, (5.80)
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the equilibrium of this system is

(κ1R,κ2R) =
(

0,−f1 (0)
g1 (0)

)
(5.81)

and the output of the system is the state κ1. This nonlinear dynamics is illustrated in

Figure 5.5. The idea of designing the controller for the system (5.79− 5.80) is to find a

virtual stabilizing control law for the subsystem (5.79) at the origin κ1 = 0 regarding a

Lyapunov function V1s. Now, to find the controller, we define the following Lyapunov

function for the whole system (5.79− 5.80) as

Vs = V1s + 1
2
[
κ2 − αs (κ1)

]2
(5.82)

⇒ V̇s = ∂V1s

∂κ1
(f1(κ1) + g1(κ1)κ2) + (κ2 − αs) (κ̇2 − α̇s) (5.83)

where αs (κ1) stabilizes the subsystem (5.79) at the origin κ1 = 0.

++

g1 (·)

f1 (·)

××

f2 (·)

∫ ∫ κ1

g2 (·)

κ2u2

Fig. 5.5: System in strict-feedback form (5.79− 5.80)
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The control law is given as

u2 = 1
g2 (κ1,κ2)

[
−f2 (κ1,κ2) + ∂αs (κ1)

∂κ1
(f1 (κ1) + g1 (κ1)κ2)

−cs (κ2 − αs (κ1))− ∂V1s

∂κ1
g1 (κ1)

]
, cs > 0.

(5.84)

For more details about the complete derivation of (5.84) see previous work [42].

5.3.3 Robust and Adaptive Backstepping

We now combine the backstepping technique presented above with the robust adaptive

control approach introduced in Section 5.3.1 to illustrate the design idea of the robust

adaptive backstepping control. To this end, we define the following system

χ̇1 = f1 (χ1) + g1 (χ1)χ2 (5.85)

χ̇2 = g0 (uc + Υ~ (χ1, χ2) + Ξ (χ1, χ2, t)) (5.86)

where the functions f1 (χ1) and g1 (χ1), and the constant g0 are known. The output of

this system is yχ = χ1. According to the backstepping approach we design a virtual

controller χ2 = α (χ1) to stabilize the equilibrium χ1 = 0 of the subsystem (5.85). For

the system (5.85− 5.86) we consider the Lyapunov function candidate

V = 1
2χ

2
1 + 1

2 (χ2 − α (χ1))2 + 1
2c1

Υ̃2 + 1
2c2

∆̃2. (5.87)

The time derivative of (5.87) is

V̇ = χ1χ̇1 + (χ2 − α (χ1)) (χ̇2 − α̇ (χ1)) + 1
c1

Υ̃ ˙̃Υ + 1
c2

∆̃ ˙̃∆. (5.88)

According to the backstepping approach, we choose first a virtual stabilizing function

α (χ1) for the subsystem (5.85). Now, using χ2 = α (χ1) + (χ2 − α (χ1)), and placing

(5.85) into (5.88) we obtain

V̇ = χ1 (f1 (χ1) + g1 (χ1)α (χ1) + (χ2 − α (χ1)) g1 (χ1)) + 1
c1

Υ̃ ˙̃Υ + 1
c2

∆̃ ˙̃∆

+ (χ2 − α (χ1)) (g0 (uc + Υ~ (χ) + Ξ (χ, t))− α̇ (χ1)) .
(5.89)
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Let us define a smooth stabilizing function

α (χ1) = −1
g1 (χ1)

(
f1 (χ1) + k1

χχ1
)

(5.90)

where the function g1 (χ1) 6= 0 and constant k1
χ > 0. Then (5.89) can be written as

V̇ = −k1
χχ

2
1 + [χ2 − α (χ1)] [χ1g1 (χ1) + g0Υ~ (χ1, χ2) + g0Ξ (χ1, χ2, t) + g0uc − α̇ (χ1)]

+ 1
c1

Υ̃ ˙̃Υ + 1
c2

∆̃ ˙̃∆.
(5.91)

We suggest a control law as per

uc = 1
g0

[
−k2

χ (χ2 − α (χ1)) + α̇ (χ1)− χ1g1 (χ1)− %
(
χ1, χ2, ∆̂

)]
− Υ̂~ (χ1, χ2) (5.92)

where k2
χ is a positive constant, Υ̂ is an estimate of the modeled uncertainty in the

system, and %
(
χ1, χ2, ∆̂

)
is the control component that deals with the unmodeled un-

certainties or the disturbance. It is assumed that this disturbance is bounded by an

upper bound ∆, constant but unknown, its estimated value is ∆̂. The function g1 (χ1)
is a known function and ~ (χ1, χ2) is a known basis function. By inserting the suggested

control law (5.92) in (5.91) we obtain

V̇ = −k1
χχ

2
1 + (χ2 − α (χ1))

[
−g0Υ̃~ (χ1, χ2) + g0Ξ (χ1, χ2, t)− k2

χ (χ2 − α (χ1))

−%
(
χ1, χ2, ∆̂

)]
+ 1
c1

Υ̃ ˙̃Υ + 1
c2

∆̃ ˙̃∆
(5.93)

where Υ̃ = Υ̂−Υ. Now, noticing that ˙̃Υ = ˙̂Υ and ˙̃∆ = ˙̂∆, and making the assumption

that the disturbance is bounded, i.e. |Ξ (χ1, χ2, t)| ≤ ∆ and by observing that

|χ2 − α (χ1)| = (χ2 − α (χ1)) sgn (χ2 − α (χ1)) (5.94)

we can rewrite equation (5.93) as

V̇ ≤− k1
χχ

2
1 − k2

χ (χ2 − α (χ1))2 + Υ̃
 ˙̂Υ
c1
− g0 (χ2 − α (χ1)) ~ (χ1, χ2)


+ (χ2 − α (χ1))

(
g0 sgn (χ2 − α (χ1)) ∆− %

(
χ1, χ2, ∆̂

))
+ 1
c2

∆̃ ˙̂∆.
(5.95)
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Now, by choosing the control component % as

%
(
χ1, χ2, ∆̂

)
= g0 sgn (χ2 − α (χ1)) ∆̂, (5.96)

the adaptation law for the modeled uncertainties becomes

˙̂Υ = c1g0 (χ2 − α (χ1)) ~ (χ1, χ2) . (5.97)

Placing (5.96) and (5.97) into (5.95) yields

V̇ ≤ −k1
χχ

2
1 − k2

χ (χ2 − α (χ1))2 + ∆̃
 ˙̂∆
c2
− (χ2 − α (χ1)) g0 sgn (χ2 − α (χ1))

 . (5.98)

Thus, we can choose the adaptation law for the unmodeled uncertainties or the distur-

bance in the form
˙̂∆ = c2 (χ2 − α (χ1)) g0 sgn (χ2 − α (χ1)) . (5.99)

Now, by inserting (5.99) in (5.98) we obtain that

V̇ ≤ −k1
χχ

2
1 − k2

χ (χ2 − α (χ1))2 ≤ 0 (5.100)

which implies that χ1, χ2−α (χ1) , Υ̃ and ∆̃ are bounded, moreover, χ1 and χ2−α (χ1)
converge to zero. In other words, the system (5.85− 5.86) converges to its equilibrium

(χ1R, χ2R) =
(

0,−f1 (0)
g1 (0)

)
(5.101)

despite of the presence of modeled and unmodeled uncertainties in the considered sys-

tem. Also here, to avoid the chattering phenomena in the control law due to the sgn

function, it can be approximated by the tanh function as in (5.28). This modification

leads to the new control component

%
(
χ1, χ2, ∆̂

)
= g0 tanh

(
χ2 − α (χ1)

εχ

)
∆̂ (5.102)

and to a new adaptation law for the unmodeled uncertainties:

˙̂∆ = c2g0 (χ2 − α (χ1)) tanh
(
χ2 − α (χ1)

εχ

)
. (5.103)
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Finally, the time derivative of the Lyapunov function becomes

V̇ ≤ −k1
χχ

2
1 − k2

χ (χ2 − α (χ1))2 + 0.2785 g0 ∆ εχ ≤ 0.2785 g0 ∆ εχ, εχ > 0. (5.104)

This means that in the system with the modified controller, χ1 and χ2−α (χ1) will not

necessarily converge to the zero, but to an arbitrary small neighborhood of it which can

be adjusted by the design constant εχ.

5.4 Projection Operator

Projection-based adaptation laws are used often to prevent parameter drift in adaptation

schemes [76] and to ensure robustness properties in the adaptive law [77]. In this

section, a Lipschitz-continuous version of the projection operator will be introduced.

This concept is essential for enabling the adaptive laws to achieve robustness with

respect to parametric and nonparametric uncertainties which might exist in the system

dynamics. It will be shown that the projection operator tolerates fast adaptation,

enforces uniform boundedness of the adaptive parameters and maintains closed-loop

stability of the corresponding error dynamics and of the original system.

Before introducing the projection operator, we begin with essential definitions of convex

sets and convex functions. We recall some definitions and theorems from [78, 79].

Definition 5.4.1 A set E ⊂ Rk is convex if

λϕ1 + (1− λ)ϕ2 ∈ E (5.105)

whenever ϕ1 ∈ E,ϕ2 ∈ E, and 0 ≤ λ ≤ 1.

Remark 5.4.1 A convex set has the property that for any two points of the convex set

E all the points on the connecting line between those two points also belong to E.

Definition 5.4.2 A function f : Rk → R is convex if

f (λϕ1 + (1− λ)ϕ2) ≤ λf (ϕ1) + (1− λ) f (ϕ2) , ∀ 0 ≤ λ ≤ 1. (5.106)
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Inequality (5.106) is illustrated in Figure 5.6. It shows that the graph of a convex

function must be located below the straight line which connects the two corresponding

function values

f (ϕ1)

ϕ1 ϕ2
ϕ = λϕ1 + (1− λ)ϕ2

f (ϕ2)
λf (ϕ1) + (1− λ) f (ϕ2)

f (ϕ)

Fig. 5.6: Convex function

Lemma 5.4.1 Let f (ϕ) : Rk → R be a convex function. Then for any constant β > 0
the set Eβ =

{
$ ∈ Rk |f ($) ≤ β

}
is convex. The set Eβ is called the sublevel set.

Proof 5.4.1 Let $1,$2 ∈ Eβ, then f ($1) ≤ β and f ($2) ≤ β. Since f ($1) ≤ β

is convex then for any 0 ≤ λ ≤ 1

f(λ$1 + (1− λ)$2︸ ︷︷ ︸
$

) ≤ λ f($1)︸ ︷︷ ︸
≤ β

+(1− λ) f($2)︸ ︷︷ ︸
≤ β

≤ λβ + (1− λ)β = β (5.107)

Since f (λ$1 + (1− λ)$2) ≤ β, then λ$1 + (1− λ)$2 ∈ Eβ as $1,$2 ∈ Eβ, then

Eβ is convex.

Lemma 5.4.2 Let f (ϕ) : Rk → R be a continuously differentiable convex function.

Choose a constant β and consider the convex set Eβ =
{
$ ∈ Rk|f ($) ≤ β

}
⊂ Rk. Let

$,$∗ ∈ Eβ and f($∗) < β and f($) = β (i.e. $∗ is not on the boundary of Eβ,

while $ is on the boundary of Eβ). Then the following inequality is true

($∗ −$)>∇f ($) ≤ 0 (5.108)

where ∇f($) =
(
∂f($)
∂$1

. . . ∂f($)
∂$k

)>
∈ Rk is the gradient of f($) evaluated at $.
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Figure 5.7 illustrates the relation (5.108). Here we note that the gradient evaluated at

the boundary of a convex set always points away from the set.

∇f ($)

$∗

$

Eβ = {$ : f ($) = β}

Fig. 5.7: Gradient vector on the boundary of a convex set

Proof 5.4.2 Since f(ϕ) is a convex function, then

f (λ$∗ + (1− λ)$) ≤ λf ($∗) + (1− λ) f ($) , ∀ 0 ≤ λ ≤ 1 (5.109)

which can be rewritten as

f ($ + λ ($∗ −$)) ≤ f ($) + λ (f ($∗)− f ($)) . (5.110)

Then for any nonzero 0 < λ ≤ 1 the above inequality can be written as

f ($ + λ ($∗ −$))− f ($)
λ

≤ f ($∗)− f ($) ≤ β − β = 0. (5.111)

It is necessary to notice that the expression f($+λ($∗−$)) in the relation (5.111) is

a scalar function of vector argument $. On the other side, one can see this expression

as a scalar function F (λ) of the scalar argument λ. In this case, the considered function

can be defined with a Taylor polynomial of degree 2 about the point λ = 0, as follows

F (λ) = F (0) + F ′(0)λ+O(λ2) (5.112)

where O(λ2) is the remainder of the Taylor series. Notice that F (0) = f($) and

F ′(λ) = ($∗ −$)>∇f($ + λ($∗ −$)) where ∇f denotes the differentiation of f
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with respect to its whole vector argument $+λ($∗−$), that is, the gradient. While

($∗ −$)> is the derivative of the expression with respect to λ. Then it is not hard to

see that, F ′(0) = ($∗−$)>∇f($), replacing the values of F (0) and F ′(0) in equation

(5.112). We get therefore the considered expression as

f($ + λ($∗ −$)) = f($) + ($∗ −$)>∇f($)λ+O(λ2), (5.113)

and by substituting equation (5.113) into (5.111) we get

f($) + ($∗ −$)>∇f($)λ+O(λ2)− f($)
λ

≤ 0

⇒ ($∗ −$)>∇f($) +O(λ2) ≤ 0. (5.114)

Taking the limit

lim
λ→0

O(λ2) = 0

implies ($∗ −$)>∇f($) ≤ 0 which completes the proof.

Definition 5.4.3 [79] Consider a convex set given by

Eβ =
{
$ ∈ Rk|f($) ≤ β

}
, 0 ≤ β ≤ 1 (5.115)

and a smooth convex function f : Rk → R defined as follows

f ($) = ‖$‖
2 −$2

M

ε2 + 2ε$M

(5.116)

where $M is the norm bound of the parameter vector $, and ε denotes the convergence

tolerance.

Let $∗ ∈ E0 be the true value of $. A projection operator for two vectors $, s ∈ Rk

is introduced as

Proj ($, s) =


s− ∇f ($)
‖∇f ($)‖︸ ︷︷ ︸

unit vector

〈
(∇f ($))>

‖∇f ($)‖ , s
〉

︸ ︷︷ ︸
projection

f ($)︸ ︷︷ ︸
scaling

if f ($) > 0 ∧ s>∇f ($) > 0

s otherwise

(5.117)

70



or

Proj ($, s) =


s− ∇f ($) (∇f ($))>

‖∇f ($)‖2 sf ($) if f ($) > 0 ∧ s>∇f ($) > 0

s otherwise

(5.118)

where ∇f($) =
(
∂f($)
∂$1

. . . ∂f($)
∂$k

)>
∈ Rk is the gradient of f ($) evaluated at $.

Figure 5.8 shows the projection operator in R2. The projection operator Proj($, s) as

$∗

f($) ≤ 0

f($) ≤ β
f($) = β < 1

scaling by

projection

∇f($)
s

Proj($, s)

∇f($)

projection

scaling by

s

Proj($, s)

$

$∗

f($) ≤ 0

f($) ≤ 1
f($) = 1

$

f($) = 1

f($) = β < 1

Fig. 5.8: Projection operator in R2

defined in (5.117) does not alter s if $ belongs to the set E0 =
{
$ ∈ Rk|f($) ≤ 0

}
.

For the set
{
$ ∈ Rk|0 ≤ f($) ≤ 1

}
if s>∇f ($) > 0, then the projection operator

Proj($, s) subtracts the vector normal to the boundary of the set
{
$ ∈ Rk|f($) = β

}
so that we get a smooth transformation from the original vector field s to an inward or

tangent vector field for β = 1.

Lemma 5.4.3 Let f : Rk → R be a convex differentiable function. Using the definition

of the projection operator (5.118) and considering the k−dimensional dynamics

$̇ = Proj ($, s) (5.119)
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where $, s ∈ Rk. Starting from any initial point $(0) = $0 within the set

E0 =
{
$ ∈ Rk|f($) ≤ 0

}
(5.120)

the solution $(t) of the dynamics (5.119) for an initial point $(0) = $0 will remain

within the set

E1 =
{
$ ∈ Rk|f($) ≤ 1

}
(5.121)

for all t ≥ 0.

Proof 5.4.3 [76, 78] To prove this lemma, we need to show that the following relation

holds:

f($(0)) ≤ 0︸ ︷︷ ︸
$(0) ∈ E0

⇒ f($(t)) ≤ 1︸ ︷︷ ︸
$(t) ∈ E1

, ∀ t ≥ 0. (5.122)

Taking the time derivative of f($(t)) along the trajectories of the system dynamics

(5.119) and using the definition of the projection operator (5.118) we obtain

ḟ($) = (∇f($))>Proj($, s) (5.123)

=

 (∇f($))>s (1− f ($)) if f ($) > 0 ∧ s>∇f ($) > 0

(∇f($))>s if f ($) ≤ 0 ∨ s>∇f ($) ≤ 0
(5.124)

which means that

ḟ($) > 0, if 0 < f($) < 1 ∧ s>∇f ($) > 0

ḟ($) = 0, if f($) = 1 ∧ s>∇f ($) > 0

ḟ($) ≤ 0, if f($) ≤ 0 ∨ s>∇f ($) ≤ 0.

(5.125)

The first and the second relation in (5.125) imply that if f($(0)) > 0 then f($(t))
monotonically increases in time for all t ≥ 0, but it will never exceed the value 1.

Also, the third condition in (5.125) makes clear that if f($(0)) ≤ 0 then f($(t)) is

monotonically decreasing for all t ≥ 0. Therefore, irrespective of initial values (as long

as they are negative), f($(t)) ≤ 1 for all t ≥ 0, which completes the proof of the

lemma.

Property 5.4.1 Given the vectors $, s ∈ Rk, then the next inequality is true

($ −$∗)> (Proj($, s)− s) ≤ 0 (5.126)
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where $∗ is the true value of the parameter $.

Proof 5.4.4 To prove this property, we note that

($ −$∗)> (Proj($, s)− s) = ($∗ −$)> (s− Proj($, s)) . (5.127)

Now, by placing the relation of the projection operator (5.118) into (5.126) we obtain

($∗ −$)> (s− Proj($, s)) =


($∗ −$)>∇f(∇f)>s f

‖∇f‖2 if f > 0 ∧ s>∇f > 0

0 otherwise.

(5.128)

We used a shortened nomenclature for f in this equation.

In (5.128) it should be noticed that for (∇f)>s ≥ 0, f ≥ 0, and according to Lemma

5.4.2 the expression ($∗ − $)>∇f ≤ 0, implies ($∗ − $)> (s− Proj($, s)) ≤ 0.

Noticing relation (5.127) we can write

($ −$∗)> (Proj($, s)− s) ≤ 0 (5.129)

which completes the proof.

Remark 5.4.2 For the scalar case, namely for two scalar values s,$ ∈ R, according to

the above definition (5.117, 5.118), the projection operator can be defined for the scalar

quantities as follows

Proj ($, s) =


s− sf ($) if f($) > 0 ∧ ∂f($)

∂$
$ > 0

s otherwise

(5.130)

Figure 5.9 illustrates the scalar projection. Only those points s for which the condition

f($) > 0 ∧ ∂f($)
∂$

$ > 0 (5.131)

is satisfied, will be projected. They are the points on the segments ab and cd. The

points s on segment bc are not projected because f($) > 0 is not satisfied in (5.131).

73



f($)

∂f($)/∂$ > 0

∂f($)/∂$ < 0

$, s

$M ε

f($) = 1

f($) = 0
dca b

Fig. 5.9: Projection of scalar values

5.5 Coordinate Transformation for the AUV

By following the results of the work [22], we recall that the system of the AUV given in

(3.49) is a second-order nonholonomic system because the constraints (the non-actuated

dynamics) are not integrable. The difficulty in such a class of systems is that they cannot

be stabilized by a smooth static-state feedback control, but by using an adaptive one

[80]. The controller design is based on the adaptive backstepping approach. Before

that we design a path following controller for the underactuated AUV system (3.49), we

transform the path following problem into a stabilization one [81]. Thus, through this

transformation, the AUV model can be transformed into an error triangular-like form

which allows to use the backstepping method to develop an adaptive feedback control.

The proposed controller stabilizes the reference trajectory exponentially [21].

To achieve this transformation, let us describe the control objective in light of Figure
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Real vehicle Virtual vehicle

X

Y

Z

X0
Y0

Z0

γ̄1
γ̄2

γ

(x, y, z)

(xd, yd, zd)Desired path

a1
a2

a3

de

Fig. 5.10: Real and virtual vehicles

5.10. The controller must force the real vehicle to follow the virtual one, this means, that

the real vehicle must track both the position and the orientation of the virtual vehicle

which moves along the reference path with a desired speed profile u0 (t). The control

objective can be imagined in the following way: The virtual vehicle, which moves along

the reference path with the velocity u0 (t), pulls the real one with a cord of length de

where the angle between this cord and the surge axis of the real vehicle is γ.

The controller must minimize the distance de and also the angle γ. In this approach,

minimizing means, to force de to be close to zero (but not zero which would cause a

singularity in de as we will see later), and to compel γ to go to zero by means of the

designed controller. Therefore, when the control objective is fulfilled, the real vehicle

will move very close to the virtual one along the desired path and with the desired

velocity u0 (t).

Let the center of the real vehicle be the point (x, y, z) which locates at the origin of the

body-fixed coordinates attached to the real vehicle, and the center of the virtual vessel

be (xd, yd, zd) which is a point of the desired path. Thus, we define the path following
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errors in the earth-fixed frame XY Z as

xe = xd − x, ye = yd − y, ze = zd − z. (5.132)

Then the distance de in the earth-fixed frame XY Z is given as

de =
√
x2

e + y2
e + z2

e . (5.133)

Let a1, a2 and a3 be the errors on surge, sway and heave directions respectively as Figure

5.10 shows. Then by rotating the body-fixed frame around X, Y and Z, the angles roll,

pitch and yaw respectively, we can define the errors a1, a2 and a3 by means of xe, ye and

ze as

(a1, a2, a3)> = J>1 (η2) (xe, ye, ze)> . (5.134)

By placing the rotation matrix (3.2) in (5.134) we obtain

a1 = xe cos (ψ) cos (θ) + ye sin (ψ) cos(θ)− ze sin (θ)

a2 = xe (− sin (ψ) cos (φ) + sin (φ) sin (θ) cos (ψ)) +

ye (cos (ψ) cos (φ) + sin (φ) sin (θ) sin (ψ)) + ze sin (φ) cos (θ)

a3 = xe (sin (ψ) sin (φ) + sin (θ) cos (ψ) cos (φ)) +

ye (− cos (ψ) sin (φ) + sin (θ) sin (ψ) cos (φ)) + ze cos (φ) cos (θ) .

(5.135)

Now, let the desired orientation of the virtual vessel be φd = 0 for roll, θd for the pitch

and ψd for the yaw angles. Then from Figure 5.10 we draw

lim
(de,γ)→0

(θ, ψ) = (θd, ψd) (5.136)

where θ and ψ are the pitch and yaw angles of the real vessel. We can obviously

recognize that the angles γ̄1 and γ̄2 are not defined for de = 0, therefore, we will design

the controller to force de to be a some small positive constant d∗e.

In other words, the pulled (real) vessel will trace the puller (virtual) vessel under the

same environment conditions, but in a time delay de/u0, which can be made arbitrary

small. This goes along with what we see in Figure 5.11.

The control objective, in addition to minimizing the distance de is to render the angles

γ̄1 and γ̄2 arbitrary small which means from Figure 5.10 that the angle γ goes to an
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X
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γ
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t3

t4

de

de
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γ

γ

Z

X
0

X0

X
0

Fig. 5.11: Tracking algorithm

arbitrary small constant where, cos (γ) = cos (γ̄1) cos (γ̄2).

Practically, the controller will make the angles γ̄1 and γ̄2 zero, but because of modeled

and unmodeled system uncertainties and also to avoid chattering in the control law the

“tanh” function will be used instead of the “sign” function in the control law. Therefore,

we can just force the orientation angles to be very close to zero, but not zero (as we

saw in Remark 5.3.1). To design the controller we may introduce the error dynamics.

To achieve this, we differentiate both sides of (5.133) with respect to time t. We get

ḋe = ∂de

∂xe

ẋe + ∂de

∂ye

ẏe + ∂de

∂ze

że = 1
de

(xe, ye, ze)> (ẋd − ẋ, ẏd − ẏ, żd − ż)

= 1
de

(
xe
∂xd(σ)
∂σ

+ ye
∂yd(σ)
∂σ

+ ze
∂zd(σ)
∂σ

)
σ̇ − 1

de

(a1, a2, a3) J>2 (η2) J2 (η2) (u, v, w)>

(5.137)

where σ (t) is the path variable of the desired path (xd (σ) , yd (σ) , zd (σ)). The path

variable σ (t) can be calculated analytically based on the reference path and desired
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velocity of the virtual vessel through integration of the following relationship

σ̇ (t) = u0√
(∂xd (σ)/∂σ)2 + (∂yd (σ)/∂σ)2 + (∂zd (σ)/∂σ)2

. (5.138)

Now, if the real vehicle does not point to the virtual one this necessitates the desired

velocity to be decreased with a correction factor a1/de. In other words, since the real

vessel does not point to the virtual one, the virtual vehicle must wait for the real one

(decreasing the desired velocity u0). That means, the term a1/de is utilized as correction

term of the desired velocity along the desired path, where a1/de → 1 if the real vehicle

is pointing to the virtual one. This generally yields

σ̇ (t) = a1

de

u0 (t, de)√
(∂xd (σ)/∂σ)2 + (∂yd (σ)/∂σ)2 + (∂zd (σ)/∂σ)2

. (5.139)

Since matrix J2 (η) is orthogonal and using the kinematics (3.4) and (5.137) we obtain

ḋe = 1
de

(
xe
∂xd(σ)
∂σ

+ ye
∂yd(σ)
∂σ

+ ze
∂zd(σ)
∂σ

)
σ̇ − a1

de

u− a2

de

v − a3

de

w. (5.140)

The error dynamics of de described in (5.140) is not defined for de = 0. The error

dynamics describes the first control objective for the kinematics of the system with

regard to the Euclidean distance between real and virtual vessel, the second objective

is the orientation.

Now, we define the dynamics which describes the orientation of the vessel in 3D under-

water space. The orientation of the vehicle is described by the angle γ, see Figure 5.10.

It is clear that

cos (γ) = a1

de

(5.141)

which in turn means

γ → 0 ⇐⇒ a1

de

→ 1. (5.142)

From the first equation of (5.135), by adding and subtracting the term ae cos (θ) where

ae =
√
x2

e + y2
e , we get

a1 = xe cos (θ) cos (ψ) + ye cos (θ) sin (ψ)− ze sin (θ) + ae cos (θ)− ae cos (θ) . (5.143)

Dividing both sides of (5.143) by de we obtain
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a1

de

= ae

de

cos (θ)− ze

de

sin (θ) + ae

de

cos (θ)
[
xe

ae

cos (ψ) + ye

ae

sin (ψ)− 1
]
. (5.144)

Since de > 0 and ae 6= 0 (will be proved later) the relation (5.144) is defined and reveals

no singularities.

To this end, let us define

cos (ψa) = xe

ae

≤ 1 (5.145)

where ψa is an auxiliary quantity. By using y2
e = a2

e − x2
e, we can write

sin (ψa) = ye

ae

≤ 1. (5.146)

In the same manner, let us define

cos (θa) = ae

de

≤ 1 (5.147)

where again, θa is an auxiliary quantity. Thus, because of z2
e = d2

e − a2
e, we obtain

sin (θa) = ze

de

≤ 1. (5.148)

Now, by replacing the relations (5.145)− (5.148) into (5.144), we have

a1

de

= cos (θa) cos (θ)− sin (θa) sin (θ)︸ ︷︷ ︸
cos(γ1)

+ae

de

cos (θ)
[

cos (ψa) cos (ψ) + sin (ψa) sin (ψ)︸ ︷︷ ︸
cos(γ2)

−1
]
.

(5.149)

This equation is equivalent to

a1

de

= cos (γ1) + ae

de

cos (θ)
[

cos (γ2)− 1
]

(5.150)

where

γ1 = θ + θa, γ2 = ψ − ψa. (5.151)

Thus, we can consider that the control objective related to the orientation of the vehicle

is given by relationship (5.150). In this equation it is obvious that for −π/2 < θ < π/2
(it is satisfied due to physical considerations) we have

ae

de

cos (θ) 6= 1 (5.152)
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and from (5.150) that

lim
t→∞

γ1 = 0, lim
t→∞

γ2 = 0 (5.153)

then

lim
t→∞

a1

de

= 1. (5.154)

So we may transfer the control objective to stabilizing the angles γ1 and γ2 at the origin

(or arbitrary close to it). We have seen that

cos (γ1) = ae

de

cos (θ)− ze

de

sin (θ) (5.155)

which implies that

sin (γ1) = ze

de

cos (θ) + ae

de

sin (θ) . (5.156)

Now, differentiating both sides of (5.156) with respect to time yields

γ̇1 cos (γ1) =
(
ae

de

cos (θ)− ze

de

sin (θ)
)
θ̇ + żede

d2
e

cos (θ) + ȧede

d2
e

sin (θ)

− ḋe

de

(
ze

de

cos (θ) + ae

de

sin (θ)
) (5.157)

such that the dynamics of γ1 is given through

γ̇1 = θ̇ + że cos (θ) + ȧe sin (θ)
de cos (γ1) − ḋe

de

sin (γ1)
cos (γ1) . (5.158)

Also, we obtained that

cos (γ2) = xe

ae

cos (ψ) + ye

ae

sin (ψ) (5.159)

so that

sin (γ2) = −ye

ae

cos (ψ) + xe

ae

sin (ψ) . (5.160)

By differentiating both sides of (5.160) with respect to time we obtain

γ̇2 cos (γ2) =
(
xe

ae

cos (ψ) + ye

ae

sin (ψ)
)
ψ̇ − ȧe

ae

(
−ye

ae

cos (ψ) + xe

ae

sin (ψ)
)

+ ẋe sin (ψ)− ẏe cos (ψ)
ae

.

(5.161)
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The dynamics of γ2 is then given as

γ̇2 = ψ̇ + ẋe sin (ψ)− ẏe cos (ψ)
ae cos (γ2) − ȧe sin (γ2)

ae cos (γ2) . (5.162)

It is convenient to notice that the dynamics of γ1 and γ2 in (5.158) and in (5.162) re-

spectively are defined on R for ae 6= 0, de 6= 0, cos (γ1) 6= 0 and cos (γ2) 6= 0. Those

conditions can be guaranteed by suitable choice of the initial conditions for the position

and the orientation of the real vehicle. On the other side, we will show that the singu-

larity which might appear in (5.158) and in (5.162) if ae = 0 is completely avoided by

using the designed controller.

To show that ae > 0 let us consider sin (θa) = ze/de, or equivalently |sin (θa)| < 1 as

long as θa < π/2. This gives z2
e < d2

e ⇒ d2
e − z2

e = a2
e > 0⇒ ae > 0 where generally

ae =
√
x2
e + y2

e ≥ 0, (5.163)

which implies ae (t) > 0 ∀t > t0.

Now define the orientation error vector as

ηγ = (φ, γ1, γ2)> . (5.164)

Based on this definition we can transform the kinematics of the system into φ, γ1, γ2

coordinates.

From relationships (5.158) and (5.162), we may write

η̇γ =



φ̇

θ̇ +
że cos (θ) + ȧe sin (θ)

de cos (γ1) −
ḋe

de

sin (γ1)
cos (γ1)

ψ̇ +
ẋe sin (ψ)− ẏe cos (ψ)

ae cos (γ2) −
ȧe sin (γ2)
ae cos (γ2)


. (5.165)

Noticing the kinematics (3.4) of the system, we see that

η̇γ = J2 (η2) v2 + fγ (·) (5.166)
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where

fγ (·) =



0

że cos (θ) + ȧe sin (θ)
de cos (γ1) −

ḋe

de

sin (γ1)
cos (γ1)

ẋe sin (ψ)− ẏe cos (ψ)
ae cos (γ2) −

ȧe sin (γ2)
ae cos (γ2)


. (5.167)

Hence, according to this coordinates transformation the kinematics of the AUV system,

described in the first two equations in (3.49), can be transformed in the error coordinates

ḋe = 1
de

(
xe
∂xd(σ)
∂σ

+ ye
∂yd(σ)
∂σ

+ ze
∂zd(σ)
∂σ

)
σ̇ − a1

de

u− a2

de

v − a3

de

w

η̇γ = J2 (η2) v2 + fγ (·) .
(5.168)

Then the whole system which describes the system (kinematics and dynamics) of the

AUV in the new coordinates reads

ḋe = 1
de

(
xe
∂xd(σ)
∂σ

+ ye
∂yd(σ)
∂σ

+ ze
∂zd(σ)
∂σ

)
σ̇ − a1

de

u− a2

de

v − a3

de

w

η̇γ = J2 (η2) v2 + fγ (·)

M1v̇1 = −C1 (v1) v2 −D1 (v1) v1 + τ 1 + τ 1d

M2v̇2 = −C1 (v1) v1 −C2 (v2) v2 −D2 (v2) v2 − g2 (η2) + τ 2 + τ 2d.

(5.169)

This triangular-like form is suitable to implement the backstepping technique to design

the controller, which fulfills the path following objectives.

Le us consider that the virtual vehicle is moving along the desired path according to a

speed function

u0 (t, de) = u∗0
(
1− u∗1e−u

∗
2(t−t0)

)
e−u

∗
3de (5.170)

where u∗0, u
∗
2 and u∗3 are positive constants, and 0 < u∗1 < 1. The advantage of choosing

the speed profile as in (5.170) is that if de is large, that means, the speed of the virtual

vessel is decreasing, which implies that the virtual vehicle is waiting for the real one.

On the other side, if de is small, we get

lim
t→∞

u0 (t, de) w u∗0 (5.171)

which means that the virtual vehicle moves with a velocity close to u∗0 and the real
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vehicle follows it, but after an arbitrary small delay time de/u0 (t, de).

5.6 Robust and Adaptive Backstepping Controller

for an Underactuated AUV

Based on the robust adaptive backstepping control approach, which is introduced in the

Section 5.3.3, we design a path following controller for the underactuated model of the

AUV, described in the error dynamics coordinates (5.169).

The structure of the system (5.169) allows to design the control inputs in two steps: In

the first one, we design a force controller τ 1 to compel the error de to converge to an

arbitrary small constant, then in the second step we design the torque control τ 2, which

forces the real vehicle to rotate and point always to the virtual vessel.

5.6.1 Force Control

To design the force input τ 1, which steers the real vehicle to move arbitrary close to the

virtual one, we consider the following subsystem of (5.169)

ḋe = 1
de

(
xe
∂xd(σ)
∂σ

+ ye
∂yd(σ)
∂σ

+ ze
∂zd(σ)
∂σ

)
σ̇ − a1

de

u− a2

de

v − a3

de

w (5.172)

M1v̇1 = −C1 (v1) v2 −D1 (v1) v1 + τ 1 + τ 1d. (5.173)

Hence, by following the control design procedure, which we introduced in the Section

5.3.3, we design τ 1 in two steps. Firstly, we design a virtual stabilizing intermediate

controller ud for (5.172) under the assumption that the velocities v and w are bounded.

Secondly, we design τ 1 in (5.173) which is responsible to force u to converge to ud.

For this purpose, we define d̃e = de − δ, where δ is some arbitrary small positive design

constant. Let the virtual controller for the first subsystem (5.172) be

ud = k1d̃e −
1
a1

(a2v + a3w) + 1
a1

(
xe
∂xd(σ)
∂σ

+ ye
∂yd(σ)
∂σ

+ ze
∂zd(σ)
∂σ

)
σ̇ (5.174)

where k1 is a positive design parameter. Thereafter, by placing the virtual control
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(5.174) into the dynamics (5.172), we obtain

˙̃de = −k1
a1

de

d̃e −
a1

de

ũ (5.175)

where

ũ = u− ud. (5.176)

In (5.175), a1 the projection of de on the surge axis X0, can be guaranteed to be positive

through an adequate choice of the initial conditions (as we will see in Section 6.5) and

of course by means of the torque controller τ 2 as well. On the other hand, the controller

τ 1 is concerned with letting ũ be zero (or very close to zero), which implies that the

equilibrium point de = δ in (5.175) is asymptotically stable.

Therefore, to design the control τ 1, we differentiate both sides of (5.176). Then we

obtain the error dynamics of the velocity as

˙̃u = u̇− u̇d. (5.177)

The dynamics of the surge velocity u can be obtained from the dynamics of the under-

water vehicle model in (3.5). We have

u̇ = −m3

m1
wq + m2

m1
vr − 1

m1
(d1 + du |u|)u+ 1

m1
τu + 1

m1
τud (t)

v̇ = m3

m2
wp− m1

m2
ur − 1

m2
(d2 + dv |v|) v + 1

m2
τvd (t)

ẇ = −m2

m3
vp+ m1

m3
up− 1

m3
(d3 + dw |w|)w + 1

m3
τwd (t) .

(5.178)

Now, under the assumption of smoothness of the intermediate control ud in xe,ye,ze,σ,

u0, η2, v and w in (5.174), we determine analytically the derivative of ud, that is

u̇d = ∂ud

∂xe

ẋe + ∂ud

∂ye

ẏe + ∂ud

∂ze

że + ∂ud

∂u0
u̇0 + ∂ud

∂σ
σ̇ + ∂ud

∂η2
η̇2 + ∂ud

∂v
v̇ + ∂ud

∂w
ẇ. (5.179)

This approach is just applicable in the case of off-line planning of the desired path [82],

meaning that, the reference trajectories xd (σ) , yd (σ) and zd (σ) must be predefined

(off-line), which is not admissible in an on-line tracking control approach.

Therefore, in the on-line path planning procedure it is impossible to determine
∂ud

∂σ
σ̇ in

(5.179), unless the path is predefined (off-line). To extend this technique to cover the
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on-line path planning case, we calculate this term on-line as follows

∂ud

∂σ
σ̇ = ∂ud

∂x′d
ẋ′d + ∂ud

∂y′d
ẏ′d + ∂ud

∂z′d
ż′d (5.180)

where

x′d = ∂xd (σ)
∂σ

, ẋ′d = ∂2xd (σ)
∂σ2 σ̇, y′d = ∂yd (σ)

∂σ
, ẏ′d = ∂2yd (σ)

∂σ2 σ̇,

z′d = ∂zd (σ)
∂σ

, ż′d = ∂2zd (σ)
∂σ2 σ̇.

(5.181)

The terms in (5.181) exist and can be calculated, just under the assumption of continuity

of the first and the second derivative of the reference trajectories xd, yd and zd regarding

to the path variable σ. We can now determine the error dynamics of the intermediate

control ud by replacing the relations (5.179) and (5.178) into (5.177). Then we obtain

˙̃u = − 1
m1

(d1 + du |u|) ũ+ m2

m1
vr − m3

m1
wq − 1

m1
(d1 + du |u|)ud + 1

m1
τu

+ 1
m1

τud (t)− ∂ud

∂xe

ẋe −
∂ud

∂ye

ẏe −
∂ud

∂ze

że −
∂ud

∂u0
u̇0 −

[
∂ud

∂x′d

∂2xd (σ)
∂σ2 + ∂ud

∂y′d

∂2yd (σ)
∂σ2

+ ∂ud

∂z′d

∂2zd (σ)
∂σ2

]
σ̇ − ∂ud

∂η2
η̇2 −

∂ud

∂v

[
m3

m2
wp− m1

m2
ur − 1

m2
(d2 + dv |v|) v

+ 1
m2

τvd (t)
]
− ∂ud

∂w

[
m1

m3
up− m2

m3
vp− 1

m3
(d3 + dw |w|)w + 1

m3
τwd (t)

]
(5.182)

where ẋe = ẋd − ẋ, ẏe = ẏd − ẏ and że = żd − ż. Also the time derivative of the desired

velocity along the desired path is given analytically as

u̇0 = ∂u0

∂t
+ ∂u0

∂xe

ẋe + ∂u0

∂ye

ẏe + ∂u0

∂ze

że. (5.183)

Hence, we utilize a known basis vector function

f1 (·) =
(
vr,−wq,−ud,− |u|ud,−

∂ud

∂xe

ẋe −
∂ud

∂ye

ẏe −
∂ud

∂ze

że −
∂ud

∂x′d

∂2xd (σ)
∂σ2 σ̇

− ∂ud

∂y′d

∂2yd (σ)
∂σ2 σ̇ − ∂ud

∂z′d

∂2zd (σ)
∂σ2 σ̇ − ∂ud

∂u0
u̇0 −

∂ud

∂η2
η̇2,−

∂ud

∂v
wp,

∂ud

∂v
ur,

∂ud

∂v
v,
∂ud

∂v
|v| v,−∂ud

∂w
uq,

∂ud

∂w
vp,

∂ud

∂w
w,
∂ud

∂w
|w|w

)>
(5.184)
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and a vector of unknown parameters θ1, which represents the modeled uncertainties of

the first subsystem (5.172− 5.173), constructed as

θ1 =
(
m2,m3, d1, du,m1,

m1m3

m2
,
m2

1
m2

,
m1d2

m2
,
m1dv
m2

,
m2

1
m3

,
m1m2

m3
,
m1d3

m3
,
m1dw
m3

)>
.

(5.185)

The unmodeled uncertainties and the disturbances act on the first three channels of the

system. They are given regarding their upper bounds and are lumped in a vector

θ2 = (θ21, θ22, θ23)> =
(
τmax
ud ,

m1

m2
τmax
vd ,

m1

m3
τmax
wd

)>
. (5.186)

Thereafter, by replacing (5.184), (5.185), and (5.186) in (5.182), we get

˙̃u = 1
m1

[
− (d1 + du |u|) ũ+ θ>1 f1 (·) + τu + τud (t)− ∂ud

∂v

m1

m2
τvd (t)− ∂ud

∂w

m1

m3
τwd (t)

]
.

(5.187)

Now, applying the certainty equivalence principle, the control input τu in (5.187) can be

chosen as

τu = −cuũ− θ̂
>
1 f1 (·)− θ̂21 tanh

 ũθ̂21

ε21

− θ̂22
∂ud

∂v
tanh

∂ud

∂v

ũθ̂22

ε22


− θ̂23

∂ud

∂w
tanh

∂ud

∂w

ũθ̂23

ε23

 (5.188)

where cu is a designed positive control parameter, θ̂1 is the estimate of the unknown

parameter vector θ1, and θ̂21, θ̂22 and θ̂23 are the estimates of θ21, θ22 and θ23 respectively.

The estimates of the parameters in (5.188) can be determined using the update laws

˙̂
θ1 = Γ1Proj

(
f1 (·) ũ, θ̂1

)
˙̂
θ21 = γ21Proj

(
|ũ| , θ̂21

)
,

˙̂
θ22 = γ22 Proj

(∣∣∣∣∣ũ∂ud

∂v

∣∣∣∣∣ , θ̂22

)
,

˙̂
θ23 = γ23 Proj

(∣∣∣∣∣ũ∂ud

∂w

∣∣∣∣∣ , θ̂23

) (5.189)

where Γ1 ∈ R13×13 is a diagonal design matrix with entries γ1i > 0, for i = 1, . . . , 13,

and, γ21, γ22, γ23 > 0 as well, and “Proj” is the projection operator which is already

defined in (5.117).
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5.6.2 Torque Control

The control input τ 2 is concerned with the orientation of the real vehicle and rotates

the real vehicle to point permanently to the virtual one. To design the control law τ 2

we consider the second subsystem of the model (5.169)

η̇γ = J2 (η2) v2 + fγ (·) (5.190)

M2v̇2 = −C1 (v1) v1 −C2 (v2) v2 −D2 (v2) v2 − g2 (η2) + τ 2 + τ 2d. (5.191)

The triangular-like structure of the system (5.190− 5.191) allows to design the control

law τ 2 based on the backstepping approach where the goal is to force the vector ηγ =
(φ, γ1, γ2)> to go to zero as t goes to infinity.

To achieve that, we divide the procedure of control design into two steps. In the first

one we design an intermediate controller

v2d = (pd, qd, rd)> (5.192)

which stabilizes ηγ at the origin while, in the second step, we design τ 2 to force ṽ2 to

converge to zero, where

ṽ2 = v2 − v2d. (5.193)

For this purpose, we consider first the dynamics (5.190) and choose the intermediate

control law as

v2d = (pd, qd, rd)> = J>2 (η2)
[
− fγ (·)−K2ηγ

]
(5.194)

where K2 = diag (k21, k22, k23) is a positive definite diagonal design matrix. Thus, with

substitution of the controller (5.194) in (5.190) we obtain

η̇γ = −K2ηγ + J2 (η2) ṽ2. (5.195)

In (5.195), the equilibrium ηγ = 0 can be exponentially stabilized if the controller τ 2

guarantees that

lim
t→∞

ṽ2 = 0. (5.196)

To obtain (5.196) we differentiate both sides of (5.193) with respect to time

˙̃v2 = v̇2 − v̇2d (5.197)
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where

v̇2d = ∂v2d

∂xe

ẋe + ∂v2d

∂ye

ẏe + ∂v2d

∂ze

że + ∂v2d

∂x′d

∂2xd

∂σ2 σ̇ + ∂v2d

∂y′d

∂2yd

∂σ2 σ̇ + ∂v2d

∂z′d

∂2zd

∂σ2 σ̇ + ∂v2d

∂u0
u̇0

+ ∂v2d

∂η2
η̇2.

(5.198)

Multiplying both sides of (5.197) with the matrix M2 and utilizing the dynamics (5.191)
we obtain

M2 ˙̃v2 = −C2 (v2) ṽ2 −D2 (v2) ṽ2 + F (·)θ3 + G (·)θ4 (t) + τ 2 (5.199)

where the vectors F (·)θ3 and G (·)θ4 (t) are determined from the relations (5.125)
(5.193), (5.197) and (5.198), given through

F (·)θ3 =−C1 (v1) v1 −C2 (v2) v2d −D2 (v2) v2d − g2 (η2)−M2

[
∂v2d

∂xe

ẋe + ∂v2d

∂ye

ẏe

+∂v2d

∂ze

że + ∂v2d

∂x′d

∂2xd

∂σ2 σ̇ + ∂v2d

∂y′d

∂2yd

∂σ2 σ̇ + ∂v2d

∂z′d

∂2zd

∂σ2 σ̇ + ∂v2d

∂u0
u̇0 + ∂v2d

∂η2
η̇2

]

−M2
∂v2d

∂v1
M−1

1 (−C1 (v1) v2 −D1 (v1) v1 + τ 1)
(5.200)

and

G (·)θ4 (t) = τ 2d (t)−M2
∂v2d

∂v1
M−1

1 τ 1d (t) (5.201)

where F (·) and G (·) are the basis matrices, which are calculated in Sections 5.6.2.1
and 5.6.2.2, respectively.

In the dynamics (5.199), the controller τ 2 is chosen to compensate F (·)θ3 and G (·)θ4 (t),
and to satisfy (5.196).

Since the modeled uncertainties θ3 and unmodeled uncertainties (disturbances) θ4 (t)
are not known we estimate θ3 and the maximum value of θ4 (t), under the assumption

that the disturbance is bounded, with F (·) ∈ R3×n3 , G (·) ∈ R3×n4 , θ3 ∈ Rn3 and

θ4 (t) ∈ Rn4 , where n3 and n4 are the numbers of unknown modeled and unmodeled

uncertainties, respectively.

Our task now is indeed, to design a control law τ 2 for (5.199) to fulfill the control
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objective (5.196). Therefore, we choose the controller as

τ 2 = −K3ṽ2 −
(
η>γ J2 (η2)

)>
− F (·) θ̂3 −Gθ (·) (5.202)

where K3 ∈ R3 is a positive definite diagonal design matrix, and the vectors F (·) θ̂3

and Gθ (·) are given in (5.203) and (5.205), respectively. Let us start with the vector

F (·) θ̂3, it is defined as

F (·) θ̂3 =


f11θ̂31 + · · ·+ f1n3 θ̂3n3

f21θ̂31 + · · ·+ f2n3 θ̂3n3

f31θ̂31 + · · ·+ f3n3 θ̂3n3

 (5.203)

where θ̂3i is the estimate of the unknown vector parameter θ3i, for 1 ≤ i ≤ n3, with the

update law

˙̂
θ3i = γ3iProj

 3∑
j=1

ṽ2jfji, θ̂3i

 , 1 ≤ i ≤ n3. (5.204)

The functions fji for 1 ≤ j ≤ 3 and 1 ≤ i ≤ n3 are the components of the matrix F (·)
and γ3i ∈ R+ are design parameters.

For instance, if n3 = 53 (all of the parameters of the considered AUV are unknown),

the rows of the matrix F (·) can be calculated using the relations (5.212), (5.213) and

(5.214). The other component of the controller (5.202) to be determined is the vector

Gθ (·). To reach this purpose, let us replace the unknown vector θ4 (t) by the estimation

of the maximum value of it (as we will see in the section 5.6.2.2). Thus, the vector Gθ (·)
may be chosen as

Gθ (·) =



g11θ̂41 tanh
 ṽ21g11θ̂41

ε11

+ · · ·+ g1n4 θ̂4n4 tanh
 ṽ21g1n4 θ̂4n4

ε1n4


g21θ̂41 tanh

 ṽ22g21θ̂41

ε21

+ · · ·+ g2n4 θ̂4n4 tanh
 ṽ22g2n4 θ̂4n4

ε2n4


g31θ̂41 tanh

 ṽ23g31θ̂41

ε31

+ · · ·+ g3n4 θ̂4n4 tanh
 ṽ23g3n4 θ̂4n4

ε3n4




(5.205)

where θ̂4i is the estimate of the maximum value of the component θ4i (t) for 1 ≤ i ≤ n4,
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with the update law

˙̂
θ4i = γ4iProj

 3∑
j=1
|ṽ2jgji| , θ̂4i

 , 1 ≤ i ≤ n4. (5.206)

The functions gji for 1 ≤ j ≤ 3 and 1 ≤ i ≤ n4 are the entries of the matrix G (·) and

γ4i ∈ R+ are the designed gains.

5.6.2.1 Parameter Vector θ3 and Basis Matrix F (·)

We have the following expression

F (·)θ3 =−C1 (v1) v1 −C2 (v2) v2d −D2 (v2) v2d − g2 (η2)−M2

[
∂v2d

∂xe

ẋe + ∂v2d

∂ye

ẏe

+∂v2d

∂ze

że + ∂v2d

∂x′d

∂2xd

∂σ2 σ̇ + ∂v2d

∂y′d

∂2yd

∂σ2 σ̇ + ∂v2d

∂z′d

∂2zd

∂σ2 σ̇ + ∂v2d

∂u0
u̇0 + ∂v2d

∂η2
η̇2

]

−M2
∂v2d

∂v1
M−1

1 (−C1 (v1) v2 −D1 (v1) v1 + τ 1) .
(5.207)

To find the vector θ3 and the matrix F (·) we assume, in the worst case, that all param-

eters of the vessel are unknown, that means, θ3 ∈ R53 and F (·) ∈ R3×53.

Thus, to express the parameter vector and the basis matrix explicitly we define

θ3 =
(
m2,m3,m5,m6, d4, dp, αg,m4,

m4m3

m2
,
m4m2

m3
,
m4m3

m1
,
m4m1

m3
,
m4m2

m1
,
m4m1

m2
,
m4d1

m1
,

m4du
m1

,
m4d2

m2
,
m4dv
m2

,
m4d3

m3
,
m4dw
m3

,
m4

m1
,m1, d5, αg,

m5m3

m2
,
m5m2

m3
,
m5m3

m1
,
m5m1

m3
,

m5m2

m1
,
m5m1

m2
,
m5d1

m1
,
m5du
m1

,
m5d2

m2
,
m5dv
m2

,
m5d3

m3
,
m5dw
m3

,
m5

m1
, d6, dr,

m6m3

m2
,
m6m2

m3
,

m6m3

m1
,
m6m1

m3
,
m6m2

m1
,
m6m1

m2
,
m6d1

m1
,
m6du
m1

,
m6d2

m2
,
m6dv
m2

,
m6d3

m3
,
m6dw
m3

,
m6

m1
, dq

)>
= (θ31, . . . , θ3n3)> , where n3 = 53.

(5.208)

Let the Jacobian matrix be

∂v2d

∂v1
=


b11 b12 b13

b21 b22 b23

b31 b32 b33

 (5.209)
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and let us define the following vector

(
X11, X12, X13

)>
= ∂v2d

∂xe

ẋe + ∂v2d

∂ye

ẏe + ∂v2d

∂ze

że + ∂v2d

∂x′d

∂2xd

∂σ2 σ̇ + ∂v2d

∂y′d

∂2yd

∂σ2 σ̇

+ ∂v2d

∂z′d

∂2zd

∂σ2 σ̇ + ∂v2d

∂u0
u̇0 + ∂v2d

∂η2
η̇2

(5.210)

Then, according to the definitions above and by means of some calculations, we can find

the matrix F (·), through its rows as follows

F (·) =
(
F1 (·) ,F2 (·) ,F3 (·)

)>
,where F>1 (·) ,F>2 (·) ,F>3 (·) ∈ R53. (5.211)

These rows of the matrix F (·) are given as

F1 (·) =
(
vw,−vw, qrd,−rqd,−pd,−pd |p| ,− sin (φ) cos (θ) ,−X11,−pb12w, pb13v, qb11w,

− qb13u,−rb11v, rb12u, b11u, ub11 |u| , b12v, b12v |v| , b13w, b13w |w| ,−b11 τu,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
)
,

(5.212)

F2 (·) =
(

0, wu,−X12, rpd, 0, 0, 0,−prd, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−wu,−qd,

− sin (θ) ,−pb22w, pb23v, qb21w,−qb23 u,−rb21v, rb22u, b21u, b21u |u| , vb22,

b22v |v| , b23w, b23w |w| ,−b21τu, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−qd |q|
)
,

(5.213)

F3 (·) =
(
− vu, 0,−qpd,−X13, 0, 0, 0, pqd, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, vu, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0,−rd,−rd |r| ,−pb32w, pb33v, qb31w,−qb33u,−rb31v, rb32u,

b31u, b31u |u| , b32v, b32v |v| , b33w, b33w |w| ,−b31τu, 0
)

(5.214)

5.6.2.2 Parameter Vector θ4 (t) and Basis Matrix G (·)

We have already from (5.201) that

G (·)θ4 (t) = τ 2d (t)−M2
∂v2d

∂v1
M−1

1 τ 1d (t) . (5.215)
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Let us define the vector of unknown unmodeled uncertainties (disturbances) as

θ4 (t) =
(
τpd (t) , m4τud (t)

m1
,
m4τvd (t)
m2

,
m4τwd (t)

m3
, τqd (t) , m5τud (t)

m1
,
m5τvd (t)
m2

,
m5τwd (t)

m3
,

m6τud (t)
m1

,
m6τvd (t)
m2

,
m6τwd (t)

m3

)>
.

(5.216)

Then, we can determine the matrix G (·) by defining its rows as

G (·) =
(
G1 (·) ,G2 (·) ,G3 (·)

)>
, G>1 (·) ,G>2 (·) ,G>3 (·) ∈ R12. (5.217)

These rows of the matrix G (·) are given as

G1 (·) =
(

1,−b11,−b12,−b13, 0, 0, 0, 0, 0, 0, 0, 0
)

(5.218)

G2 (·) =
(

0, 0, 0, 0, 1,−b21,−b22,−b23, 0, 0, 0, 0
)

(5.219)

G3 (·) =
(

0, 0, 0, 0, 0, 0, 0, 0, 1,−b31,−b32,−b33

)
(5.220)
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Chapter 6

Stability-Analysis

In this chapter we present in detail, a clear and extensive stability analysis for the

complete dynamics of the AUV compared to previous works like [82, 83].

The high complexity of the AUV system renders the study of stability a tough task.

Therefore, it is necessary to analyze individually the stability of the subsystems, which

construct the entire AUV system. To serve this purpose we divide the entire closed-

loop AUV system into subsystems, then we investigate their stability individually. The

AUV system is divided into four sub-dynamics as follows: The underactuated dynamics

(d̃e, ũ), fully-actuated dynamics
(
ηγ, ṽ2

)
, and finally the non-actuated dynamics (v, w).

In the last section of this chapter we will study how to initialize the position and the

orientation of a real vehicle to guarantee such that the controller is able to steer the real

AUV to the virtual one.

6.1 Stability of the Underactuated Dynamics

To show the stability of the dynamics (d̃e, ũ), we choose Lyapunov function candidate

V̄1 = 1
2m1ũ

2 + 1
2 d̃

2
e + 1

2 θ̃
>
1 Γ−1

1 θ̃1 + 1
2 θ̃
>
2 Γ−1

2 θ̃2. (6.1)

Since it is not simple to show that the time derivative of V̄1 is negative definite [84], we

divide this dynamics into ũ-dynamics and d̃e-dynamics, and then we investigate stability

individually.

93



6.1.1 The Intermediate Control ũ

To study the stability of the first subsystem (5.172)−(5.173), we substitute the controller

(5.188) into the dynamics (5.187) and obtain the following closed-loop system

˙̃u =− 1
m1

(cu + d1 + du|u|) ũ+ 1
m1
θ>1 f1 (·)− 1

m1
θ̂
>
1 f1 (·) + 1

m1
τud(t)

− 1
m1

θ̂21 tanh
 ũθ̂21

ε21

− ∂ud

∂v

1
m2

τvd (t)− 1
m1

θ̂22
∂ud

∂v
tanh

∂ud

∂v

ũθ̂22

ε22


− ∂ud

∂w

1
m3

τwd (t)− 1
m1

θ̂23
∂ud

∂w
tanh

∂ud

∂w

ũθ̂23

ε23

 .
(6.2)

Now, by taking into account the assumption in (3.48) and considering the dynamics

(6.2) we can write

τud(t) ≤τmax
ud ⇔ τud(t) ≤ θ21, θ21 = τmax

ud (6.3)

m1

m2
τud(t) ≤m1

m2
τmax
ud ⇔ m1

m2
τud(t) ≤ θ22, θ22 = m1

m2
τmax
vd

m1

m3
τwd(t) ≤m1

m3
τmax
wd ⇔ m1

m3
τwd(t) ≤ θ23, θ23 = m1

m3
τmax
wd

(6.4)

and

θ2 = (θ21 θ22 θ23)> . (6.5)

Let the Lyapunov function candidate be

V1 = 1
2m1ũ

2 + 1
2 θ̃
>
1 Γ−1

1 θ̃1 + 1
2 θ̃
>
2 Γ−1

2 θ̃2 (6.6)

where

θ̃i = θ̂i − θi, i = 1, 2. (6.7)

The time derivative of the Lyapunov function candidate in (6.6) is

V̇1 = m1ũ ˙̃u+ θ̃>1 Γ−1
1

˙̃θ1 + θ̃>2 Γ−1
2

˙̃θ2

= m1ũ ˙̃u+ θ̃>1 Γ−1
1

˙̂
θ1 + θ̃>2 Γ−1

2
˙̂
θ2.

(6.8)

Now, by placing (6.2) in (6.8) we get
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V̇1 = − (cu + d1 + du|u|) ũ2 − θ̃>1 f1 (·) ũ+ θ̃>1 Γ−1
1

˙̂
θ1 + θ̃>2 Γ−1

2
˙̂
θ2

+
τud(t)ũ− θ̂21ũ tanh

 ũθ̂21

ε21


+
−∂ud

∂v
ũ
m1

m2
τvd (t)− ũθ̂22

∂ud

∂v
tanh

∂ud

∂v

ũθ̂22

ε22


+
−∂ud

∂w
ũ
m1

m3
τwd (t)− θ̂23ũ

∂ud

∂w
tanh

∂ud

∂w

ũθ̂23

ε23

 .

(6.9)

We consider the disturbance terms in (6.9)

τud(t)ũ ≤ |τud(t)ũ| ≤ |τud(t)| |ũ| ≤ θ21 |ũ| =
(
θ̂21 − θ̃21

)
|ũ|

≤θ̂21 |ũ| − θ̃21 |ũ| ≤
∣∣∣θ̂21 |ũ|

∣∣∣− θ̃21 |ũ| =
∣∣∣θ̂21ũ

∣∣∣− θ̃21 |ũ|
(6.10)

which means that

τud (t) ũ ≤
∣∣∣θ̂21ũ

∣∣∣− θ̃21 |ũ| . (6.11)

Also we have

−∂ud

∂v
ũ
m1

m2
τvd (t) ≤

∣∣∣∣∣∂ud

∂v
ũ
m1

m2
τvd (t)

∣∣∣∣∣ ≤
∣∣∣∣m1

m2
τvd (t)

∣∣∣∣
∣∣∣∣∣∂ud

∂v
ũ

∣∣∣∣∣
≤θ22

∣∣∣∣∣∂ud

∂v
ũ

∣∣∣∣∣ =
(
θ̂22 − θ̃22

) ∣∣∣∣∣∂ud

∂v
ũ

∣∣∣∣∣
≤θ̂22

∣∣∣∣∣∂ud

∂v
ũ

∣∣∣∣∣− θ̃22

∣∣∣∣∣∂ud

∂v
ũ

∣∣∣∣∣ ≤
∣∣∣∣∣θ̂22

∣∣∣∣∣∂ud

∂v
ũ

∣∣∣∣∣
∣∣∣∣∣− θ̃22

∣∣∣∣∣∂ud

∂v
ũ

∣∣∣∣∣
(6.12)

which gives

− ∂ud

∂v
ũ
m1

m2
τvd (t) ≤

∣∣∣∣∣θ̂22
∂ud

∂v
ũ

∣∣∣∣∣− θ̃22

∣∣∣∣∣∂ud

∂v
ũ

∣∣∣∣∣ . (6.13)

Also, we can write

−∂ud

∂w
ũ
m1

m3
τwd (t) ≤

∣∣∣∣∣∂ud

∂w
ũ
m1

m3
τwd (t)

∣∣∣∣∣ ≤
∣∣∣∣m1

m3
τwd (t)

∣∣∣∣
∣∣∣∣∣∂ud

∂w
ũ

∣∣∣∣∣
≤θ23

∣∣∣∣∣∂ud

∂w
ũ

∣∣∣∣∣ =
(
θ̂23 − θ̃23

) ∣∣∣∣∣∂ud

∂w
ũ

∣∣∣∣∣
≤θ̂23

∣∣∣∣∣∂ud

∂w
ũ

∣∣∣∣∣− θ̃23

∣∣∣∣∣∂ud

∂w
ũ

∣∣∣∣∣ ≤
∣∣∣∣∣θ̂23

∣∣∣∣∣∂ud

∂w
ũ

∣∣∣∣∣
∣∣∣∣∣− θ̃23

∣∣∣∣∣∂ud

∂w
ũ

∣∣∣∣∣
≤
∣∣∣∣∣θ̂23

∂ud

∂w
ũ

∣∣∣∣∣− θ̃23

∣∣∣∣∣∂ud

∂w
ũ

∣∣∣∣∣

(6.14)
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which implies

− ∂ud

∂w
ũ
m1

m3
τwd (t) ≤

∣∣∣∣∣θ̂23
∂ud

∂w
ũ

∣∣∣∣∣− θ̃23

∣∣∣∣∣∂ud

∂w
ũ

∣∣∣∣∣ . (6.15)

Then, by inserting the inequalities (6.11),(6.13) and (6.15) into (6.9) we obtain the

following inequality

V̇1 ≤− (cu + d1) ũ2 + θ̃>1
(
Γ−1

1
˙̂
θ1 − f1 (·) ũ

)
+ θ̃21γ

−1
21

˙̂
θ21

+ θ̃22γ
−1
22

˙̂
θ22 + θ̃23γ

−1
23

˙̂
θ23 +

∣∣∣θ̂21ũ
∣∣∣− θ̃21 |ũ| − θ̂21ũ tanh

 θ̂21ũ

ε21


+
∣∣∣∣∣θ̂22

∂ud

∂v
ũ

∣∣∣∣∣− θ̃22

∣∣∣∣∣∂ud

∂v
ũ

∣∣∣∣∣− θ̂22
∂ud

∂v
ũ tanh

 θ̂22
∂ud
∂v
ũ

ε22


+
∣∣∣∣∣θ̂23

∂ud

∂w
ũ

∣∣∣∣∣− θ̃23

∣∣∣∣∣∂ud

∂w
ũ

∣∣∣∣∣− θ̂23
∂ud

∂w
ũ tanh

 θ̂23
∂ud
∂w
ũ

ε23

 .

(6.16)

Our goal is to make the derivative of V1 negative. To this end, we choose the estimate

of θ1 such that some terms in (6.16) are compensated. For that, we use the projection

operator in the update law of the vector θ1 as follows

˙̂
θ1 = Γ1Proj

(
f1 (·) ũ, θ̂1

)
⇒ Γ−1

1
˙̂
θ1 = Proj

(
f1 (·) ũ, θ̂1

)
(6.17)

with Γ1 = diag (γ1j) a positive gain matrix, where j = 1, . . . , 13.

Thus, by replacing the relation (6.17) in (6.16) we obtain

V̇1 ≤− (cu + d1) ũ2 + θ̃>1
(
Proj

(
f1 (·) ũ, θ̂1

)
− f1 (·) ũ

)
+ θ̃21

(
γ−1

21
˙̂
θ21 − |ũ|

)
+ θ̃22

(
γ−1

22
˙̂
θ22 −

∣∣∣∣∣∂ud

∂v
ũ

∣∣∣∣∣
)

+ θ̃23

(
γ−1

23
˙̂
θ23 −

∣∣∣∣∣∂ud

∂w
ũ

∣∣∣∣∣
)

+
∣∣∣θ̂21ũ

∣∣∣− θ̂21ũ tanh
 θ̂21ũ

ε21

+
∣∣∣∣∣θ̂22

∂ud

∂v
ũ

∣∣∣∣∣− θ̂22
∂ud

∂v
ũ tanh

 θ̂22
∂ud
∂v
ũ

ε22


+
∣∣∣∣∣θ̂23

∂ud

∂w
ũ

∣∣∣∣∣− θ̂23
∂ud

∂w
ũ tanh

 θ̂23
∂ud
∂w
ũ

ε23

 .

(6.18)

By using the definition of the projection operator (5.118) and by utilizing relation (5.32)
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the inequality (6.18) can be rewritten as

V̇1 ≤− (cu + d1) ũ2 + θ̃21
(
Proj

(
|ũ| , θ̂21

)
− |ũ|

)
+ θ̃22

(
Proj

(∣∣∣∣∣∂ud

∂v
ũ

∣∣∣∣∣ , θ̂22

)
−
∣∣∣∣∣∂ud

∂v
ũ

∣∣∣∣∣
)

+ θ̃23

(
Proj

(∣∣∣∣∣∂ud

∂w
ũ

∣∣∣∣∣ , θ̂21

)
−
∣∣∣∣∣∂ud

∂w
ũ

∣∣∣∣∣
)

+ 0.2785
3∑
i=1

ε2i

(6.19)

where ε2i for i = 1, 2, 3 are some arbitrary small positive constants.

Further, we define the update laws for θ̂21, θ̂22 and θ̂23 as follows

˙̂
θ21 = γ21Proj

(
|ũ| , θ̂21

)
,

˙̂
θ22 = γ22 Proj

(∣∣∣∣∣ũ∂ud

∂v

∣∣∣∣∣ , θ̂22

)
,

˙̂
θ23 = γ23 Proj

(∣∣∣∣∣ũ∂ud

∂w

∣∣∣∣∣ , θ̂23

)
.

(6.20)

By placing (6.20) in (6.19) we obtain

V̇1 ≤− (cu + d1) ũ2 + 0.2785
3∑
i=1

ε2i (6.21)

and adding and subtracting the terms 1
2
∑2
i=1 θ̃

>
i Γ−1

i θ̃i to the right-hand side of the

relation (6.21) yields

V̇1 ≤− (cu + d1) ũ2 + 0.2785
3∑
i=1

ε2i + 1
2

2∑
i=1
θ̃
>
i Γ−1

i θ̃i −
1
2

2∑
i=1
θ̃
>
i Γ−1

i θ̃i. (6.22)

Now, defining

ρ1 = 0.2785
3∑
i=1

ε2i + 1
2

2∑
i=1
θ̃
>
i Γ−1

i θ̃i (6.23)

we get

V̇1 ≤ −
(

(cu + d1) ũ2 + 1
2

2∑
i=1
θ̃
>
i Γ−1

i θ̃i

)
+ ρ1

≤ −
(

2 (cu + d1)
m1

1
2m1ũ

2 + 1
2

2∑
i=1
θ̃
>
i Γ−1

i θ̃i

)
+ ρ1.

(6.24)

With σu = min
1,

2 (cu + d1)
m1

 we can write the inequality (6.24) as

V̇1 ≤− σuV1 + ρ1. (6.25)
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In the inequality (6.25) we discuss two cases for σu, namely: Firstly, if
2 (cu + d1)

m1
> 1,

thus σu = 1. Considering (6.6) and (6.24) we can write

2 (cu + d1)
m1

1
2m1ũ

2 + 1
2

2∑
i=1
θ̃
>
i Γ−1

i θ̃i ≥
1
2m1ũ

2 + 1
2

2∑
i=1
θ̃
>
i Γ−1

i θ̃i ⇔

−
(

2 (cu + d1)
m1

1
2m1ũ

2 + 1
2

2∑
i=1
θ̃
>
i Γ−1

i θ̃i

)
≤ −

(
1
2m1ũ

2 + 1
2

2∑
i=1
θ̃
>
i Γ−1

i θ̃i

)
⇔

−
(

2 (cu + d1)
m1

1
2m1ũ

2 + 1
2

2∑
i=1
θ̃
>
i Γ−1

i θ̃i

)
+ ρ1 ≤ −V1 + ρ1 ⇔

(6.26)

V̇1 ≤ −V1 + ρ1. (6.27)

We can obviously find that inequality (6.27) coincides with (6.25) for σu = 1. Secondly,

if
2 (cu + d1)

m1
< 1, thus σu < 1. By noticing (6.24), we can write

V̇1 ≤ −
(

1
2m1σuũ

2 + 1
2

2∑
i=1
θ̃
>
i Γ−1

i θ̃i

)
+ ρ1 ≤ −σu

(
1
2m1ũ

2 + 1
2σu

2∑
i=1
θ̃
>
i Γ−1

i θ̃i

)
+ ρ1.

(6.28)

Because of
1
σu

> 1 it is clear that

V1 <
1
2m1ũ

2 + 1
2σu

2∑
i=1
θ̃
>
i Γ−1

i θ̃i. (6.29)

Thus, from (6.25), (6.28) and (6.29) we write

V̇1 ≤− σuV1 + ρ1 ≤ −σuV1 + ρmax
1 (6.30)

where, ρmax
1 is the maximum value of ρ1 by using the comparison principle [69]. It can

directly be shown that, the solution of (6.30) is given as

V1 (t) ≤ V1 (t0) e−σu(t−t0) + ρmax
1
σu

. (6.31)

Obviously, from (6.6) it can be shown that

|ũ (t)| ≤
√

2V1 (t)
m1

. (6.32)
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Then, from (6.31) and (6.32) it follows that

|ũ (t)| ≤
√

2V1 (t0)
m1

e−σu(t−t0) + 2ρmax
1

m1σu
≤
√

2V1 (t0)
m1

e−σu(t−t0)/2 +
√

2ρmax
1

m1σu

≤ αu e
−σu(t−t0)/2 + ρu

(6.33)

with

αu =
√

2V1 (t0)
m1

and ρu =
√

2ρmax
1

m1σu
. (6.34)

Finally, from (6.33) we conclude that the error of the intermediate control ũ converges

globally exponentially to a line segment of length 2ρu and centered at the origin.

6.1.2 The Path Following Error de

In this subsection we will demonstrate that the path following error de stays within a

bounded area and never leaves it.

6.1.2.1 Lower Bound of de

We have already seen from (5.175) that the dynamics of the path following error is given

as

ḋe =− k1
a1

de

(de − δ)−
a1

de

ũ. (6.35)

An equilibrium point of the dynamics (6.35) is de = δ, ũ = 0, where δ is a small positive

constant.

The equation (6.35) can be rewritten as

˙̃de =− k1
a1

de

d̃e −
a1

de

ũ (6.36)

where d̃e = de − δ. Under the assumptions a1 > 0 and d̃e > 0 which are guaranteed by

the controller and through a suitable choice of the initial conditions (as it will be shown

later), we can write

˙̃de = a1

de

(
−k1d̃e − ũ

)
⇔ de

a1

˙̃de + k1d̃e = −ũ (6.37)

and because of −ũ ≥ − |ũ|, equation (6.37) implies
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de

a1

˙̃de + k1d̃e ≥ − |ũ| ⇒ ˙̃de ≥
a1

de

(
−k1d̃e − |ũ|

)
⇒ ˙̃de ≥

(
−k1d̃e − |ũ|

)
. (6.38)

Inserting the inequality (6.33) into (6.38) we obtain

˙̃de ≥ −k1d̃e −
(
αu e

−σu(t−t0)/2 + ρu
)
. (6.39)

The solution of the linear system (6.39) satisfies

d̃e (t) ≥ e−k1(t−t0)d̃e (t0)−
∫ t

t0
e−k1(t−τ)

(
αu e

−σu
2 (τ−t0) + ρu

)
dτ

≥ e−k1(t−t0)d̃e (t0)−
∫ t

t0
αue

−k1(t−τ)−σu2 (τ−t0) dτ −
∫ t

t0
ρu e

−k1(t−τ) dτ

≥ e−k1(t−t0)d̃e (t0)− αu
k1 − σu/2

e−k1(t−τ)−σu2 (τ−t0)
∣∣∣∣∣
t

t0

− ρu
k1
e−k1(t−τ)

∣∣∣∣t
t0

≥ e−k1(t−t0)d̃e (t0)− αu
k1 − σu

2

[
e
−σu

2 (t−t0) − e−k1(t−t0)
]
− ρu
k1

[
1− e−k1(t−t0)

]
≥ e−k1(t−t0)d̃e (t0) + αu

σu
2 − k1

e−k1(t−t0)
[
−1 + e−(σu2 −k1)(t−t0)

]
− ρu
k1

[
1− e−k1(t−t0)

]
.

(6.40)

For (6.40) as t → ∞ the error d̃e converges to −
ρu

k1
, for k1 > 0 and σu > 2k1. This

means, ultimately we get de ≥ δ −
ρu

k1
= d?e, where d?e is the lower bound of de. This

bound exists if the constant δ is chosen as δ >
ρu

k1
. Thus, we can adjust this lower bound

d?e and make it arbitrary small by choosing the designed constant δ.

6.1.2.2 Upper Bound of de

To investigate the upper bound of error de, we insert (5.150) into (6.36)

˙̃de =− k1

(
cos (γ1) + ae

de

cos (θ) (cos (γ2)− 1)
)
d̃e − cos (γ) ũ. (6.41)

Adding and subtracting of one in the relation (6.41) and rearranging yields

˙̃de = −k1

(
(cos (γ1)− 1) + 1 + ae

de

cos (θ) (cos (γ2)− 1)
)
d̃e − cos (γ) ũ

= −k1d̃e − cos (γ) ũ− k1

(
(cos (γ1)− 1) + ae

de

cos (θ) (cos (γ2)− 1)
)
d̃e.

(6.42)
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Before we study the upper bound of de we consider the following lemma which is intro-

duced in [83, 85, 86].

Lemma 6.1.1 Consider the nonlinear system

ς̇ =f (t, ς) + g (t, ς, ξ (t)) (6.43)

where ς ∈ Rn, ξ (t) ∈ Rm and f (t, ς) is piecewise continuous in t and locally Lipschitz

in ς. If there exist positive constants ri for i = 1, . . . , 4, µj for j = 1, 2, β0 and σξ, and

positive constants r0 and εξ. Furthermore, let be given a class-k function α0 such that

the following conditions are satisfied:

Condition 1: There exists a proper function V (t, ς) satisfying for all t ≥ t0 ≥ 0 and all

ξ in Rm

r1 ‖ς‖2 ≤ V (t, ς) ≤ r2 ‖ς‖2 ,
∂V (t, ς)
∂ς

≤ r3 ‖ς‖2 ,

and
∂V (t, ς)
∂t

+ ∂V (t, ς)
∂ς

f (t, ς) ≤ −r4 ‖ς‖2 + r0 where r0 ≥ 0.
(6.44)

Condition 2: The vector function g (t, ς, ξ (t)) fulfills

‖g (t, ς, ξ (t))‖ ≤ (µ1 + µ2 ‖ς‖) ‖ξ (t)‖ . (6.45)

Condition 3: ξ (t) globally exponentially converges to a ball centered at the origin

‖ξ (t)‖ ≤ α0 (‖ξ (t0‖)) e−σξ(t−t0) + εξ, ∀t ≥ t0 ≥ 0. (6.46)

Condition 4: The following gain condition is satisfied

r4 − µ2r3εξ −
µ1r3εξ

β0
> 0. (6.47)

Then the solution ς (t) of (6.43) globally exponentially converges to a ball centered at

the origin, i.e.

‖ς (t)‖ ≤ α (‖(ς (t0) , ξ (t0))‖) e−σς(t−t0) + ες , ∀t ≥ t0 ≥ 0. (6.48)

We give now the complete proof for this lemma in detail.
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Proof of the Lemma 6.1.1

Let the Lyapunov function candidate be V . From (6.43) the time derivative is

V̇ = ∂V

∂t
+ ∂V

∂ς
(f (t, ς) + g (t, ς, ξ (t))) . (6.49)

By using the Conditions 1 to 3 we can write

V̇ ≤∂V
∂t

+ ∂V

∂ς
f (t, ς) + ∂V

∂ς
‖g (t, ς, ξ (t))‖

≤ − r4 ‖ς‖2 + r0 + r3 ‖ς‖ (µ1 + µ2 ‖ς‖) ‖ξ (t)‖

≤ − r4 ‖ς‖2 + r0 + r3 ‖ς‖ (µ1 + µ2 ‖ς‖)
(
α (‖(ς (t0) , ξ (t0))‖) e−σξ(t−t0) + εξ

)
≤− r4 ‖ς‖2 + r0 + r3 ‖ς‖ (µ1 + µ2 ‖ς‖)α (‖(ς (t0) , ξ (t0))‖) e−σξ(t−t0)

+ r3εξµ1 ‖ς‖+ r3εξµ2 ‖ς‖2 .

(6.50)

Now, we consider the term r3εξµ1 ‖ς‖ in the last line of relationships (6.50)

r3εξµ1 ‖ς‖ = r3εξµ1 (‖ς‖) ≤ r3εξµ1

(
β0 + 1

β0
‖ς‖2

)
(6.51)

where we obtained the relationship (6.51) by applying Young’s inequality for an arbitrary

positive constant β0 > 0 [68].

Now, we put (6.51) into the last inequality of the (6.50) we get

V̇ ≤− r4 ‖ς‖2 + r0 + r3 ‖ς‖ (µ1 + µ2 ‖ς‖)α (‖(ς (t0) , ξ (t0))‖) e−σξ(t−t0) + r3εξµ1β0

+ r3εξµ1

β0
‖ς‖2 + r3εξµ2 ‖ς‖2

(6.52)

or also

V̇ ≤−
(
r4 − r3εξµ2 −

r3εξµ1

β0

)
‖ς‖2 + r3 ‖ς‖ (µ1 + µ2 ‖ς‖)α (‖(ς (t0) , ξ (t0))‖) e−σξ(t−t0)

+ r3εξµ1β0 + r0.

(6.53)

Now, using the above mentioned four conditions, we try to write the right-hand side of

the inequality (6.53) as a function of V . To this end, we consider the term

r3 ‖ς‖ (µ1 + µ2 ‖ς‖)α (‖(ς (t0) , ξ (t0))‖) e−σξ(t−t0), (6.54)
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by using ᾱ ≡ α (‖(ς (t0) , ξ (t0))‖) to be more compact we may write (6.54) using Young’s

inequality again (we choose here the positive constant β0 = 1) as per

r3 ‖ς‖ (µ1 + µ2 ‖ς‖) ᾱ e−σξ(t−t0) =
(
r3µ1 ‖ς‖+ r3µ2 ‖ς‖2

)
ᾱ e−σξ(t−t0)

≤
(
r3µ1

(
1 + ‖ς‖2

)
+ r3µ2 ‖ς‖2

)
ᾱ e−σξ(t−t0)

≤
(
r3µ1 + r3 (µ1 + µ2) ‖ς‖2

)
ᾱ e−σξ(t−t0).

(6.55)

Noticing Condition 1, i.e. ‖ς‖2 ≤ V/r1, this inequality may be placed into the relation-

ship (6.55) which yields

r3 ‖ς‖ (µ1 + µ2 ‖ς‖) ᾱ e−σξ(t−t0) ≤r3µ1ᾱ e
−σξ(t−t0) + r3

r1
(µ1 + µ2)V ᾱ e−σξ(t−t0). (6.56)

Again, from Condition 1 we may write

V ≤ r2 ‖ς‖2 ⇒ −‖ς‖2 ≤ −V
r2
. (6.57)

By using the two inequalities (6.56) and (6.57) in (6.53) we get the time derivative of

V as follows

V̇ ≤− 1
r2

(
r4 − r3εξµ2 −

r3εξµ1

β0

)
V + r3

r1
(µ1 + µ2)V ᾱ e−σξ(t−t0)

+ r3µ1ᾱ e
−σξ(t−t0) + r3εξµ1β0 + r0.

(6.58)

Rearranging (6.58) yields

V̇ ≤−
[

1
r2

(
r4 − r3εξµ2 −

r3εξµ1

β0

)
− r3

r1
(µ1 + µ2) ᾱ e−σξ(t−t0)

]
V

+ r3µ1ᾱ e
−σξ(t−t0) + r3εξµ1β0 + r0.

(6.59)

Define

δ1 = 1
r2

(
r4 − r3εξµ2 −

r3εξµ1

β0

)
, δ2 = r3

r1
(µ1 + µ2) ᾱ, δ3 = r3µ1ᾱ,

δ4 = r3εξµ1β0 + r0

(6.60)

and such that we have

V̇ ≤−
(
δ1 − δ2 e

−σξ(t−t0)
)
V + δ3 e

−σξ(t−t0) + δ4. (6.61)

103



At this point let us consider the following differential equation associated to (6.61)

ḣ =−
(
δ1 − δ2 e

−σξ(t−t0)
)
h+ δ3 e

−σξ(t−t0) + δ4. (6.62)

By change of variable b = h−
δ4

δ1
⇒ ḃ = ḣ differential equation (6.62) can be rewritten

as

ḃ = −
(
δ1 − δ2 e

−σξ(t−t0)
)(

b+ δ4

δ1

)
+ δ3 e

−σξ(t−t0) + δ4

= −
(
δ1 − δ2 e

−σξ(t−t0)
)
b−

(
δ1 − δ2 e

−σξ(t−t0)
) δ4

δ1
+ δ3 e

−σξ(t−t0) + δ4 ⇔
(6.63)

ḃ = −
(
δ1 − δ2 e

−σξ(t−t0)
)
b+

(
δ3 + δ2δ4

δ1

)
e−σξ(t−t0). (6.64)

The solution of the linear differential equation (6.64) is

b (t) = Φ (t, t0) b (t0) +
(
δ3 + δ2δ4

δ1

)∫ t

t0
Φ (t, τ) e−σξ(τ−t0)dτ (6.65)

with Φ (t, t0) b (t0), the transition matrix which here reads

Φ (t, t0) = e
−
∫ t
t0

(δ1−δ2 e
−σξ(τ−t0))dτ = e

−
∫ t
t0
δ1dτ

e
∫ t
t0

(δ2 e
−σξ(τ−t0))dτ

= e−δ1(t−t0)e
δ2
σξ

(1−e−σξ(t−t0))
(6.66)

thus, also

Φ (t, τ) = e−δ1(t−τ)e
δ2
σξ

(1−e−σξ(t−τ))
. (6.67)

The solution is

b (t) = e−δ1(t−t0)e
δ2
σξ

(1−e−σξ(t−t0))
b (t0)

+
(
δ3 + δ2δ4

δ1

)∫ t

t0

(
e−δ1(t−τ)e

δ2
σξ

(1−e−σξ(t−τ))
)
e−σξ(τ−t0)dτ

(6.68)

= e−δ1(t−t0)e
δ2
σξ

(1−e−σξ(t−t0))
b (t0) +

(
δ3 + δ2δ4

δ1

)
e−δ1t+σξt0e

δ2
σξ

×
∫ t

t0
e(δ1−σξ)τe−

δ2
σξ
e
−σξ(t−τ)

dτ.

(6.69)
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This implies

b (t) ≤ e−δ1(t−t0)e
δ2
σξ

(1−e−σξ(t−t0))
b (t0) +

(
δ3 + δ2δ4

δ1

)
e−δ1t+σξt0e

δ2
σξ

∫ t

t0
e(δ1−σξ)τdτ

(6.70)

and by (6.70) we have for the solution of (6.62) that

h (t) ≤ e−δ1(t−t0)e
δ2
σξ

(1−e−σξ(t−t0))
(
h (t0)− δ4

δ1

)
+
(
δ3 + δ2δ4

δ1

)
e−δ1t+σξt0e

δ2
σξ

∫ t

t0
e(δ1−σξ)τdτ

+ δ4

δ1

≤ e−δ1(t−t0)e
δ2
σξ

(1−e−σξ(t−t0))
h (t0) +

(
δ3 + δ2δ4

δ1

)
e−δ1t+σξt0e

δ2
σξ

∫ t

t0
e(δ1−σξ)τdτ + δ4

δ1
.

(6.71)

Since e−σξ(t−t0) ≤ 1 we see that e
δ2
σξ

(1−e−σξ(t−t0)) ≤ e
δ2
σξ and the solution h (t) can be

written as

h (t) ≤ e−δ1(t−t0)e
δ2
σξ h (t0) +

(
δ3 + δ2δ4

δ1

)
e−δ1t+σξt0e

δ2
σξ

∫ t

t0
e(δ1−σξ)τdτ + δ4

δ1
. (6.72)

By applying the comparison principle in [69], we have

V (t) ≤ V (t0) e
δ2
σξ e−δ1(t−t0) +

(
δ3 + δ2δ4

δ1

)
e−δ1t+σξt0e

δ2
σξ

∫ t

t0
e(δ1−σξ)τdτ + δ4

δ1
. (6.73)

Consequently, we discuss the inequality (6.73) in two cases:

Firstly, for δ1 = σξ relationship (6.73) yields

V (t) ≤ V (t0) e
δ2
σξ e−δ1(t−t0) +

(
δ3 + δ2δ4

δ1

)
e
δ2
σξ e−δ1(t−t0)

∫ t

t0
dτ + δ4

δ1

≤ V (t0) e
δ2
σξ e−δ1(t−t0) +

(
δ3 + δ2δ4

δ1

)
e
δ2
σξ e−δ1(t−t0) (t− t0) + δ4

δ1

(6.74)

which by adding and subtracting a positive constant c to constant δ1 in (6.74) results

in

V (t) ≤ V (t0) e
δ2
σξ e−δ1(t−t0) +

(
δ3 + δ2δ4

δ1

)
e
δ2
σξ e−(δ1−c)(t−t0) (t− t0) e−c(t−t0) + δ4

δ1
.

(6.75)
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Now, inspecting function (t− t0) e−c(t−t0) we notice that this function has always an

upper bound. Let this upper bound be a, i.e.

(t− t0) e−c(t−t0) ≤ a. (6.76)

Clearly, for δ1, c > 0, we have δ1 > δ1 − c and consequently

e−δ1(t−t0) ≤ e−(δ1−c)(t−t0). (6.77)

Inserting inequalities (6.76) and (6.77) into (6.75) we get

V (t) ≤ V (t0) e
δ2
σξ e−(δ1−c)(t−t0) +

(
δ3 + δ2δ4

δ1

)
e
δ2
σξ e−(δ1−c)(t−t0)a+ δ4

δ1

≤
[
V (t0) e

δ2
σξ +

(
δ3 + δ2δ4

δ1

)
e
δ2
σξ a

]
e−(δ1−c)(t−t0) + δ4

δ1
.

(6.78)

Thus, considering Condition 1 and using inequality (6.78) we have

r1 ‖ς (t)‖2 ≤
[
r2 ‖ς (t0)‖2 e

δ2
σξ +

(
δ3 + δ2δ4

δ1

)
e
δ2
σξ a

]
e−(δ1−c)(t−t0) + δ4

δ1
. (6.79)

It can readily seen that

‖ς (t)‖ ≤

√√√√(r1)−1
[
r2 ‖ς (t0)‖2 e

δ2
σξ +

(
δ3 + δ2δ4

δ1

)
e
δ2
σξ a

]
e−

(δ1−c)
2 (t−t0) +

√
δ4

r1δ1
.

(6.80)

By comparing inequality (6.48) with (6.80) it is clear that

α (‖(ς (t0) , ξ (t0))‖) =

√√√√(r1)−1
[
r2 ‖ς (t0)‖2 e

δ2
σξ +

(
δ3 + δ2δ4

δ1

)
e
δ2
σξ a

]
,

σς = δ1 − c
2 and ες =

√
δ4

r1δ1
.

(6.81)
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Secondly, we discuss the general case, but for δ1 6= σξ. Returning to inequality (6.73)
we may write

V (t) ≤ V (t0) e
δ2
σξ e−δ1(t−t0) +

(
δ3 + δ2δ4

δ1

)
e−δ1t+σξt0e

δ2
σξ

∫ t

t0
e(δ1−σξ)τdτ + δ4

δ1

≤ V (t0) e
δ2
σξ e−δ1(t−t0) + 1

δ1 − σξ

(
δ3 + δ2δ4

δ1

)
e−δ1t+σξt0e

δ2
σξ

[
e(δ1−σξ)t − e(δ1−σξ)t0

]

+ δ4

δ1
(6.82)

thus,

V (t) ≤ V (t0) e
δ2
σξ e−δ1(t−t0) + 1

δ1 − σξ

(
δ3 + δ2δ4

δ1

)
e
δ2
σξ

[
e−σξ(t−t0) − e−δ1(t−t0)

]
+ δ4

δ1
(6.83)

and since e−δ1(t−t0) > 0 we obtain

V (t) ≤ V (t0) e
δ2
σξ e−δ1(t−t0) + 1

δ1 − σξ

(
δ3 + δ2δ4

δ1

)
e
δ2
σξ e−σξ(t−t0) + δ4

δ1
. (6.84)

For the worst case inequality (6.84) can be rewritten as

V (t) ≤ V (t0) e
δ2
σξ e−δ1(t−t0) +

∣∣∣∣∣ 1
δ1 − σξ

∣∣∣∣∣
(
δ3 + δ2δ4

δ1

)
e
δ2
σξ e−σξ(t−t0) + δ4

δ1
(6.85)

with β? = min (σξ, δ1) we can write

V (t) ≤
[
V (t0) e

δ2
σξ +

∣∣∣∣∣ 1
δ1 − σξ

∣∣∣∣∣
(
δ3 + δ2δ4

δ1

)
e
δ2
σξ

]
e−β

?(t−t0) + δ4

δ1
. (6.86)

Again from Condition 1 we then obtain

r1 ‖ς (t)‖2 ≤
[
r2 ‖ς (t0)‖2 e

δ2
σξ +

∣∣∣∣∣ 1
δ1 − σξ

∣∣∣∣∣
(
δ3 + δ2δ4

δ1

)
e
δ2
σξ

]
e−β

?(t−t0) + δ4

δ1
. (6.87)

Clearly,

‖ς (t)‖ ≤

√√√√(r1)−1
[
r2 ‖ς (t0)‖2 e

δ2
σξ +

∣∣∣∣∣ 1
δ1 − σξ

∣∣∣∣∣
(
δ3 + δ2δ4

δ1

)]
e−

β?

2 (t−t0) +
√

δ4

r1δ1

(6.88)
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and by comparing inequality (6.48) with (6.80) we get

α (‖(ς (t0) , ξ (t0))‖) =

√√√√(r1)−1
[
r2 ‖ς (t0)‖2 e

δ2
σξ +

∣∣∣∣∣ 1
δ1 − σξ

∣∣∣∣∣
(
δ3 + δ2δ4

δ1

)]
(6.89)

where σς = β?/2 and ες =
√
δ4/r1δ1. This completes the proof of Lemma 6.1.1. 2

Now, to determine the upper bound of d̃e we apply Lemma 6.1.1 for our nonlinear system

(6.42) and verify the Conditions 1 to 4. Before that we need to provide the functions

f(d̃e) and g(d̃e, ξ (t)) which are scalars in Lemma 6.1.1, based on the relationship (6.42).
By comparing the relations (6.42) and (6.43) we obtain

f(d̃e) = −k1d̃e

g(d̃e, ξ) = − cos (γ) ũ− k1

(
(cos (γ1)− 1) + ae

de

cos (θ) (cos (γ2)− 1)
)
d̃e

(6.90)

where ξ = (γ1, γ2, ũ)>. Here it is reasonable to notice in (6.90) that the variables ae and

γ also are functions of γ1, γ2 and d̃e.

Verification of Condition 1: To verify this condition, we take function V = 1
2 d̃

2
e. It holds

r1

∣∣∣d̃e

∣∣∣2 ≤ V ≤ r2

∣∣∣d̃e

∣∣∣2 , ∂V

∂d̃e

≤ r3

∣∣∣d̃e

∣∣∣2 , ∂V

∂d̃e

f(d̃e) ≤ −r4

∣∣∣d̃e

∣∣∣2 + r0 (6.91)

i.e. the first condition is fulfilled for

r1 = r2 = 0.5, r3 = 1, r4 = k1, r0 = 0. (6.92)

Verification of Condition 2: Taking into account that the functions f(d̃e), g(d̃e, ξ) and

the variable d̃e are all scalars, from the second equation of (6.90) we get

∣∣∣g(d̃e, ξ)
∣∣∣ ≤ |− cos (γ) ũ|+ |k1|

(
|cos (γ1)− 1|+

∣∣∣∣ae

de

cos (θ)
∣∣∣∣ |cos (γ2)− 1|

) ∣∣∣d̃e

∣∣∣ (6.93)

and since

∣∣∣∣∣∣
ae

de

cos (θ)

∣∣∣∣∣∣ ≤ 1 we may write

∣∣∣g(d̃e, ξ)
∣∣∣ ≤ |cos (γ)| |ũ|+ k1 (|cos (γ1)− 1|+ |cos (γ2)− 1|)

∣∣∣d̃e

∣∣∣ . (6.94)
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Noticing that |cos (γ)| ≤ 1, |cos (γ1)− 1| ≤ γ1, for γ1 ≥ 0 and |cos (γ2)− 1| ≤ γ2 , for

γ2 ≥ 0, inequality (6.94) leads to

∣∣∣g(d̃e, ξ)
∣∣∣ ≤ |ũ|+ k1 (|γ1|+ |γ2|)

∣∣∣d̃e

∣∣∣ . (6.95)

It is clear that |γ1| , |γ2| , |ũ| ≤ ‖ξ‖, hence

∣∣∣g(d̃e, ξ)
∣∣∣ ≤‖ξ‖+ k1 (‖ξ‖+ ‖ξ‖)

∣∣∣d̃e

∣∣∣
≤
(
1 + 2k1

∣∣∣d̃e

∣∣∣) ‖ξ‖ . (6.96)

Inspecting (6.96) we see that the third condition of Lemma 6.1.1 is fulfilled for

µ1 = 1, µ2 = 2k1. (6.97)

Verification of Condition 3: Note that

‖ξ‖ = p
√
|γ1|p + |γ2|p + |ũ|p, p ≥ 0

≤ |γ1|+ |γ2|+ |ũ|
(6.98)

for ηγ = (φ, γ1, γ2)> and inequality (6.98) may be written as

‖ξ‖ ≤ 2
∥∥∥ηγ∥∥∥+ |ũ| . (6.99)

On the other hand, it is not difficult to realize from (6.33) as well as form (6.146) that

this inequality can be expressed as

‖ξ‖ ≤ 2
(
αη e

−σv(t−t0)/2 + ρη
)

+ αu e
−σu(t−t0)/2 + ρu

≤ 2αη e−σv(t−t0)/2 + αu e
−σu(t−t0)/2 + 2ρη + ρu

≤ ᾱ0 e
−σξ(t−t0) + εξ

(6.100)

where

ᾱ0 = max (2αη, αu) , σξ = min (σv/2, σu/2) , εξ = max (2ρη, ρu) (6.101)

which satisfies the third condition of Lemma 6.1.1.

This means that ξ (t) is globally exponentially converging to a ball centered at the

origin, with radius εξ. Further, we can render this radius arbitrary small.
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Verification of Condition 4: To verify this condition, we place the relationships (6.92),
(6.97) and (6.101) into (6.47) and we obtain

k1 − 2k1 max (2ρη, ρu)−
max (2ρη, ρu)

β0
> 0. (6.102)

This inequality is satisfied for k1, β0 > 0 if we choose max (2ρη, ρu) small enough. This

is always guaranteed in turn by noting the relations (6.23) , (6.34) and (5.164).

Now, we have verified all conditions of Lemma 6.1.1 based on the dynamics (6.42).
Thus, we may use the result of this lemma (6.48), which is

∣∣∣d̃e

∣∣∣ ≤ αd e
−σd(t−t0) + εd (6.103)

where αd, σd and εd are calculated from the relations (6.81) or (6.89) in Lemma 6.1.1.

Figure 6.1 illustrates the lower bound (6.40) and the upper bound (6.103) of the error

de. The area between upper and lower bound gets smaller (narrower) with time, that

means, this area can be made arbitrarily small. The error de goes to a small corridor as

t goes to infinity.

For very small de the real vehicle is very close to the virtual one, which moves along

the reference path with the reference velocity. This means that the real vehicle moves

according to the reference velocity along the desired path. In other words, if de is very

small, the virtual vehicle does not wait for the real one and they both move according

to the reference velocity with a small delay de/u0 where u0 is the reference velocity.

de

t

upper boundlower bound

Fig. 6.1: Lower and upper bound of de
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6.2 Stability of the Fully-Actuated Dynamics

To investigate the stability of the fully-actuated system
(
ηγ, ṽ2

)
, we define Lyapunov

function candidate as

V2 = 1
2η
>
γ ηγ + 1

2 ṽ>2 M2ṽ2 + 1
2 θ̃
>
3 Γ−1

3 θ̃3 + 1
2 θ̃
>
4 Γ−1

4 θ̃4 (6.104)

with θ̃i = θ̂i − θi for i = 3, 4 where θ̂i is the estimate of the constant value θi.

Thus, time derivative of the suggested Lyapunov function is

V̇2 = η>γ η̇γ + ṽ>2 M2 ˙̃v2 + θ̃>3 Γ−1
3

˙̂
θ3 + θ̃>4 Γ−1

4
˙̂
θ4. (6.105)

By inserting (5.195), (5.199) and (5.202) into (6.105) we obtain

V̇2 = η>γ
(
−K2ηγ + J2 (η2) ṽ2

)
+ ṽ>2

[
−C2 (v2) ṽ2 − (K3 + D2 (v2)) ṽ2 −

(
η>γ J2 (η2)

)>
+ F (·)θ3 + G (·)θ4 (t)− F (·) θ̂3 −Gθ (·)

]
+ θ̃>3 Γ−1

3
˙̂
θ3 + θ̃>4 Γ−1

4
˙̂
θ4

where ṽ>2 = (ṽ21, ṽ22, ṽ23) and K2,K3 are diagonal positive definite design matrices,

F (·) ∈ R3×n3 with n3 the number of the unknown parameters due to the modeled

uncertainties, while G (·) ∈ R3×n4 with n4 the number of parameters owing to unmodeled

uncertainties and the disturbance on the system. For studying the stability of the

dynamics
(
ηγ, ṽ2

)
, for simplicity let us choose n3 = n4 = 2. Then we generalize the

result of this investigation to arbitrary values of n3 and n4. Following this consideration

we write

θ>3 = (θ31, θ32) , θ>4 (t) = (θ41 (t) , θ42 (t)) , F (·) =


f11 f12

f21 f22

f31 f32

 , G (·) =


g11 g12

g21 g22

g31 g32

 .

Then

V̇2 =− η>γ K2ηγ + η>γ J2 (η2) ṽ2 − ṽ>2 C2 (v2) ṽ2 − ṽ>2 (K3 + D2 (v2)) ṽ2

− ṽ>2
(
η>γ J2 (η2)

)>
+ ṽ>2

(
F (·)θ3 + G (·)θ4 (t)− F (·) θ̂3 −Gθ (·)

)
+ θ̃>3 Γ−1

3
˙̂
θ3 + θ̃>4 Γ−1

4
˙̂
θ4.

(6.106)
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Since the term ṽ>2
(
η>γ J2 (η2)

)>
is scalar we write

ṽ>2
(
η>γ J2 (η2)

)>
= η>2 J2 (η2) ṽ2 (6.107)

and from (3.29) we can determine that the matrix C2 is skew-symmetric. Therefore, by

using this property of C2 and (6.107) then relationship (6.106) can be expressed as

V̇2 = −
(
η>γ K2ηγ + ṽ>2 (K3 + D2 (v2)) ṽ2

)
+ θ̃>3 Γ−1

3
˙̂
θ3 − ṽ>2 F (·) θ̃3

+ θ̃>4 Γ−1
4

˙̂
θ4 + ṽ>2 (G (·)θ4 (t)−Gθ (·)) .

(6.108)

We can write from (3.36) and (3.37) that

D20 ≤ D2 (v2) (6.109)

where D20 = diag (d4, d5, d6). Thus, by utilizing (6.109) relation (6.108) is turned into

the following inequality

V̇2 ≤−
(
η>γ K2ηγ + ṽ>2 (K3 + D20) ṽ2

)
+ θ̃>3 Γ−1

3
˙̂
θ3 − ṽ>2 F (·) θ̃3︸ ︷︷ ︸

term1

+ θ̃>4 Γ−1
4

˙̂
θ4 + ṽ>2 G (·)θ4 (t)− ṽ>2 Gθ (·)︸ ︷︷ ︸

term2

.
(6.110)

To find out the values of term1 and term2, let us assume that the unknown parameters

are just two, i.e. θ3 ∈ R2 and θ4 ∈ R2. Then under this assumption we can determine

the terms term1 and term2 in (6.110) as follows

term1 = θ̃
>
3 Γ−1

3
˙̂
θ3 − ṽ>2 F (·) θ̃3

=
(
θ̃31, θ̃32

)γ−1
31 0
0 γ−1

32

 ˙̂
θ31
˙̂
θ32

− (ṽ21, ṽ22, ṽ23)


f11 f12

f21 f22

f31 f32


θ̃31

θ̃32



= θ̃31

γ−1
31

˙̂
θ31 −

3∑
j=1

ṽ2jfj1

+ θ̃32

γ−1
32

˙̂
θ32 −

3∑
j=1

ṽ2jfj2


(6.111)

which generally, for arbitrary n3 (the number of the unknown parameters), amounts to

term1 =
n3∑
i=1

θ̃3i

γ−1
3i

˙̂
θ3i −

3∑
j=1

ṽ2jfji

 . (6.112)
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By choosing the adaptation law as

˙̂
θ3i = γ3iProj

 3∑
j=1

ṽ2jfji, θ̂3i

 (6.113)

and inserting it into (6.112) we get

term1 =
n3∑
i=1

θ̃3i

Proj

 3∑
j=1

ṽ2jfji, θ̂3i

− 3∑
j=1

ṽ2jfji

 . (6.114)

Further, according to the property (5.126) of the projection operator, readily we get

term1 ≤ 0. (6.115)

Now, we consider the third part of the inequality (6.110), namely, term2.

term2 = θ̃
>
4 Γ−1

4
˙̂
θ4 + ṽ>2 G (·)θ4 (t)− ṽ>2 Gθ (·)

=
(
θ̃41, θ̃42

)γ−1
41 0
0 γ−1

42

 ˙̂
θ41
˙̂
θ42

+ (ṽ21, ṽ22, ṽ23)


g11 g12

g21 g22

g31 g32


θ41 (t)
θ42 (t)

− ṽ>2 Gθ (·)

= θ̃41γ
−1
41

˙̂
θ41 + θ̃42γ

−1
42

˙̂
θ42 + (ṽ21g11 + ṽ22g21 + ṽ23g31) θ41 (t)− ṽ>2 Gθ (·)

+ (ṽ21g12 + ṽ22g22 + ṽ23g32) θ42 (t) .
(6.116)

Under the assumption that the disturbances acting on the system are bounded and by

noticing (5.216) we write

|θ41 (t)| = |τpd (t)| ≤ τmax
pd = θ41, |θ42 (t)| =

∣∣∣∣∣m4τud (t)
m1

∣∣∣∣∣ ≤ τmax
ud = θ42 (6.117)

and from (6.116) we obtain

term2 = θ̃41γ
−1
41

˙̂
θ41 + θ̃42γ

−1
42

˙̂
θ42 + ṽ21g11θ41 (t) + ṽ22g21θ41 (t) + ṽ23g31θ41 (t)

+ ṽ21g12θ42 (t) + ṽ22g22θ42 (t) + ṽ23g32θ42 (t)− (ṽ21, ṽ22, ṽ23) Gθ (·)

≤ θ̃41γ
−1
41

˙̂
θ41 + |ṽ21g11|

(
θ̂41 − θ̃41

)
+ |ṽ22g21|

(
θ̂41 − θ̃41

)
+ |ṽ23g31|

(
θ̂41 − θ̃41

)
+ θ̃42γ

−1
42

˙̂
θ42 + |ṽ21g12|

(
θ̂42 − θ̃42

)
+ |ṽ22g22|

(
θ̂42 − θ̃42

)
+ |ṽ23g32|

(
θ̂42 − θ̃42

)
− (ṽ21, ṽ22, ṽ23) Gθ (·)
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⇒ term2 ≤ θ̃41

(
γ−1

41
˙̂
θ41 −

3∑
i=1
|ṽ2igi1|

)
+ (|v21g11|+ |v22g21|+ |v23g31|) θ̂41

+ θ̃42

(
γ−1

42
˙̂
θ42

3∑
i=1
|ṽ2igi2|

)
+ (|v21g12|+ |v22g22|+ |v23g32|) θ̂42

− (ṽ21, ṽ22, ṽ23) Gθ (·) .

(6.118)

We choose the update laws for θ̂41 and θ̂42 as

˙̂
θ41 = Proj

(
θ̂41,

3∑
i=1
|ṽ2igi1|

)
,

˙̂
θ42 = Proj

(
θ̂42,

3∑
i=1
|ṽ2igi2|

)
(6.119)

and use the relations |ṽ2jgji| θ̂4i ≤
∣∣∣|ṽ21g1i| θ̂41

∣∣∣ =
∣∣∣ṽ2ig1iθ̂4i

∣∣∣ for i = 1, 2 and j = 1, 2, 3
and define

Gθ (·) =



g11θ̂41 tanh
 ṽ21g11θ̂41

ε11

+ g12θ̂42 tanh
 ṽ21g12θ̂42

ε12


g21θ̂41 tanh

 ṽ22g21θ̂41

ε21

+ g22θ̂42 tanh
 ṽ22g22θ̂42

ε22


g31θ̂41 tanh

 ṽ23g31θ̂41

ε31

+ g32θ̂42 tanh
 ṽ23g32θ̂42

ε32




(6.120)

where εji for i = 1, 2 and j = 1, 2, 3 are positive arbitrarily small design constants. This

way we finally obtain

term2 ≤
∣∣∣ṽ21g11θ̂41

∣∣∣− ṽ21g11θ̂41 tanh
 ṽ21g11θ̂41

ε11

− ṽ21g12θ̂42 tanh
 ṽ21g12θ̂42

ε12


+
∣∣∣ṽ21g12θ̂42

∣∣∣+ ∣∣∣ṽ22g21θ̂41

∣∣∣− ṽ22g21θ̂41 tanh
 ṽ22g21θ̂41

ε21

+
∣∣∣ṽ22g22θ̂42

∣∣∣
− ṽ22g22θ̂42 tanh

 ṽ22g22θ̂42

ε22

+
∣∣∣ṽ23g31θ̂41

∣∣∣− ṽ23g31θ̂41 tanh
 ṽ23g31θ̂41

ε31


+
∣∣∣ṽ23g32θ̂42

∣∣∣− ṽ23g32θ̂42 tanh
 ṽ23g32θ̂42

ε32

 .
(6.121)
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Using the property (5.32) and from (6.121) we get

term2 ≤ 0.2875
3∑
j=1

2∑
i=1

εji. (6.122)

Generally, for n4 unmodeled uncertainties in the system we get

term2 ≤ 0.2875
3∑
j=1

n4∑
i=1

εji (6.123)

and placing the relations (6.115) and (6.123) into (6.110) we obtain

V̇2 ≤− η>γ K2ηγ − ṽ>2 (K3 + D20) ṽ2 + 0.2875
3∑
j=1

n4∑
i=1

εji. (6.124)

We see that ηγ and ṽ2 converge to a small neighborhood about the origin.

To determine the convergence interval, we add and subtract to the right hand side of

(6.124) the term
1
2θ̃
>
3 Γ−1

3 θ̃3 +
1
2θ̃
>
4 Γ−1

4 θ̃4 such that

V̇2 ≤− η>γ K2ηγ − ṽ>2 (K3 + D20) ṽ2 −
1
2 θ̃
>
3 Γ−1

3 θ̃3 −
1
2 θ̃
>
4 Γ−1

4 θ̃4 + 0.2875
3∑
j=1

n4∑
i=1

εji

+ 1
2 θ̃
>
3 Γ−1

3 θ̃3 + 1
2 θ̃
>
4 Γ−1

4 θ̃4.

(6.125)

To evaluate V̇2 in (6.125) we note that

1
2η
>
γ ηγ ≤

1
2λmax (Iγ) ‖ηγ‖2 = 1

2‖ηγ‖
2 (6.126)

where Iγ ∈ R3×3 the identity matrix, and

1
2λmin (M2) ‖ṽ‖2 ≤ 1

2 ṽ2M2ṽ2 ≤
1
2λmax (M2) ‖ṽ‖2. (6.127)

On the other side, we have

λmin (K2) ‖ηγ‖2 ≤ η>γ K2ηγ ≤ λmax (K2) ‖ηγ‖2 (6.128)
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and also

λmin (K3 + D20) ‖ṽ2‖2 ≤ ṽ>2 (K3 + D20) ṽ2 ≤ λmax (K3 + D20) ‖ṽ2‖2. (6.129)

Let

ρ2 = 1
2 θ̃
>
3 Γ−1

3 θ̃3 + 1
2 θ̃
>
4 Γ−1

4 θ̃4 + 0.2875
3∑
j=1

m4∑
i=1

εji (6.130)

then by using inequalities (6.128) and (6.129) and placing them into (6.124) we get

V̇2 ≤ −λmin (K2) ‖ηγ‖2 − λmin (K3 + D20) ‖ṽ2‖2 − 1
2 θ̃
>
3 Γ−1

3 θ̃3 −
1
2 θ̃
>
4 Γ−1

4 θ̃4 + ρ2.

(6.131)

Now, we employ inequalities (6.126) and (6.127) such that from (6.131) we obtain

V̇2 ≤− λmin (K2)η>γ ηγ −
λmin (K3 + D20)
λmax (M2) ṽ>2 M2ṽ2 −

1
2 θ̃
>
3 Γ−1

3 θ̃3 −
1
2 θ̃
>
4 Γ−1

4 θ̃4 + ρ2.

(6.132)

In this inequality, we discuss two cases depending on the values of the minimum eigen-

values of the matrices K2 and (K3 + D20) and the maximum eigenvalue of the matrix

M2, namely:

• Case 1: If

λmin (K2) ≤ λmin (K3 + D20)
λmax (M2) (6.133)

then

V̇2 ≤ −σvV2 + ρ2, with σv = 2λmin (K2) . (6.134)

• Case 2: If

λmin (K2) > λmin (K3 + D20)
λmax (M2) (6.135)

then

V̇2 ≤ −σvV2 + ρ2 (6.136)

with

σv = 2λmin (K3 + D20)
λmax (M2) . (6.137)

Thus, generally, we get the inequality

V̇2 ≤ −σvV2 + ρ2 (6.138)

116



where

σv = min

(
2λmin (K2) , 2λmin (K3 + D20)

λmax (M2)

)
. (6.139)

To determine the convergence interval of ηγ and ṽ2, we consider inequality (6.138)

V̇2 ≤ −σvV2 + ρmax
2 (6.140)

where ρmax
2 is a constant (the upper bound of ρ2), practically the value of

lim
t→∞

ρ2 = 0.2875
3∑
j=1

n4∑
i=1

εji. (6.141)

Let us consider the following differential equation

V̇2 = −σvV2 + ρmax
2 (6.142)

whose solution is

V2 (t) = V2 (t0) e−σv(t−t0) + ρmax
2
σv
− ρmax

2
σv

e−σv(t−t0)

≤ V2 (t0) e−σv(t−t0) + ρmax
2
σv

.
(6.143)

According to the comparison principle [69], the solution of (6.140) reads

V2 (t) ≤ V2 (t0) e−σv(t−t0) + ρmax
2
σv

. (6.144)

Now, to estimate the bounds of ηγ and ṽ2, we can write from (6.104) and from (6.144)

1
2‖ηγ‖

2 ≤ V2 (t0) e−σv(t−t0) + ρmax
2
σv

⇒ ‖ηγ‖ ≤
√

2V2 (t0) e−σv(t−t0) + 2ρmax
2
σv

≤
√

2V2 (t0) e−σv(t−t0) +
√

2ρmax
2
σv

(6.145)

or

‖ηγ‖ ≤ αη (·) e−σv(t−t0)/2 + ρη (6.146)

where

αη =
√

2V2 (t0), ρη =
√

2ρmax
2
σv

. (6.147)
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For estimation of the bounds of ṽ2 we consider the relations (6.104), (6.127) and (6.144).
This leads to

1
2λmin (M2) ‖ṽ2‖2 ≤ 1

2 ṽ2M2ṽ2 ≤ V1 (t0) e−σv(t−t0) + ρmax
2
σv

, (6.148)

hence

‖ṽ2‖2 ≤ 2V1 (t0)
λmin (M2)e

−σv(t−t0) + 2ρmax
2

σvλmin (M2) (6.149)

and

‖ṽ2‖ ≤

√√√√ 2V1 (t0)
λmin (M2)e

−σv(t−t0)/2 +
√

2ρmax
2

σvλmin (M2) (6.150)

and finally

‖ṽ2‖ ≤ αv (·) e−σv(t−t0)/2 + ρv (6.151)

where

αv (·) =

√√√√ 2V1 (t0)
λmin (M2) , ρv =

√
2ρmax

2
σvλmin (M2) . (6.152)

Thus, from (6.146) and (6.151) we may determine that ηγ and ṽ2 converge exponentially

to a ball centered at the origin.

6.3 Stability of the Non-Actuated Dynamics

To investigate the stability of the dynamics (v, w), we define the following Lyapunov

function

V3 = 1
2m2v

2 + 1
2m3w

2. (6.153)

Thus, we have

V̇3 = m2vv̇ +m3wẇ. (6.154)

Before we evaluate V̇3 in (6.154), we consider the vector fγ (·) in (5.167) which can be

expressed as

fγ (·) =
(

0, fσ1 σ̇ + fu1 u+ f v1 v + fw1 w, f
σ
2 σ̇ + fu2 u+ f v2 v + fw2 w

)>
where

fσ1 = µ11
∂xd(σ)
∂σ

+ µ12
∂yd(σ)
∂σ

+ µ13
∂zd(σ)
∂σ
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fu1 = −
[
µ11J11

1 (η2) + µ12J21
1 (η2) + µ13J31

1 (η2)
]

f v1 = −
[
µ11J12

1 (η2) + µ12J22
1 (η2) + µ13J32

1 (η2)
]

fw1 = −
[
µ11J13

1 (η2) + µ12J23
1 (η2) + µ13J33

1 (η2)
]

fσ2 = µ21
∂xd(σ)
∂σ

+ µ22
∂yd(σ)
∂σ

, fu2 = −
[
µ21J11

1 (η2) + µ22J21
1 (η2)

]
f v2 = −

[
µ21J12

1 (η2) + µ22J22
1 (η2)

]
, fw2 = −

[
µ21J13

1 (η2) + µ22J23
1 (η2)

]
with Jij1 (η2) the element of the matrix J1 (η2) at the ith row and jth column, and

µ11 =
(

xe sin(θ)
aede cos(γ1) −

xe sin(γ1)
d2

e cos(γ1)

)
, µ12 =

(
ye sin(θ)

aede cos(γ1) −
ye sin(γ1)
d2

e cos(γ1)

)
,

µ13 =
(

cos(θ)
de cos(γ1) −

ze sin(γ1)
d2

e cos(γ1)

)
, µ21 =

(
sin(ψ)

ae cos(γ2) −
xe sin(γ2)
a2

e cos(γ2)

)
,

µ22 =
(
− cos(ψ)
ae cos(γ2) −

ye sin(γ2)
a2

e cos(γ2)

)
.

By inserting v̇ and ẇ in (6.154) with their values from the second and third equations

in the system dynamics (5.178) we conclude that

V̇3 =−m2dv|v|v2 + (m2m1u cos(φ) cos(θ)f v2 −m2m1u sin(φ)f v1 −m2d2v
2

+
(

(m2m1u cos(φ) cos(θ)fw2 −m3m1u cos(θ) sin(φ)f v2 −m3m1u cos(φ)f v1

−m2m1u sin(φ)fw1 )w +m2m1u cos(φ) cos(θ)fσ2 σ̇ +m2m1u
2 cos(φ) cos(θ)fu2

+m2m1u cos(φ) cos(θ)γ2k23 −m2m1u sin(φ)fσ1 σ̇ −m2m1u
2 sin(φ)fu1

−m2m1u sin(φ)γ1k22 −m2m1ur̃ +m2τvd (t)
)
v −m3dw|w|w2

+
(
−m3m1u cos(θ) sin(φ)fw2 −m3m1u cos(φ)fw1 −m3d3

)
w2

+
(
−m3m1u cos(θ) sin(φ)fσ2 σ̇ −m3m1u

2 cos(θ) sin(φ)fu2

−m3m1u cos(θ) sin(φ)γ2k23 −m3m1u cos(φ)fσ1 σ̇ −m3m1u
2 cos(φ)fu1

−m3m1u cos(φ)γ1k22 +m3m1uq̃ +m3τwd (t)
)
w.

(6.155)
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With (5.194) we calculate the desired pitch and yaw velocities as

qd =− cos (θ) sin (φ) fσ2 σ̇ − cos (θ) sin (φ) fu2 u− cos (θ) sin (φ) f v2 v − cos (θ) sin (φ) fw2 w

− cos (θ) sin (φ) γ2k23 − cos (φ) fσ1 σ̇ − cos (φ) fu1 u− cos (φ) f v1 v − cos (φ) fw1 w

− cos (φ) γ1k22,

rd =− cos(φ) cos(θ)fσ2 σ̇ − cos(φ) cos(θ)fu2 u− cos(φ) cos(θ)f v2 v − cos(φ) cos(θ)fw2 w,

− cos(φ) cos(θ)γ2k23 + sin(φ)fσ1 σ̇ + sin(φ)fu1 u+ sin(φ)f v1 v + sin(φ)fw1 w

+ sin(φ)γ1k22.

(6.156)

Thus, if we replace the relations of qd and rd from (6.156) in (6.155) then we obtain

V̇3 =−m2dv|v|v2 −m3dw|w|w2 +H1v
2 +H2 +H3w

2 +H4 (6.157)

with

H1 = m2m1u cos(φ) cos(θ)f v2 −m2m1u sin(φ)f v1 −m2d2 (6.158)

H2 =
(
m2m1u cos(φ) cos(θ)fw2 −m3m1u cos(θ) sin(φ)f v2 −m3m1u cos(φ)f v1

−m2m1u sin(φ)fw1
)
w +m2m1u cos(φ) cos(θ)fσ2 σ̇ +m2m1u

2 cos(φ) cos(θ)fu2

+m2m1u cos(φ) cos(θ)γ2k23 −m2m1u sin(φ)fσ1 σ̇ −m2m1u
2 sin(φ)fu1

−m2m1u sin(φ)γ1k22 −m2m1ur̃ +m2τvd (t)
(6.159)

H3 = −m3m1u cos(θ) sin(φ)fw2 −m3m1u cos(φ)fw1 −m3d3 (6.160)

H4 =
(
−m3m1u cos(θ) sin(φ)fσ2 σ̇ −m3m1u

2 cos(θ) sin(φ)fu2

−m3m1u cos(θ) sin(φ)γ2k23 −m3m1u cos(φ)fσ1 σ̇ −m3m1u
2 cos(φ)fu1

−m3m1u cos(φ)γ1k22,+m3m1uq̃ +m3τwd (t)
)
w.

(6.161)

Further, to prove stability we assume Assumption 2A in [87], that means the sway

and the heave velocities are small compared to the surge velocity. On the other hand,

the designed controller guarantees that the values γ1, γ2, q̃, r̃, xe, xe, ze, u are bounded.

Moreover, the functions sin (·) and cos (·) are bounded, and the disturbances as well.

This implies that the terms H1, H2, H3 and H4 are bounded. Thus, we may write

|Hi| ≤ Hmax
i , i = 1, . . . , 4 (6.162)
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and see that

V̇3 ≤−m2dv|v|v2 −m3dw|w|w2 +Hmax
1 v2 +Hmax

2 +Hmax
3 w2 +Hmax

4

≤ (Hmax
1 −m2dv|v|) v2 + (Hmax

3 −m3dw|w|)w2 +Hmax
(6.163)

where

Hmax ≤ Hmax
2 +Hmax

4 . (6.164)

Clearly, V̇3 is negative outside some closed curve, centered at the origin and conclude

that the (v, w)-dynamics is bounded.

Figure 6.2 shows the time derivative of the Lyapunov function V3. We recognize two

areas: Inside the closed curve where V̇3 > 0 and outside of it where V̇3 < 0.

If we start from a point (vo, wo) outside the curve or from a point (vi, wi) within it.

Then in both cases V̇3 will converge to the closed curve V̇3 = 0, as Figure 6.2 illustrates.

This implies, both of the velocities v and w are bounded which means that the non-

actuated subsystem (we can not control it directly) is bounded.

(vi, wi)

(vo, wo)

w

V̇3 = 0

v

Fig. 6.2: Time derivative of Lyapunov function V3

121



6.4 Stability Proof Overview

The proof concept relies on bounded-input bounded-state stability over either subsys-

tems. As illustrated in Figure 6.3.

+

Dynamics

(5.187)+Controller Dynamics

Controller Dynamics Dynamics

τu

τ 2

u de

ηγ

τ d1

τ d2

v2

v, w

v, w
(bounded)

(bounded)

(5.188)

(5.202) (5.191) (5.190)

(5.172)

(bounded)

(bounded)

Fig. 6.3: Stability proof overview

6.5 Initial Conditions

We have seen in the Section 5.6.2 that the controller τ 2 rotates the real vehicle towards

the virtual one, and forces the angle γ to go to zero. From (5.141), for γ tending to zero

we see that

cos (γ) = a1

de

→ 1 (6.165)

where a1 is the projection of the position error de on the X0-axis (Figure 5.10). From

(6.165), if −π/2 < γ < π/2, then it can be guaranteed that a1 is positive which is

already assumed for the dynamics (5.175). To determine the initial conditions that

satisfy

− π

2 < γ <
π

2 (6.166)
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considering (5.150) we may write

0 ≤ cos(γ) < 1⇔ 0 ≤ cos (γ1) + ae

de

cos(θ)(cos (γ2)− 1) < cos(γ1) + cos(γ2)− 1
(6.167)

⇒ cos (γ1) + cos (γ2) > 1 (6.168)

where

0 ≤ ae

de

cos (θ) < 1 with − π

2 < θ <
π

2 . (6.169)

Thus, for this choice, the condition (6.166) may be modified to

− π

3 < γ1 <
π

3 and − π

3 < γ2 <
π

3 . (6.170)

By noting that ηγ = (φ, γ1, γ2)> it is clear that

|φ| , |γ1| , |γ2| ≤ ‖ηγ‖. (6.171)

If guaranteed that ‖ηγ‖ < π/3 then |γ1| , |γ2| < π/3. From (6.146), for t = t0, we get

‖ηγ‖ <
√

2V1 (t0) +
√

2ρη
σv

. (6.172)

Using (6.104), (6.127) and (6.126) for t = t0 we see that

2V1 (t0) = η>2 (t0)η2 (t0) + ṽ>2 (t0) M2ṽ2 (t0) +
4∑
i=3

Γ−1
i ‖θ̃i (t0) ‖2

≤ ‖η2 (t0) ‖2 + λmax (M2) ‖ṽ2 (t0) ‖2 +
4∑
i=3

Γ−1
i ‖θ̃i (t0) ‖2.

(6.173)

Placing (6.173) into (6.172) we obtain

‖ηγ‖ ≤

√√√√‖η2 (t0) ‖2 + λmax (M2) ‖ṽ2 (t0) ‖2 +
4∑
i=3

Γ−1
i ‖θ̃i (t0) ‖2 +

√
2ρη
σv

(6.174)

and by noting (6.171) the conditions (6.170) can be satisfied if we choose the initial

conditions to fulfill the following inequality

‖ηγ‖ ≤

√√√√‖η2 (t0) ‖2 + λmax (M2) ‖ṽ2 (t0) ‖2 +
4∑
i=3

Γ−1
i ‖θ̃i (t0) ‖2 +

√
2ρη
σv
≤ π

3 . (6.175)
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Thus, to satisfy this inequality, for t = t0 we have to investigate the following terms:

• The term ‖η2 (t0) ‖2 = φ(t0)2 + θ(t0)2 + ψ(t0)2 can be rendered to be arbitrary small

by choosing the start values for the orientation in a convenient way.

• In λmax (M2) ‖ṽ2 (t0) ‖2, the entries of M2 are unknown parameters to be estimated.

We choose the initial conditions for the update laws “small enough”, and by considering

(5.194), a convenient initialization of the position and the orientation of the real vehicle

can make λmax (M2) ‖ṽ2 (t0) ‖2 arbitrary small as well.

• The summation
∑4
i=3 Γ−1

i ‖θ̃i (t0) ‖2 can be made arbitrary small if we have some

knowledge about the parameters to be estimated and if we choose the gain matrices Γi,

for i = 3, 4, “large enough”.

• Regarding
√

2ρη/σv, to make this term small we consider the relations (6.130) and

(6.147). That is, by choosing the gain matrices Γ3 and Γ4 “large enough”, and the εji in

(6.130) “small enough”. One the other hand, we must choose σv “large enough” which is

achievable from (6.139) if the term λmax (M2) ‖ṽ2 (t0) ‖2 is chosen to be small and the

gains matrices K2 and K3 “large enough”.

As we have seen from the above discussion, we may satisfy condition (6.168) just by

means of a convenient reutilization of the position and the orientation of the real AUV,

while the translational and rotational velocities u (t0) , v (t0) , w (t0) , p (t0) , q (t0) and

r (t0) are set to zero at the start time t = t0. The above discussed conditions of the

orientation errors γ1 and γ2 are summarized in Figure 6.4.

The admissible area is the square with edge of length 2π/3.

γ1

γ2

π/2

π/3 cos(γ1) + cos(γ2) = 1

Fig. 6.4: Admissible initial conditions for γ1 and γ2
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Chapter 7

Simulation Results

7.1 Underactuated System

In real-world applications the AUVs have no actuators on the sway and heave directions.

In this chapter we check the effectiveness and the efficiency of the proposed robust

adaptive backstepping control laws presented in Sections 5.6.1 and 5.6.2 in steering the

real vehicle to follow the virtual one, which moves on some desired path. We test those

controllers, firstly, for the off-line path generation, and secondly, in the case of on-line

path generation.

7.1.1 Results for Off-Line Planning

For illustrating the ability of the controller to force the AUV to follow the predefined

path and reject the disturbances under the parameter uncertainties of the plant, we

consider the reference trajectories (depending on the path variable σ)

xd = −50 cos(σ), yd = 50 sin(σ), zd = 3σ. (7.1)

Those represent the 3D path, a spiral with radius 50 (m).

The virtual vehicle moves along this path according to the reference velocity profile.

We consider this profile to be given as u0 = u∗0(1 − u∗1e−u
∗
2t)e−u∗3de with u∗0 = 1.1, u∗1 =

0.5, u∗2 = 2, u∗3 = 1. We choose d?e = 0.1m, and the gain k1 = 0.4, then the reference

position error is given through δ = d?e + ρu/k1. Through simulation we get δ ≈ 0.104m.

For solving the ordinary differential equations we choose the solver function “ode3”

fixed-step (Bogacki Shampine method) the gains K2 = diag(0.05, 0.05, 0.05), K3 =
diag(580, 580, 580), cu = 73.09. Let us consider that the all of the degrees of freedom of

the AUV are perturbed with the signal: sin (t) (N/Nm). The adaptation gain matrices
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are chosen as follows: Γ3 = diag(100, 100, 100) and Γ4 = diag(100, 100, 100). Figure 7.1
shows the path in XY plane. Actually, it is a circle with radius 50 (m). In Figure 7.2
the surge velocity u and its reference u0 are shown. The figure illustrates that the sway

v and heave w velocities are bounded despite of the disturbances.
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Fig. 7.1: Path in XY plane (off-line)
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Fig. 7.2: Translation velocities (off-line)
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The control inputs of the underactuated AUV are presented in Figure 7.3.
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Fig. 7.3: Forces and torques (off-line)

The tracking position and orientation errors are shown in Figure 7.4.
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Fig. 7.4: Position and orientation errors (off-line)

Figure 7.5 indicates the reference 3D path (7.1) and the actual path presented through

measured position x, y and z.
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Fig. 7.5: 3D path (off-line)

The small oscillation in the reference trajectories and reference velocity occur essen-

tially because of the oscillation in the derivative of the path variable σ̇ (due to the

disturbances).

7.1.2 Results for On-Line Planning

Now, let us consider that the way-points are fed to the path generator, on-line, point by

point. Then according to the algorithm developed in Section in 2.2 a convenient path

is generated by interpolating the way-points at each considered window.

As simulation example we consider that the spiral (7.1) is sampled at 76 points. The

values of x, y and z are given in Table 7.1.
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# 1 2 3 4 5 6 7 8 9 10

x 0 8.68 18.35 25 32.14 38.3 43.3 46.98 49.24 50

y 50 49.24 46.98 43.3 38.3 32.14 25 17.1 8.68 0

z 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

# 11 12 13 14 15 16 17 18 19 20

x 49.24 46.98 43.3 38.3 32.14 25 17.1 8.68 0 -8.68

y -8.68 -17.1 -25 -32.14 -38.3 -43.3 -46.98 -49.24 -50 -49.24

z 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2

# 21 22 23 24 25 26 27 28 29 30

x -17.1 -25 -32.14 -38.3 -43.3 -46.98 -49.24 -50 -49.24 -46.98

y -46.98 -43.3 -38.3 -32.14 -25 -17.1 -8.68 0 8.68 17.1

z 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2

# 31 32 33 34 35 36 37 38 39 40

x -43.3 -38.3 -32.14 -25 -17.1 -8.68 0 8.68 17.1 25

y 25 32.14 38.3 43.3 46.98 49.24 50 49.24 46.98 43.3

z 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8 8.2

# 41 42 43 44 45 46 47 48 49 50

x 32.14 38.3 43.3 46.98 49.24 50 49.24 46.98 43.3 38.3

y 38.3 32.14 25 17.1 8.68 0 -8.68 -17.1 -25 -32.14

z 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10 10.2

# 51 52 53 54 55 56 57 58 59 60

x 32.14 25 17.1 8.68 0 -8.68 -17.1 -25 -32.14 -38.3

y -38.3 -43.3 -46.98 -49.24 -50 -49.24 -46.98 -43.3 -38.3 -32.14

z 10.4 10.6 10.8 11 11.2 11.4 11.6 11.8 12 12.2

# 61 62 63 64 65 66 67 68 69 70

x -43.3 -46.98 -49.24 -50 -49.24 -46.98 -43.3 -38.3 -32.14 -25

y -25 -17.1 -8.68 0 8.68 17.1 25 32.14 38.3 43.3

z 12.4 12.6 12.8 13 13.2 13.4 13.6 13.8 14 14.2

# 71 72 73 74 75 76

x -17.1 -8.68 0 8.68 17.1 25

y 46.98 49.24 50 49.24 46.98 43.3

z 14.4 14.6 14.8 15 15.2 15.4

Table 7.1: Specified way-points for the underactuated system
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In this example, we let the length of the horizon of the on-line path planning algorithm

illustrated in Figure 2.2 be 7, i.e. in each iteration we regard 7 way-points. That helps

to suppress interpolation oscillations during the on-line path generation. If we consider

more points in each window then we will gain more information about the behavior

of the path, but incur more computational costs. Hence, we must find a compromise

between oscillation and the computational costs.

Let the reference profile of the velocity along the desired path be

u0 (t) = u∗0(1− u∗1e−u
∗
2t)e−u∗3de (7.2)

with u∗0 = 0.6344, u∗1 = 0.5, u∗2 = 2, u∗3 = 1,. We choose d?e = 0.1 (m), and the gain

k1 = 0.1. The reference position error is δ = d?e + ρu/k1 = δ = 0.22 (m). For

solving the ordinary differential equations, we choose the solver function “ode1” fixed-

step (Euler) and the gains K2 = diag(0.1, 0.1, 0.1), K3 = diag(580, 580, 580), cu = 1.

The adaptation gain matrices are chosen as follows: Γ3 =diag(100, 100, 100) and Γ4 =
diag(100, 100, 100). Disturbance on the system shall take the following form:

On X0 it is sin (0.5t) (N), on Y0 it is sin (0.5t) (N), on Z0 it is 2 (N) , and the disturbance

about Z0 is cos (0.1t) (Nm). All of those disturbance signals start at time t = 100 (sec).

Figure 7.6 shows the actual path in XY plane.

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

x (m)

y
(m

)

Fig. 7.6: Path in XY plane (on-line)
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In Figure 7.7 the surge velocity u and its reference u0 are illustrated. It also illustrates

that the sway v and heave w velocities are bounded despite of the disturbances.
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Fig. 7.7: Translational velocities (on-line)

The control inputs of the underactuated AUV are presented in Figure 7.8.
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Fig. 7.8: Forces and torques (on-line)

The tracking position and orientation errors are shown in Figure 7.9.
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Fig. 7.9: Position and orientation errors (on-line)
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Figure 7.10 indicates the reference and the actual 3D path.

The small oscillations in the reference trajectories and reference velocity occur essentially

because of the oscillation in the derivative of the path variable σ̇, firstly, due to the

disturbances signals, and secondly because of the on-line path generation.
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Chapter 8

Conclusion

8.1 Summary of the Work

In this dissertation, we have investigated a numerically robust technique, which allows

to generate a reference path for dynamically allocated way-points to be followed by an

autonomous underwater vehicle (AUV) in an on-line way. Based on the B-splines inter-

polation approach and by using a moving window over the way-points to be interpolated,

an adequate reference path in the underwater 3D space is generated on-line.

Since the proposed path generation algorithm bestows low computational-cost features,

it is contingent to use a sufficient number of way-points, which sample the desired

motion primitives. The sampled way-points can be interpolated on-line to approximate

the desired primitives that are designed such that the AUV avoids some environmental

obstacles in the 3D space.

Relying on the number of the actuators steering the AUV, and on the modeled and

unmodeled uncertainties in the system, two approaches are presented to force the AUV

to follow the desired path/trajectories.

For the fully-actuated plant with modeled perturbations, a compensator-based PD-

controller is utilized to force the AUV to track the reference trajectories. Furthermore,

this controller is enhanced with a generalized extended state observer to attenuate the

disturbances acting on the AUV.

For an underactuated system, in presence of parametric and unmodeled uncertainties,

a robust adaptive control law is designed. The introduced path following controller is

designed utilizing Lyapunov’s direct method, adaptive backstepping and parameter pro-

jection techniques. This controller steers the AUV to an arbitrarily small neighborhood

centered at the reference 3D path, under a suitable choice of the initial conditions for

both of position and orientation of the considered AUV. Under assumption of stability

of the non-controlled subsystem (sway and heave dynamics), it has been proven that
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position and orientation errors are globally exponentially convergent to a ball centered

at the origin.

For the aforementioned introduced control approaches, an extensive and complete proof

of the stability is presented in detail.

Some elementary simulations give a first illustration of the practicability of the approach.

However, these have not been in focus of the underlying work.

8.2 Perspectives and Open Problems

Potential future investigations related to this work may contribute to the following

prospects:

• Implementation and realization of the proposed on-line path generator and also

the path following controller on a real-world AUV.

• Defining and solving the on-line path planning in sense of an optimization problem

to minimize oscillations.

Also the control following problem may be defined as optimization problem re-

garding the control inputs, to minimize the consumption of the on-board power.

• Elevation of the admissible area of the initial conditions, such that the AUV can

start its mission for a wide range and flexible initial conditions.

Another prospect that can be investigated in this field is the “self-tuning” of the

initial conditions such that the AUV resumes the mission without external inter-

ference (initialization) if the mission is interrupted for some reason far away at

sea.

• Enhancement of the presented path planning, and control algorithm to deal with

dynamic obstacle avoidance, and to cover the issue of multiple AUVs coordinated

missions.

• Extension of the proposed path planning and control approaches presented in this

work for the space and hovering vehicles.
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Chapter 9

Appendix

In this Appendix, we recall the results of previous approaches for the fully-actuated

AUV which is presented in Chapter 4.

9.1 Fully-Actuated System

Here we assumed that the AUV is fully-actuated, that is, the six degrees of freedom

are actuated. The tracking controller is designed with the computed torque technique

(exact input-state feedback linearizion).

In the simulations, we assume 11 way-points associated with their related longitudinal

velocities as listed in Table 9.1. Using the afore-presented algorithm (in Section 2.1),

these way-points determine the path depicted in Figure 9.1. Between the first and the

second way-point the vertical trajectory planning is considered, i.e. z0 = 0 and zf = 20.

Note that in the algorithm it is assumed that four way-points are known, that means,

ψf = arctan
(
y′d(0)
x′d(0)

)
= 0.9409 (rad) and initial value ψ0 = 0 (rad). When assuming a

maximum velocity of wmax = 0.4 (m/sec) we obtain tf = 15(zf−z0)
8wmax

= 93.75 (sec). These

generate the coefficients for the trajectories zd(t) and ψd(t) using the relations (4.1),

(4.2), (4.3) and (4.4), where xd(t), yd(t), φd(t), and θd(t) are all zero. The second phase

of the motion planning starts at way-point two which is a stationary point. The 3D

planning algorithm determines the intermediate paths, see Figure 9.1, based on the

# 1 2 3 4 5 6 7 8 9 10 11

x 0 0 40 80 120 160 200 240 280 320 360
y 0 0 60 80 60 80 80 80 80 80 80
z 0 20 20 20 20 20 20 30 40 50 40
u 0 0 1 1 1 1 1 1 1 1 0

Table 9.1: Specified way-points for the fully-actuated system
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desired way-point velocity data in such a way that u0(t) is obtained as the low-pass

filtered linear interpolation of σ.
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Fig. 9.1: Way-points and path in 3D space

The controller was simulated referring to real-world data of an AUV that is available

locally at the Institute of Automation and Systems Technology, Technische Universität

Ilmenau. For brevity, we omit the matrices M, C, and D here. The mass of the AUV

is m = 132.535 (kg), length l = 2.30 (m) and radius r = 0.15 (m), to give a rough idea

of its dimensions. So as to investigate a realistic setting, we chose the sampling time as

T = 0.1 (sec). The discrete PD-controller is designed for eigenvalues λ1 = λ2 = 0.95,

hence, with (4.23) and (4.24) we have KD,i = 1 and KP,i = 0.25 for i = 1, . . . , 6.

In the simulation, we show two closed-loop scenarios: the nominal case (no disturbance)

and the perturbed case.
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9.1.1 Nominal Case

Figure 9.2 illustrates the tracking performance for position and orientation, respectively.
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Fig. 9.2: Position and orientation

The reference and resulting translational and angular velocities are shown in Figure 9.3.

The figure shows that the reference trajectories generated by the path planner may

be tracked with an acceptable control effort, see Figure 9.4. Because of utilizing a

polynomial of degree 5, numerical problems appear. That is reflected in the control

inputs as small peaks, Figure 9.4.

For the vertical motion, i.e. from 0 (sec) to 100 (sec) all control inputs are zero except

for the force in heave direction. This force borrows its behavior actually from the profile
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of the reference velocity on Z0 direction. The maximum velocity on Z0 is reached at

time t = 50 (sec).
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Fig. 9.3: Translational and angular velocities

9.1.2 Perturbed Case

We assume a sinusoidal disturbance acting on the first and the sixth channel of the

control input τ , that is d1(t) = 10 sin(2π 0.01) (N) and d6(t) = 10 sin(2π 0.01) (Nm),
which both are bounded as are its derivatives. The disturbance acts beginning from

time t = 300 (sec). The GESO is designed for ` = 4.

The eigenvalues of the estimation error dynamics, Ae − L Ce, are chosen all real with

absolute value less than 0.1 such that the observation error dynamics decays faster than

the controlled loop dynamics.

Comparing the resulting tracking performance with and without GESO when subject
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to these disturbances is shown in Figures 9.5 and 9.6. In those two figures, we can

recognize the effect of the disturbance upon the performance of the controller and the

benefits of using the GESO. Figure 9.7 illustrates the input control actions.
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Fig. 9.6: Translational and angular velocities under disturbances

It turns out that the tracking performance is remarkably improved when using the

GESO while maintaining the control effort at approximately the same level, see Figure

9.7.

Note that for reducing the peaking-phenomenon after initializing, which may arise for

high gain observers, we use a “clutch” function for smoothing the transient peaking

responses in the observer variables [88].

In our case, we employ

sc(t) =

 1 for t > εc

sinqc( πt2εc ) for t ≤ εc
, for qc = 10 and εc = 6
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