399 research outputs found

    Sensor resource management with evolutionary algorithms applied to indoor positioning

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en el año académico 2016-2017Esta tesis pretende contribuir a la mejora de la gestión de recursos en sistemas de sensores aplicados a localización en interiores. Mediante esta gestión pueden abordarse dos temas, la colocación de estos sensores y su uso óptimo una vez colocados, centrándose la tesis en el primero de ellos. Durante la tesis se considera el uso de un sistema de posicionamiento en interiores basado en señales infrarrojas con medida de diferencia de fase. Estas medidas de fase son posteriormente transformadas en distancias, con lo cual nuestro problema es el de trilateración hiperbólica utilizando medidas de diferencia de distancia. Aunque se describe un modelo para el error en diferencia de distancias del enlace infrarrojo, podemos abstraernos de este y simplemente considerar que utilizamos medidas de diferencia de distancia que están normalmente distribuidas con una varianza dada por el modelo usado. De hecho, el trabajo expuesto en esta tesis podría ser usado con cualquier otro sistema del cual obtengamos un modelo de los errores de medida, ya sea empleando además trilateración esférica o angulación. La gran mayoría de trabajos que mejoran la precisión de un sistema de posicionamiento colocando sensores optimizan funciones de coste basadas en el límite inferior de Cramér-Rao, enfoque que adoptamos también en este trabajo. En el capítulo de la tesis dedicado al estado del arte hacemos un repaso de las diferentes propuestas existentes, que concluye explicando qué pretendemos aportar sobre las contribuciones existentes en la literatura científica. En resumen, podemos clasificar las propuestas actuales en tres clases. La primera de ellas trata de determinar una configuración óptima para localizar un objetivo, normalmente utilizando el determinante de la matriz de información de Fisher o la dilución de la precisión. Estos métodos pueden obtener expresiones analíticas que proporcionan una explicación sobre como intervienen las características de los sensores y su colocación en la precisión obtenida. Sin embargo, carecen de aplicabilidad en situaciones reales. El segundo tipo de propuestas emplea métodos numéricos para optimizar la colocación de sensores considerando varios objetivos o un área entera. Los métodos propuestos en esta tesis encajan dentro de esta categoría. Por último, existen métodos que utilizan técnicas de selección de sensores para obtener configuraciones óptimas. Entre las distintas propuestas encontramos varias deficiencias, como la simplificación del modelo de error de la medida para obtener expresiones fácilmente tratables, la consideración de un solo criterio de precisión de la localización, colocación de un número determinado y fijo de sensores, o su despliegue en áreas simples que no presenten problemas de oclusiones. Nuestra primera aportación trata de solucionar la consideración de un único criterio de precisión, que normalmente es el determinante o la traza de la matriz de covarianza o información de la estimación. Cada métrica obtenida de estas matrices tiene un significado práctico distinto, y la consideración de solo una de ellas puede dar lugar a soluciones que presenten deficiencias en las otras, como la obtención de elipses de error muy alargadas. Nuestra propuesta implica el uso de algoritmos evolutivos multifunción que optimicen varias de estas métricas, como el error cuadrático medio en todo el área, la isotropía de la solución, y la máxima desviación que puede aparecer. Esto nos permite tener un conjunto de soluciones dadas en un frente de Pareto, que permitirán al gestor de la red de sensores visualizar las posibles soluciones y elegir entre ellas según las necesidades. También permite obtener colocaciones que mejoren la convergencia de algunos estimadores. La segunda contribución de la tesis se ocupa de la colocación de sensores en zonas más complejas, donde existan obstáculos que provoquen oclusiones a algunos sensores. De esta manera, podemos introducir el problema de intentar cubrir la mayor cantidad de puntos del espacio con el número mínimo de sensores necesario para calcular la posición de un objetivo. Dicho número influirá en el porcentaje de área cubierto y en la precisión obtenida, además de aumentar el coste del sistema. Debido a esto, también será un objetivo a optimizar junto a la cobertura y la incertidumbre de la posición estimada. Para llevar a cabo esta optimización se propone una mejora sobre el algoritmo utilizado en la aportación anterior basada en el uso de subpoblaciones y añadiendo operadores genéticos que modifiquen el número de sensores según la cobertura y condensación en los distintos puntos de la zona a cubrir. Cada uno de los capítulos dedicado a las aportaciones descritas contiene resultados y conclusiones que confirman el buen funcionamiento de los métodos propuestos. Finalmente, la tesis concluye con una lista de propuestas que serán estudiadas en un futuro

    Distance Measurement-Based Cooperative Source Localization: A Convex Range-Free Approach

    Get PDF
    One of the most essential objectives in WSNs is to determine the spatial coordinates of a source or a sensor node having information. In this study, the problem of range measurement-based localization of a signal source or a sensor is revisited. The main challenge of the problem results from the non-convexity associated with range measurements calculated using the distances from the set of nodes with known positions to a xed sen- sor node. Such measurements corresponding to certain distances are non-convex in two and three dimensions. Attempts recently proposed in the literature to eliminate the non- convexity approach the problem as a non-convex geometric minimization problem, using techniques to handle the non-convexity. This study proposes a new fuzzy range-free sensor localization method. The method suggests using some notions of Euclidean geometry to convert the problem into a convex geometric problem. The convex equivalent problem is built using convex fuzzy sets, thus avoiding multiple stable local minima issues, then a gradient based localization algorithm is chosen to solve the problem. Next, the proposed algorithm is simulated considering various scenarios, including the number of available source nodes, fuzzi cation level, and area coverage. The results are compared with an algorithm having similar fuzzy logic settings. Also, the behaviour of both algorithms with noisy measurements are discussed. Finally, future extensions of the algorithm are suggested, along with some guidelines

    Design of an Optimal Testbed for Tracking of Tagged Marine Megafauna

    Full text link
    Underwater acoustic technologies are a key component for exploring the behavior of marine megafauna such as sea turtles, sharks, and seals. The animals are marked with acoustic devices (tags) that periodically emit signals encoding the device's ID along with sensor data such as depth, temperature, or the dominant acceleration axis - data that is collected by a network of deployed receivers. In this work, we aim to optimize the locations of receivers for best tracking of acoustically tagged marine megafauna. The outcomes of such tracking allows the evaluation of the animals' motion patterns, their hours of activity, and their social interactions. In particular, we focus on how to determine the receivers' deployment positions to maximize the coverage area in which the tagged animals can be tracked. For example, an overly-condensed deployment may not allow accurate tracking, whereas a sparse one, may lead to a small coverage area due to too few detections. We formalize the question of where to best deploy the receivers as a non-convex constraint optimization problem that takes into account the local environment and the specifications of the tags, and offer a sub-optimal, low-complexity solution that can be applied to large testbeds. Numerical investigation for three stimulated sea environments shows that our proposed method is able to increase the localization coverage area by 30%, and results from a test case experiment demonstrate similar performance in a real sea environment. We share the implementation of our work to help researchers set up their own acoustic observatory.Comment: Submitted for publication in Frontiers in Marine Science, special topic on Tracking Marine Megafauna for Conservation and Marine Spatial Plannin

    Regularized Least Square Multi-Hops Localization Algorithm for Wireless Sensor Networks

    Get PDF
    Abstract: Position awareness is very important for many sensor network applications. However, the use of Global Positioning System receivers to every sensor node is very costly. Therefore, anchor based localization techniques are proposed. The lack of anchors in some Wireless Sensor Networks lead to the appearance of multi-hop localization, which permits to localize nodes even if they are far from anchors. One of the well-known multi-hop localization algorithms is the Distance Vector-Hop algorithm (DV-Hop). Although its simplicity, DV-Hop presents some deficiencies in terms of localization accuracy. Therefore, to deal with this issue, we propose in this paper an improvement of DV-Hop algorithm, called Regularized Least Square DV-Hop Localization Algorithm for multi-hop wireless sensors networks. The proposed solution improves the location accuracy of sensor nodes within their sensing field in both isotropic and anisotropic networks. We used the double Least Square localization method and the statistical filtering optimization strategy, which is the Regularized Least Square method. Simulation results prove that the proposed algorithm outperforms the original DV-Hop algorithm with up to 60%, as well as other related works, in terms of localization accuracy

    Innovative Wireless Localization Techniques and Applications

    Get PDF
    Innovative methodologies for the wireless localization of users and related applications are addressed in this thesis. In last years, the widespread diffusion of pervasive wireless communication (e.g., Wi-Fi) and global localization services (e.g., GPS) has boosted the interest and the research on location information and services. Location-aware applications are becoming fundamental to a growing number of consumers (e.g., navigation, advertising, seamless user interaction with smart places), private and public institutions in the fields of energy efficiency, security, safety, fleet management, emergency response. In this context, the position of the user - where is often more valuable for deploying services of interest than the identity of the user itself - who. In detail, opportunistic approaches based on the analysis of electromagnetic field indicators (i.e., received signal strength and channel state information) for the presence detection, the localization, the tracking and the posture recognition of cooperative and non-cooperative (device-free) users in indoor environments are proposed and validated in real world test sites. The methodologies are designed to exploit existing wireless infrastructures and commodity devices without any hardware modification. In outdoor environments, global positioning technologies are already available in commodity devices and vehicles, the research and knowledge transfer activities are actually focused on the design and validation of algorithms and systems devoted to support decision makers and operators for increasing efficiency, operations security, and management of large fleets as well as localized sensed information in order to gain situation awareness. In this field, a decision support system for emergency response and Civil Defense assets management (i.e., personnel and vehicles equipped with TETRA mobile radio) is described in terms of architecture and results of two-years of experimental validation

    Localization Context-Aware Models for Wireless Sensor Network

    Get PDF
    Wireless sensor networks (WSNs) are emerging as the key technology to support the Internet of Things (IoT) and smart objects. Small devices with low energy consumption and limited computing resources have wide use in many applications and different fields. Nodes are deployed randomly without a priori knowledge of their location. However, location context is a fundamental feature necessary to provide a context-aware framework to information gathered from sensors in many services such as intrusion detection, surveillance, geographic routing/forwarding, and coverage area management. Nevertheless, only a little number of nodes called anchors are equipped with localization components, such as Global Positioning System (GPS) chips. Worse still, when sensors are deployed in an indoor environment, GPS serves no purpose. This chapter surveys a variety of state-of-the-art existing localization techniques and compares their characteristics by detailing their applications, strengths, and challenges. The specificities and enhancements of the most popular and effective techniques are as well reported. Besides, current research directions in localization are discussed

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Parameter selection and performance comparison of particle swarm optimization in sensor networks localization

    Get PDF
    Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors\u27 memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm
    corecore