395 research outputs found

    Methods of system identification, parameter estimation and optimisation applied to problems of modelling and control in engineering and physiology

    Get PDF
    Mathematical and computer-based models provide the foundation of most methods of engineering design. They are recognised as being especially important in the development of integrated dynamic systems, such as “control-configured” aircraft or in complex robotics applications. These models usually involve combinations of linear or nonlinear ordinary differential equations or difference equations, partial differential equations and algebraic equations. In some cases models may be based on differential algebraic equations. Dynamic models are also important in many other fields of research, including physiology where the highly integrated nature of biological control systems is starting to be more fully understood. Although many models may be developed using physical, chemical, or biological principles in the initial stages, the use of experimentation is important for checking the significance of underlying assumptions or simplifications and also for estimating appropriate sets of parameters. This experimental approach to modelling is also of central importance in establishing the suitability, or otherwise, of a given model for an intended application – the so-called “model validation” problem. System identification, which is the broad term used to describe the processes of experimental modelling, is generally considered to be a mature field and classical methods of identification involve linear discrete-time models within a stochastic framework. The aspects of the research described in this thesis that relate to applications of identification, parameter estimation and optimisation techniques for model development and model validation mainly involve nonlinear continuous time models Experimentally-based models of this kind have been used very successfully in the course of the research described in this thesis very in two areas of physiological research and in a number of different engineering applications. In terms of optimisation problems, the design, experimental tuning and performance evaluation of nonlinear control systems has much in common with the use of optimisation techniques within the model development process and it is therefore helpful to consider these two areas together. The work described in the thesis is strongly applications oriented. Many similarities have been found in applying modelling and control techniques to problems arising in fields that appear very different. For example, the areas of neurophysiology, respiratory gas exchange processes, electro-optic sensor systems, helicopter flight-control, hydro-electric power generation and surface ship or underwater vehicles appear to have little in common. However, closer examination shows that they have many similarities in terms of the types of problem that are presented, both in modelling and in system design. In addition to nonlinear behaviour; most models of these systems involve significant uncertainties or require important simplifications if the model is to be used in a real-time application such as automatic control. One recurring theme, that is important both in the modelling work described and for control applications, is the additional insight that can be gained through the dual use of time-domain and frequency-domain information. One example of this is the importance of coherence information in establishing the existence of linear or nonlinear relationships between variables and this has proved to be valuable in the experimental investigation of neuromuscular systems and in the identification of helicopter models from flight test data. Frequency-domain techniques have also proved useful for the reduction of high-order multi-input multi-output models. Another important theme that has appeared both within the modelling applications and in research on nonlinear control system design methods, relates to the problems of optimisation in cases where the associated response surface has many local optima. Finding the global optimum in practical applications presents major difficulties and much emphasis has been placed on evolutionary methods of optimisation (both genetic algorithms and genetic programming) in providing usable methods for optimisation in design and in complex nonlinear modelling applications that do not involve real-time problems. Another topic, considered both in the context of system modelling and control, is parameter sensitivity analysis and it has been found that insight gained from sensitivity information can be of value not only in the development of system models (e.g. through investigation of model robustness and the design of appropriate test inputs), but also in feedback system design and in controller tuning. A technique has been developed based on sensitivity analysis for the semi-automatic tuning of cascade and feedback controllers for multi-input multi-output feedback control systems. This tuning technique has been applied successfully to several problems. Inverse systems also receive significant attention in the thesis. These systems have provided a basis for theoretical research in the control systems field over the past two decades and some significant applications have been reported, despite the inherent difficulties in the mathematical methods needed for the nonlinear case. Inverse simulation methods, developed initially by others for use in handling-qualities studies for fixed-wing aircraft and helicopters, are shown in the thesis to provide some important potential benefits in control applications compared with classical methods of inversion. New developments in terms of methodology are presented in terms of a novel sensitivity based approach to inverse simulation that has advantages in terms of numerical accuracy and a new search-based optimisation technique based on the Nelder-Mead algorithm that can handle inverse simulation problems involving hard nonlinearities. Engineering applications of inverse simulation are presented, some of which involve helicopter flight control applications while others are concerned with feed-forward controllers for ship steering systems. The methods of search-based optimisation show some important advantages over conventional gradient-based methods, especially in cases where saturation and other nonlinearities are significant. The final discussion section takes the form of a critical evaluation of results obtained using the chosen methods of system identification, parameter estimation and optimisation for the modelling and control applications considered. Areas of success are highlighted and situations are identified where currently available techniques have important limitations. The benefits of an inter-disciplinary and applications-oriented approach to problems of modelling and control are also discussed and the value in terms of cross-fertilisation of ideas resulting from involvement in a wide range of applications is emphasised. Areas for further research are discussed

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Design and modeling of a stair climber smart mobile robot (MSRox)

    Full text link

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 364)

    Get PDF
    This bibliography lists 188 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during June 1992. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Aeronautical engineering: A continuing bibliography with indexes (supplement 278)

    Get PDF
    This bibliography lists 414 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1992

    Hybrid active force control for fixed based rotorcraft

    Get PDF
    Disturbances are considered major challenges faced in the deployment of rotorcraft unmanned aerial vehicle (UAV) systems. Among different types of rotorcraft systems, the twin-rotor helicopter and quadrotor models are considered the most versatile flying machines nowadays due to their range of applications in the civilian and military sectors. However, these systems are multivariate and highly non-linear, making them difficult to be accurately controlled. Their performance could be further compromised when they are operated in the presence of disturbances or uncertainties. This dissertation presents an innovative hybrid control scheme for rotorcraft systems to improve disturbance rejection capability while maintaining system stability, based on a technique called active force control (AFC) via simulation and experimental works. A detailed dynamic model of each aerial system was derived based on the Euler–Lagrange and Newton-Euler methods, taking into account various assumptions and conditions. As a result of the derived models, a proportional-integral-derivative (PID) controller was designed to achieve the required altitude and attitude motions. Due to the PID's inability to reject applied disturbances, the AFC strategy was incorporated with the designed PID controller, to be known as the PID-AFC scheme. To estimate control parameters automatically, a number of artificial intelligence algorithms were employed in this study, namely the iterative learning algorithm and fuzzy logic. Intelligent rules of these AI algorithms were designed and embedded into the AFC loop, identified as intelligent active force control (IAFC)-based methods. This involved, PID-iterative learning active force control (PID-ILAFC) and PID-fuzzy logic active force control (PID-FLAFC) schemes. To test the performance and robustness of these proposed hybrid control systems, several disturbance models were introduced, namely the sinusoidal wave, pulsating, and Dryden wind gust model disturbances. Integral square error was selected as the index performance to compare between the proposed control schemes. In this study, the effectiveness of the PID-ILAFC strategy in connection with the body jerk performance was investigated in the presence of applied disturbance. In terms of experimental work, hardware-in-the-loop (HIL) experimental tests were conducted for a fixed-base rotorcraft UAV system to investigate how effective are the proposed hybrid PID-ILAFC schemes in disturbance rejection. Simulated results, in time domains, reveal the efficacy of the proposed hybrid IAFC-based control methods in the cancellation of different applied disturbances, while preserving the stability of the rotorcraft system, as compared to the conventional PID controller. In most of the cases, the simulated results show a reduction of more than 55% in settling time. In terms of body jerk performance, it was improved by around 65%, for twin-rotor helicopter system, and by a 45%, for quadrotor system. To achieve the best possible performance, results recommend using the full output signal produced by the AFC strategy according to the sensitivity analysis. The HIL experimental tests results demonstrate that the PID-ILAFC method can improve the disturbance rejection capability when compared to other control systems and show good agreement with the simulated counterpart. However, the selection of the appropriate learning parameters and initial conditions is viewed as a crucial step toward this improved performance

    The 1993/1994 NASA Graduate Student Researchers Program

    Get PDF
    The NASA Graduate Student Researchers Program (GSRP) attempts to reach a culturally diverse group of promising U.S. graduate students whose research interests are compatible with NASA's programs in space science and aerospace technology. Each year we select approximately 100 new awardees based on competitive evaluation of their academic qualifications, their proposed research plan and/or plan of study, and their planned utilization of NASA research facilities. Fellowships of up to $22,000 are awarded for one year and are renewable, based on satisfactory progress, for a total of three years. Approximately 300 graduate students are, thus, supported by this program at any one time. Students may apply any time during their graduate career or prior to receiving their baccalaureate degree. An applicant must be sponsored by his/her graduate department chair or faculty advisor; this book discusses the GSRP in great detail

    Research and technology, 1992

    Get PDF
    Selected research and technology activities at Ames Research Center, including the Moffett Field site and the Dryden Flight Research Facility, are summarized. These activities exemplify the Center's varied and productive research efforts for 1992

    The 1991/92 graduate student researchers program, including the underrepresented minority focus component

    Get PDF
    The Graduate Student Research Program (GSRP) was expanded in 1987 to include the Underrepresented Minority Focus Component (UMFC). This program was designed to increase minority participation in graduate study and research, and ultimately, in space science and aerospace technology careers. This booklet presents the areas of research activities at NASA facilities for the GSRP and summarizes and presents the objectives of the UMFC
    corecore