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Abstract 

 
Mathematical and computer-based models provide the foundation of most methods of 
engineering design. They are recognised as being especially important in the 
development of integrated dynamic systems, such as “control-configured” aircraft or 
in complex robotics applications. These models usually involve combinations of 
linear or nonlinear ordinary differential equations or difference equations, partial 
differential equations and algebraic equations. In some cases models may be based on 
differential algebraic equations. Dynamic models are also important in many other 
fields of research, including physiology where the highly integrated nature of 
biological control systems is starting to be more fully understood.  
 
Although many models may be developed using physical, chemical, or biological 
principles in the initial stages, the use of experimentation is important for checking 
the significance of underlying assumptions or simplifications and also for estimating 
appropriate sets of parameters. This experimental approach to modelling is also of 
central importance in establishing the suitability, or otherwise, of a given model for 
an intended application – the so-called “model validation” problem.  
 
System identification, which is the broad term used to describe the processes of 
experimental modelling, is generally considered to be a mature field and classical 
methods of identification involve linear discrete-time models within a stochastic 
framework. The aspects of the research described in this thesis that relate to 
applications of identification, parameter estimation and optimisation techniques for 
model development and model validation mainly involve nonlinear continuous time 
models Experimentally-based models of this kind have been used very successfully in 
the course of the research described in this thesis very in two areas of physiological 
research and in a number of different engineering applications. In terms of 
optimisation problems, the design, experimental tuning and performance evaluation 
of nonlinear control systems has much in common with the use of optimisation 
techniques within the model development process and it is therefore helpful to 
consider these two areas together.  

 
The work described in the thesis is strongly applications oriented. Many similarities 
have been found in applying modelling and control techniques to problems arising in 
fields that appear very different. For example, the areas of neurophysiology, 
respiratory gas exchange processes, electro-optic sensor systems, helicopter flight-
control, hydro-electric power generation and surface ship or underwater vehicles 
appear to have little in common. However, closer examination shows that they have 
many similarities in terms of the types of problem that are presented, both in 
modelling and in system design. In addition to nonlinear behaviour; most models of 
these systems involve significant uncertainties or require important simplifications if 
the model is to be used in a real-time application such as automatic control. 
 
One recurring theme, that is important both in the modelling work described and for 
control applications, is the additional insight that can be gained through the dual use 
of time-domain and frequency-domain information. One example of this is the 
importance of coherence information in establishing the existence of linear or 
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nonlinear relationships between variables and this has proved to be valuable in the 
experimental investigation of neuromuscular systems and in the identification of 
helicopter models from flight test data. Frequency-domain techniques have also 
proved useful for the reduction of high-order multi-input multi-output models.  
 
Another important theme that has appeared both within the modelling applications 
and in research on nonlinear control system design methods, relates to the problems 
of optimisation in cases where the associated response surface has many local optima. 
Finding the global optimum in practical applications presents major difficulties and 
much emphasis has been placed on evolutionary methods of optimisation (both 
genetic algorithms and genetic programming) in providing usable methods for 
optimisation in design and in complex nonlinear modelling applications that do not 
involve real-time problems.  
 
Another topic, considered both in the context of system modelling and control, is 
parameter sensitivity analysis and it has been found that insight gained from 
sensitivity information can be of value not only in the development of system models 
(e.g. through investigation of model robustness and the design of appropriate test 
inputs), but also in feedback system design and in controller tuning. A technique has 
been developed based on sensitivity analysis for the semi-automatic tuning of cascade 
and feedback controllers for multi-input multi-output feedback control systems. This 
tuning technique has been applied successfully to several problems. 
 
Inverse systems also receive significant attention in the thesis. These systems have 
provided a basis for theoretical research in the control systems field over the past two 
decades and some significant applications have been reported, despite the inherent 
difficulties in the mathematical methods needed for the nonlinear case. Inverse 
simulation methods, developed initially by others for use in handling-qualities studies 
for fixed-wing aircraft and helicopters, are shown in the thesis to provide some 
important potential benefits in control applications compared with classical methods 
of inversion. New developments in terms of methodology are presented in terms of a 
novel sensitivity based approach to inverse simulation that has advantages in terms of 
numerical accuracy and a new search-based optimisation technique based on the 
Nelder-Mead algorithm that can handle inverse simulation problems involving hard 
nonlinearities. Engineering applications of inverse simulation are presented, some of 
which involve helicopter flight control applications while others are concerned with 
feed-forward controllers for ship steering systems. The methods of search-based 
optimisation show some important advantages over conventional gradient-based 
methods, especially in cases where saturation and other nonlinearities are significant. 
 
The final discussion section takes the form of a critical evaluation of results obtained 
using the chosen methods of system identification, parameter estimation and 
optimisation for the modelling and control applications considered. Areas of success 
are highlighted and situations are identified where currently available techniques have 
important limitations. The benefits of an inter-disciplinary and applications-oriented 
approach to problems of modelling and control are also discussed and the value in 
terms of cross-fertilisation of ideas resulting from involvement in a wide range of 
applications is emphasised. Areas for further research are discussed. 
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Preface 
 
This thesis is concerned with methods of system identification, optimisation and 
inverse simulation applied to problems of nonlinear system modelling and also the 
application of optimisation and inverse simulation methods to problems of 
engineering systems analysis and design. Optimisation techniques are of central 
importance to much of the work described, which is strongly applications oriented 
and involves a range of problems from engineering and physiology.  
 
The thesis involves a selection of papers published mostly in peer-reviewed journals, 
together with a few in refereed conference proceedings. The  papers submitted within 
the hard-copy version of the thesis are accompanied by a review, organised in nine 
sections, which explains the relationship between the different published studies and 
attempts to place the whole work in perspective.      
 
The first section of the review relates mainly to issues of motivation and 
methodology. Discussion of practical applications of the techniques are presented in 
subsequent sections and a final discussion section links together some of the most 
significant issues that are believed to arise from work involving these different 
application areas. Suggestions of topics for future research are an important part of 
that final discussion section. 
 
The forty-one original contributions, which form the central part of the hard-copy 
version of this thesis, are indicated within the list of original publications using bold 
type to distinguish them from other (supporting) publications. When mentioned in the 
text, these included publications are again shown using bold type (e.g. submitted 
paper [2]). These publications have been chosen to provide a framework of detailed 
information to support statements and claims made within the review. The other 
papers included in the list of original contributions (shown, for example, as 
supporting paper, [4]) provide additional detailed evidence or describe further 
practical applications.  
 
The amount of information included in each section of the review depends upon the 
extent to which individual topics are covered in the relevant submitted papers. In 
cases where important information on background, methodology, results or 
applications appears only in the supporting publications there is more detail in the 
corresponding section of the review. Thus the level of detail in different sections of 
the review is not entirely uniform and it is important that all sections of the review be 
read together with the relevant submitted papers.  
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1. Introduction 
 

1.1  Integrated Systems and their Significance in Engineering and 
      Physiology 
 
Mathematical and computer-based models provide the foundation of most methods of 
engineering design and are of fundamental importance in many different areas of 
science. One important factor that influences research on modelling is the steady 
increase in complexity of the models required for new and existing applications. For 
example, one common factor in the investigation of physiological systems and the 
analysis and design of modern engineering systems is the fact that in both these fields 
there has been a rapid growth, in recent years, in our understanding of the importance 
of integrated systems and of the benefits of system integration within design.  
 
It has for long been understood that physiological systems are highly integrated 
dynamic systems and involve complex interactions which result from millions of 
years of evolution. However, the significance of physiological system integration in 
terms of system modelling and the complexities of physiological control mechanisms 
has only been fully appreciated during the past half century as attempts have been 
made to apply quantitative methods of investigation to biological systems. In this case 
clever experimental design can be applied, to some extent, to reduce the level of 
coupling and interaction within the system. This often involves attempting to open 
feedback loops or isolate subsystems by cutting or blocking communication channels.  
 
The widespread introduction of embedded systems and other forms of computer-
based control in recent years, in many different areas of engineering, has led to a very 
rapid increase in the complexity of man-made systems for many applications. For 
example, digital “fly-by-wire” control systems are now commonplace, both in civil 
and military aircraft and this inevitably leads to new levels of complexity in terms of 
interactions, not only within the on-board systems of the aircraft but also between the 
pilot and the vehicle and between different vehicles. Novel features, such as “carefree 
manoeuvring”,  assist aircrew in avoiding potentially hazardous situations and thus 
help to improve safety margins in civil aircraft but, inevitably, this is done at the cost 
of additional complexity and an increase in the level of integration. This, in turn, 
introduces further complexities in terms of design since full design integration 
requires design teams that are organised so that technical and economic factors may 
be traded. This, in turn, allows the overall performance to be more fully optimised 
and design cycle times to be reduced.   
 
Current trends in aeronautical engineering make it very probable that 
multidisciplinary issues involving the elastic airframe, the flight control system, the 
propulsive control system and physiological “biodynamic” factors involving the pilot 
will combine in future to an extent not previously encountered in aircraft design. For 
example, low frequency modes of structural vibration are likely to need an active 
structural mode control system that is fully integrated with the primary flight control 
system as the bandwidths of these two systems are likely to overlap significantly. 
Similar situations where “control-configured” solutions involving system integration 
and multidisciplinary design issues are becoming increasingly important can be 
identified in other application areas, such as robotics. 
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1.2  System Modelling Issues for Integrated Systems 
 
It is clear that with integrated design the systems that have to be brought together do 
not exist in hardware terms when initial design decisions are being made. This 
contrasts with traditional approaches to control system design where procedures 
normally involve the development of a controller for a “plant” which already exists, 
or a plant that has been designed in detail prior to control issues being considered. In 
such a traditional approach direct comparisons between the plant model and the 
system are often possible. In contrast, within the integrated approach to design, 
control is no longer a second stage in the design process and the design of the control 
systems cannot be separated from other stages of the overall design. Although this 
requires a new approach it need not, however, produce insuperable difficulties 
because it is normal to start the design process for an integrated system using some 
form of highly simplified conceptual model that only includes features that are 
considered as essential. This initial model is intended only to provide a basis for the 
evaluation of major design options and for making preliminary design decisions. As 
soon as more detailed and tested models become available they are used in place of 
this conceptual description. 
  
Within multidisciplinary design teams the concurrent consideration of critical 
constraints is central to this integrated design process and this implies a need for 
models of the highest possible quality for each stage of the development. There is 
also a need for software tools for dynamic modelling and simulation that can be 
integrated with other design software. Currently available tools do not appear to be 
able to handle adequately all the necessary technological areas and, inevitably, some 
initial models may prove to be inappropriate for their intended application.     
 
As an illustration, methods of computational fluid dynamics and finite element 
modelling are widely used in many areas of engineering. When such tools are used 
for the modelling of elements within a larger system involving a number of sub-
systems it may be essential to derive reduced-order descriptions to help avoid the 
effects of major computational overheads when sub-models are being combined to 
provide a more integrated description of the larger system. This model reduction 
process, inevitably, introduces approximations and simplifications which must be 
introduced with caution.  
 
Advanced computational tools of this kind, such as finite element techniques, are also 
being used increasingly for physiological modelling. Examples of this include 
investigations of the cardiovascular system and pulmonary airways. In this case the 
need for reduced models arises because of the inevitable difficulties that arise if the 
computational timescale for a model is orders of magnitude greater than the timescale 
convenient for the analysis and decision-making processes of the investigator. In the 
case of engineering design processes it is equally important that sub-system models 
should be capable of running in timescales that are well matched to the thought 
processes of human designers.  At each stage of a project, whether it involves 
engineering design or open-ended scientific investigation, it is important that any 
models being applied are appropriate for the intended application. Models are never 
unique.  
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The availability of appropriate mathematical and computer-based models is of clearly 
of central importance, both for the analysis of existing systems and for the design of 
entirely new systems. More than ten years ago the UK Office of Science and 
Technology Report by the Technology Foresight Panel for the Defence and 
Aerospace Sector (Anonymous, 1995) included a statement that: 
 
“…..Improved modelling of physical and manufacturing processes will improve our 
ability to predict the behaviour, costs and risks of future systems, and dramatically 
reduce the development timescale”. 
 
That government report also states: 
 
“…..While it is essential that modelling and simulation is supported by validation 
trials, improvements will reduce the need for costly and time-consuming 
developmental testing”. 
 
Thus, while creating an expectation that improved modelling methods can assist 
significantly in the development of future systems, the report is also emphasising the 
importance of model validation but is stating clearly a belief that improved modelling 
techniques can reduce the time required for the new product or process to clear the 
final testing or commissioning stage. 
 
Although full system models are never available at the earliest stages of design (or at 
the start of a biological system investigation) it has to be recognised that some 
information may exist about sub-systems and that some sub-model descriptions may 
be available from previous investigations of a similar kind or from an available 
library of documented model components. In many cases valuable data may also exist 
from earlier trials and experiments and, in the case of engineering systems, from 
hardware-in-the-loop simulations studies or from commissioning tests of existing 
systems of a similar kind.     
 
1.3 Questions of Model Quality 
 
In general, the quality of a model has a direct influence on the quality of the final 
solution, whatever the application.  For applications involving automatic control, the 
models are usually dynamic in form, involving combinations of linear or nonlinear 
ordinary or partial differential equations and algebraic equations or may be based on 
differential algebraic equations. Dynamic models, which can also be in discrete form 
based on difference equation descriptions, are also important in many other fields of 
research, including physiology.  
Although many models may be developed using physical, chemical, or biological 
principles in the initial stages, the use of experimentation is important for checking 
the significance of underlying assumptions or simplifications and also for estimating 
appropriate sets of parameters. This experimental approach to modelling is also of 
central importance in establishing the suitability, or otherwise, of a given model for 
an intended application (the so-called “model validation” problem) and forms an 
important part of the work presented in this thesis. The approaches discussed are 
highly relevant both to engineering system model development and to the modelling 
of physiological systems.    
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System identification, which is the broad term used to describe the processes of 
experimental modelling, is generally considered to be a mature field and classical 
methods of identification involve linear discrete-time models within a stochastic 
framework. The aspects of the research described in this thesis that relate to the use of 
identification, parameter estimation and optimisation techniques are concerned with 
model development generally and the applications are not concerned exclusively with 
control. They involve, mainly, nonlinear continuous-time models and are also 
concerned with other areas of engineering system design and with physiological 
system modelling. Objectives from within these different application areas include 
hypothesis testing, the development of inferential measurement methods and also 
real-time simulator development. 
 
In some forms of continuous-time system models the physical interpretation of the 
model structure and parameters can be made more direct than for other possible 
model structures, with important benefits in terms of interpretation. Together with 
issues involving experimental design and the choice of test signals for the estimation 
of parameters, the choice of model structure can contribute in an important way to the 
overall robustness of models that are established experimentally. This aspect of 
modelling and related issues of structural and parameter sensitivity and identifiability 
receive attention within a number of the application studies. The process of extracting 
data from system and sub-system tests for model development and refinement is not a 
trivial task and the whole iterative process of development in the presence of 
uncertainties raises many important issues and emphasises the fact that there are no 
generally accepted approaches to the problem of model validation.  
 
Techniques of inverse simulation, which are mostly based on optimisation methods, 
are well-established in specialised fields such as aircraft handling qualities 
investigations but, until very recently, were almost unknown in other modelling and 
control application areas. However, these methods do appear to offer an interesting 
alternative to other approaches to model inversion, especially in the nonlinear case, 
and have been the subject of a number of developments in terms of methodology and 
several applications studies that are included in the thesis. The possible benefits of 
using inverse simulation methods for the design of combined feed-forward and 
feedback control systems for cases where actuator saturation and other hard 
nonlinearities are present, has also received particular attention. 

 
1.4   Optimisation Issues 
 
In terms of optimisation problems, the design, experimental tuning and performance 
evaluation of complex closed-loop control systems has much in common with the use 
of optimisation techniques within the model development process and it is therefore 
helpful to consider these two areas together within the thesis. Although gradient-
based methods remain important, the complexity of many practical problems of 
modelling and control means that it is impossible to establish a global optimum using 
gradient methods alone. Techniques such as simulated annealing, genetic algorithms 
and genetic programming provide important benefits within the system modelling and 
control system design areas and are applied to a number of different problems. The 
importance of these global optimisation tools is likely to become even more 
significant as very large integrated systems become more commonplace.  
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Another topic, considered both in the context of system modelling and control and 
closely related to optimisation, is parameter sensitivity analysis, which was the 
subject of much research in Eastern Europe in the 1960s and 1970s but has been 
rather neglected elsewhere. It has been found that insight gained from parameter 
sensitivity information can be of value not only in the development and refinement of 
system models (e.g. through investigation of model robustness and the design of 
appropriate test inputs), but also in feedback system design and in controller tuning. 

 
1.5   Overview 
 
This thesis presents results of almost forty years of work involving research in system 
modelling, optimisation, system identification, system simulation and control. The 
research is strongly applications oriented and involves investigations which have 
physiological objectives as well as much work which fits within the more 
conventional areas of engineering applications. Following this introductory section, 
the presentation and discussion of the material in the submitted papers has been 
organised under the main headings shown below:  
 
a) Optimisation, System Identification and Parameter Estimation  
            in the Development of  Dynamic Models. 
b) Inverse Simulation for System Modelling. 
c) Issues of Quality and the External Validation of Dynamic Models 
d) Optimisation Methods in Nonlinear System Modelling and Nonlinear  

Control System Design Applications 
e) Inverse Simulation for Control System Design Applications 
f) Sensitivity Function based Optimisation for Controller Tuning 
g) Other Related Work involving System Modelling and Control Applications 
 
The final discussion section of this review takes the form of a critical evaluation of 
results obtained using the chosen methods of system identification, parameter 
estimation and optimisation for the various system modelling and control applications 
considered. Areas for further research are discussed, especially in the context of 
integrated systems. 
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2. Optimisation, System Identification and Parameter  
    Estimation in the Development of Dynamic Models  
 
It has already been emphasised in the introduction that models need to be appropriate 
for their intended purpose. It is also clear that models of a given system are never 
unique. Model development is an iterative process involving repeated attempts at 
formulation, testing and re-testing. The form of model adopted at a particular stage in 
a project must therefore take account of the objectives, the amount of detail 
appropriate in the model at that stage of the work and the uncertainties in the 
information available about the real system. In some situations, particularly when 
modelling existing systems or sub-systems, there may well be a need for experimental 
investigations before any form of highly detailed quantitative model is developed. 

 
2.1 Optimisation Techniques in System Modelling 
 
System identification and parameter estimation techniques involve the use of 
observations and measured response information from a real dynamic system to 
develop mathematical and computer-based models that represent the characteristics of 
that system. The model has a general form which involves a number of ordinary 
differential or difference equations and an associated set of parameters which have to 
be estimated. In general, the structure (as defined by the number of differential 
equations and the form of any associated algebraic relationships) also involves 
uncertainties and the most appropriate structural form may have to be established 
from measured response data. 
 
The most widely used approach is based on least squares minimisation of the 
difference (error) between the model response and the measured system response. 
The process of deciding on the most appropriate structure for the model usually 
involves background knowledge and physical understanding of the system under 
investigation, as well as examination of the available response data. Once an initial 
model structure has been established and uncertainties in that chosen structure have 
been critically assessed, the parameters of the model can be adjusted in an iterative 
fashion using a specified optimisation cost function. The iterative processes of 
parameter adjustment continue until the responses of the model match those of the 
real system to some pre-defined level based upon values of the chosen optimisation 
criterion.  
 
Dynamic models used in practical engineering applications are usually nonlinear in 
the parameters. In such cases a nonlinear optimisation approach must be applied for 
determining the most appropriate set of parameters to ensure that model responses 
match experimental data. Many nonlinear optimisation techniques and methods for 
iterative solution of nonlinear equations have been developed and general information 
about the relevant algorithms may be found in sources such as Press et al. (1986) and 
Nelles (2001).  
 
Nonlinear optimisation and the iterative solution of nonlinear equations are 
challenging processes due to the potential presence of large numbers of local maxima 
and minima. Therefore, it is possible that many sets of locally “optimal” parameters  
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may be determined from experimental test data and care must be taken to find the set 
that corresponds to the global optimum solution. Also, because more than one 
possible solution can exist, in contrast to the unique solutions typical of linear 
optimisation methods, nonlinear optimisation techniques are iterative in nature. As a 
result, nonlinear optimisation methods usually cannot be considered for on-line 
applications. 
 
One very important factor in nonlinear optimisation is the choice of the initial 
parameter set. Although a random or arbitrary initial set of parameters may lead to 
convergence to an optimum, the selection of a favourable set of initial parameters on 
the basis of prior knowledge can increase the speed of convergence considerably.  
 
Nonlinear optimisation methods can also be classified as Local and Global methods 
(Nelles, 2001). Although they converge to local optima, local methods often converge 
to points that are close to the initial parameter set, particularly with methods in which 
search directions are obtained from first and second-order derivative information. 
Such algorithms thus tend to become stuck at a local minimum or maximum and an 
extremum in another part of the parameter space may be neglected. Global nonlinear 
optimisation methods can overcome this type of difficulty and rely on the inclusion of 
random components that help the algorithm to avoid becoming trapped at local 
optima. Well known global optimisation techniques include simulated annealing, 
(SA), described in Kirkpatrick, Gelatt and Vecchi (1983) and in van Laarhoven and 
Aarts (1987), and evolutionary algorithms such as the genetic algorithm, (GA), 
details of which may be found in Holland (1975) and Goldberg (1989). The 
techniques of simulated annealing and evolutionary computing are reviewed in more 
detail in Section 5 of the thesis. 

 
 It is important to note, however, that global methods involve some form of search of 
the whole of the parameter space and computational overheads are therefore 
significant, with relatively slow rates of convergence. Using local methods, it is also 
possible to obtain a more global optimum using a “multi-start” approach. In this, 
several local optimisations are carried out with different initial parameter sets. The 
best of these solutions is then taken as the “global” solution. A further possibility is to 
use global and local methods together, with global techniques locating the region 
around suitable local optima and a local optimisation method then being used to find 
a better final estimate. 

 
Local optimisation approaches that employ gradient information are widely used. The 
simplest gradient-based method is the Steepest Descent approach. This method does 
not require second-order derivatives of the loss function, but is known to converge 
slowly. Newton’s method involves use of the inverse of the Hessian matrix and 
depends on second-order derivatives, which may introduce significant computational 
overheads. Newton’s method is also computationally demanding because it involves 
matrix inversion. Use of the Quasi-Newton method reduces the computational 
complexity by replacing the inverse Hessian by an approximation. 
 
The Newton and Quasi-Newton methods have good convergence properties on the 
basis of the number of iterations but for large problems such methods are 
computationally demanding. Conjugate-Gradient methods, such as the Fletcher-
Reeves algorithm, provide an alternative approach to local optimisation that can be  
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less computationally demanding. Instead of using the Hessian matrix or an 
approximation to the Hessian, conjugate-gradient methods involve an approach where 
an estimate of the search direction is computed more directly. Conjugate gradient 
methods typically require more iterations than the Quasi-Newton and Newton 
methods to converge to an optimum. However, due to their computational simplicity, 
the overall speed of these algorithms is better.   
 
Nonlinear least squares methods are preferred for cases in which the loss function is 
of the sum-of-squares type. Two well-used nonlinear least-squares methods are the 
Gauss-Newton method and the Levenberg-Marquandt method. As discussed in the 
text by Soderstrom and Stoica (1989) the Gauss-Newton algorithm is closely 
associated with the general and modified forms of the Newton-Raphson algorithm for 
solution of numerical search problems. The Newton-Raphson algorithm provides the 
basis of two of the traditional approaches to inverse simulation methods, which are 
discussed in Sections 3 and 6 of the thesis.  
 
The text by Raol, Girija and Singh (2004) provides a very useful review of least 
squares methods in the context of system modelling, system identification and 
parameter estimation. This treatment of optimisation methods establishes links 
between the properties of classical gradient-based optimisation techniques and 
methods used in the modelling of dynamic systems, such as the Generalised Least 
Squares and Nonlinear Least Squares methods. This, in turn, leads to detailed 
discussion of the Equation Error and Output Error methods that are applied in the 
helicopter system identification applications described in Section 2.5.1.  
 
The simplest general-purpose nonlinear local optimisation techniques are termed 
Direct Search methods and make use only of loss function values in their search for 
local optima. Such methods include the Simplex Search, Hooke-and-Jeeves and 
Nelder-Mead methods. These methods are typically rather slow to converge and are 
often only used if the derivatives of the loss function are not available or can be 
estimated only at considerable computational cost. The Nelder-Mead approach is 
applied extensively in Section 3 in the context of an improved method of inverse 
simulation for modelling and control applications. 

 
The optimisation of the structure of a model can also be regarded as a form of 
optimisation of the complexity of the model since “model complexity” relates to the 
number of separate equations and thus adjustable parameters present. Also, with more 
parameters, a model increases in flexibility since the number of possible forms of 
behaviour that could be exhibited by the model increases. A model that is too simple 
will not capture the behaviour of the system and will give poor predictions. Also, if 
the amount of data available for parameter estimation and subsequent testing of the 
model is inadequate a relatively complex model may perform badly.  
 
Thus, the complexity of a model must always be appropriate for the intended task. 
Optimising the complexity of a model is closely linked to the question of model 
validation (Section 4) where the performance of a given model is assessed. An 
important feature of the model validation process is that the model performance is 
assessed using a “test” dataset that is not the same as the “training” dataset used in 
estimating the structure and parameters of that model. The importance of this 
approach is that, in this way, the generalisation ability of the identified model may be  
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assessed in a critical fashion. Generalisation is the model capability in terms of 
accurate prediction of the system output when presented with forms of input that were 
not used in the development of the model.  
 
The terms under-fitting or over-fitting may be used in discussion of models that 
perform poorly. If the test data are estimated badly and the model appears to be too 
simple, the situation is generally described as involving under-fitting. For a case in 
which a relatively complex model is used and the training appears to be satisfactory, 
but the generalisation is poor, the situation involves over-fitting. The model 
parameters may be biased by noise within the data used for identification, or the 
model has been “trained” correctly but the interpolation between data points is poor. 
 
2.2 System Identification and Parameter Estimation 

 
2.2.1 Issues of identifiability 
 
The precision of any parameter estimate is expressed in terms of its variance and this 
is a function both of the experiment and of the estimation technique used. Often the 
objective is to obtain unique and reliable estimates of all of the parameters of a 
model. It is important to investigate whether or not this is possible for a given 
structure of model and a given form of experiment. This involves investigation of 
identifiability and it is important to establish whether or not potential identifiability 
problems exist before selecting an identification method and considering issues such 
as experimental design.  
 
Global or structural unidentifiability is a situation in which a model has an excess of 
parameters so that some specific parameters cannot be estimated uniquely for any 
possible input stimulus and design of experiment. Structural identifiability is only a 
minimal necessary condition for obtaining unique estimates of model parameters. As 
the name suggests it depends on the structure of the model and not on numerical 
values of parameters or on the design of the identification experiment. Structural 
unidentifiability arises when a model has too many parameters to allow all of them to 
be found for any possible input stimulus. 
 
Pathological or numerical unidentifiability is a term that describes a structurally 
identifiable model that is being used with experimental data that is inappropriate for 
the intended application. This may be because the length of the available record is 
short in comparison with the dominant time constants or the period of oscillatory 
components of the response. It can also arise if the measured response data are very 
heavily corrupted by noise. 
 
Bellman and Ǻström were among the first (Bellman & Ǻström, 1970) to formulate 
and discuss the problems of structural identifiability. They presented their findings in 
the context of biological compartmental models but the results are applicable to a 
wide range of other identification problems. They showed that classical transfer 
function theory could be used as a basis for the investigation of identifiability. If each 
coefficient of the transfer function matrix is expressed as a combination of the 
unknown parameters, a set of nonlinear equations is defined. Bellman and Astrom 
showed that the model is identifiable in a global sense if these equations have a 
unique solution.  
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Numerical (or “pathological”) unidentifiability, or situations approaching this, arise 
when a model is found to be structurally identifiable but cannot give valid results for 
a given set of experimental data. This may be as a result of inaccurate measurements, 
noise or poor experimental design. Beck and Arnold (1977) have shown that model 
parameters can be estimated only if the parameter sensitivity coefficients for the 
output variable with respect to each parameter are linearly independent over the range 
of observations. In simple cases, problems of numerical unidentifiability may be 
deduced from the time histories of the sensitivity coefficients. The problem can also 
be investigated more systematically by examining the sensitivity matrix X and the 
closely associated parameter information matrix M = XTX. This type of analysis 
allows more complex interdependencies to be investigated. Pathological 
unidentifiability is linked to linear dependence of the columns of X and this is 
reflected in the determinant of matrix M or in the condition number of the matrix (the 
ratio of the largest eigenvalue of M to the smallest eigenvalue of M). If the condition 
number is large, or if the determinant is small, the confidence region for the estimates 
is large and the parameter estimates are therefore not well defined.  
 
The matrix 1−M  is also important in terms of tests for numerical identiafibility. This 
matrix, the inverse of the parameter information matrix, is known as the dispersion 
matrix and is commonly denoted by D. The determinant of D can be shown to be a 
useful indicator of numerical unidentifiability.  
 
Correlations between pairs of parameters can be investigated using the parameter 
correlation matrix P (Beck & Arnold, 1977). This matrix is commonly defined in 
terms of its elements: 
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where ijp  is the element of P in row i and column j and 1−
ijm  is the element of 1−M  

in row i and column j. The matrix P has diagonal elements which are unity and all the 
off-diagonal elements lie between -1 and 1. Conditions close to unidentifiability are 
indicated if the modulus of one or more of the off-diagonal terms is close to unity, 
with a value of 0.95 being regarded as a limiting value (Beck & Arnold, 1977). Small 
values of the off-diagonal elements of P indicate that the parameters are essentially 
decoupled. 
 
 
2.2.2 Design of experiments and the selection of test-input signals  
 
In the design of appropriate test signals for system identification and parameter 
estimation it is essential to have a quantitative basis upon which test signals can be 
compared. It is also customary to assume that the estimator is efficient (Silvey, 1975) 
and that these aspects can be investigated independently of the estimator. In the work 
presented here, test signal design involves the use of quantities such as the parameter 
information matrix and the dispersion matrix, both of which have theoretical origins 
in the Cramer-Rao bound. Through the Cramer-Rao bound the variance of parameter 
estimates may be related to elements of the dispersion matrix D, which is defined as  
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the inverse M-1 of the parameter information matrix M. Since the elements of the 
parameter information matrix depend on the parameter sensitivity matrix X, which 
can be found from measurements, the elements of D can be derived from the 
measured responses. In general terms, inputs giving a dispersion matrix with small 
elements are to be preferred over inputs producing large values in these elements. 
This has led to test input design algorithms that minimise some appropriate function 
of the dispersion matrix or of the parameter information matrix.  
 
The parameter information matrix M provides the basis for a number of measures of 
the quality of an experiment using relationships which are of the general form 
 

)(MfJ =        (2.2) 
 
where f is an appropriate scalar function. One widely used criterion for experiment 
design is the so-called D-optimal criterion (Federov, 1972) which involves the 
dispersion matrix and has the form 
 

)det( 1−= MDJ       (2.3) 
 
Use of this criterion results in a test signal which puts equal emphasis on the 
estimation of all of the parameters. In cases where a subset of parameters is more 
important, use of a truncated D-optimal design criterion of the form 
 

)det( 1−= iiDtJ M      (2.4) 

 
has been advocated (Hunter, Hill & Henson (1969)), where iiM  is a sub-matrix of the 

full information matrix and refers only to the i parameters of interest. Use of the 
truncated D-optimal criterion developed by (Hunter Hill & Henson, 1969) involves 
calculations based on the elements of the sensitivity matrix X which themselves are 
dependent on the values of model parameters.  This means that it is possible to use 
the criterion only to investigate and compare different forms of experiment and test 
signal designs in a general fashion. Use of the criterion to generate an experiment 
which is optimal for a particular subject is not possible because exact parameter 
values are not known a priori. 
 
2.2.3 Identification issues for point process and hybrid systems 
 
Hybrid systems involving continuous-time signals and variables described on a 
discrete-event basis are now seen as being of considerable practical importance in 
many different fields. Such systems arise in neurophysiology and in the 1970s 
Professor Jay Rosenberg of the Institute of Physiology at the University of Glasgow 
recognised that work by Professor D.R. Brillinger at the University of California, 
Berkeley, on the statistical analysis of point processes was of potential importance for 
the experimental investigation of elements of the peripheral nervous system. The 
short duration of the nerve impulse (in comparison with the time interval between 
impulses) and the wide range of observable discharge patterns forms the basis for 
considering a sequence of nerve impulses (a spike train) as a realisation of a point 
process.  
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Professor Rosenberg’s interest in the system identification approach led to the 
establishment of an interdisciplinary research group and close collaboration with him 
and his colleagues over a long period of time. This involved a series of four jointly-
supervised research students and several research assistants at different times. The 
work was concerned with the application of system identification ideas to point 
process systems in neurophysiology and to more complex situations involving a 
combination of continuous signals and point processes. This work led to a number of 
joint publications.  
 
It is possible to approach the identification of point process systems and hybrid 
systems by converting point processes into conventional continuous data and then 
applying traditional time-domain or frequency-domain identification methods. This 
formed a successful initial step, as reported in (Maclaine et al., 1977 - submitted 
paper, [1]) and in (Rosenberg, Murray-Smith & Rigas, 1982 - submitted paper, [2]). 
However, more direct methods, working with point process data, have potential 
advantages, especially in the nonlinear case. Definitions of stochastic point process 
measures such as mean intensity, auto-intensity functions, cross-intensity functions 
established by Brillinger and others (e.g. (Brillinger, 1972), (Brillinger, 1975a), 
(Brillinger, 1975b), (Brillinger, 1978) and (Brillinger, Bryant & Segundo, 1976)) 
allow spectral interpretation of the point process case, with spectra defined in terms of 
the Fourier transforms of the auto- and cross-covariance densities. Thus the cross-
spectrum between two point processes can be defined. Estimates of the auto-spectrum 
and cross-spectrum can be obtained using methods first suggested by Bartlett (1963). 
 
The spectrum of a Poisson process may be shown to be constant and this suggests that 
the Poisson process can have a similar role in the identification of point-process 
systems as the Gaussian white-noise signal in the identification of continuous 
systems. The links between ordinary time series and point-processes have been the 
subject of detailed discussion in (Brillinger, 1978).  As is shown in our 1982 paper 
(Rosenberg, Murray-Smith & Rigas, 1982 – submitted paper, [2]), it is possible to 
define a quantity that is a transfer function for a point-process system. This form of 
linear point process description is discussed further by us (Halliday, Murray-Smith & 
Rosenberg, 1992 – submitted paper, [3]), where it is pointed out that the 
implementation of spectral estimation is of central importance in the identification of 
a point process system. Also it is shown in this paper that it is possible to determine 
of the degree of linear correlation between input and output point processes through 
determination of the coherence. This quantity is estimated using an expression which 
involves calculation of the auto-spectra of the signals and the cross-spectrum between 
them. It is shown to be analogous to the expression for coherence commonly applied 
for continuous systems and signals. 
 
In the case of systems involving a mix of continuous signals and point-processes it 
was found that Jenkins (1963) had suggested a method for determining the cross-
periodogram between a continuous signal and a point process and this allows the 
cross-spectrum to be found directly. This, in turn, allows estimation of the coherence 
in the hybrid case. The application of this approach to the experimental study of 
muscle spindle receptors is discussed further in Section 2.4 and in (Rosenberg, 
Murray-Smith & Rigas, 1982 – submitted paper, [2]), (Halliday, Murray-Smith & 
Rosenberg, 1992 – submitted paper, [3]) and also in (Murray-Smith & Rosenberg,  
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1983 – supporting paper, [4]). Other neurophysiological applications are described in 
(Davey et al., 1986 – supporting paper, [5]), in (Conway et al., 1990 – supporting 
paper, [6]) and in (Amjad et al., 1989). The development of tutorial software on 
methods of analysis for point-process signals, which includes a simulation program 
involving a simple nonlinear neural encoder model, is described in (Murray-Smith et 
al., 1995 – supporting paper, [7]). It is believed that the methods developed for this 
work on the peripheral nervous system have broad applicability to other physiological 
systems involving point-processes or a combination of continuous signals and point-
processes. It is probable that there are also many potential applications in other fields.  
 
2.2.4 Local model networks 
 
Artificial neural networks (ANNs) have attracted much attention for modelling 
applications, both in terms of the conventional multi-layer perceptron (MLP) and the 
radial basis function type network (RBF). Neither type of description can provide 
much insight about the physical form of the underlying system and do not allow prior 
knowledge to be incorporated easily into the identification process. However ANNs 
do provide an approach that can be extended to allow a network of local models to be 
defined which can provide useful physical interpretations in some situations.  
 
The reasoning behind the introduction of multiple model networks is to be able to 
split a complex and inherently nonlinear modelling problem into a number of smaller 
and simpler tasks. Each of the resulting sub-problems is then handled on a local basis 
by a simpler sub-model. In this way the operating space of the system is effectively 
partitioned into a number of local regions or “regimes” and the global model is 
constructed through an appropriately weighted combination of the outputs from each 
of the local models. 
  
Several different multiple modelling approaches have been applied to the nonlinear 
system identification problem. For example, fuzzy logic has been used to partition the 
operating space using a set of rules and membership functions derived using prior 
knowledge (and especially qualitative knowledge) about the corresponding real 
system. The so-called TS modelling approach, introduced by Takagi and Sugeno 
(1985), is one important example of this type of model involving a set of local models 
based on expert qualitative knowledge.  
 

Prior qualitative knowledge seldom provides enough information for the development 
of a successful model. The use of empirical data is usually essential and a combined 
approach of this kind is often described as neuro-fuzzy modelling. The most important 
point is that, in comparison with neural network methods, fuzzy networks are easier 
to interpret. More details of this approach can be found in the work of Jang and Sun 
(1993) and Pfeiffer and Isermann (1994). 
 

Another approach to the problem of defining a multiple model network involves the 
operating regime based type of methods developed in the work of Johansen and Foss 
(e.g., (1993)). This and other related work led to the Local Model Network (LMN) 
architecture is discussed in detail in the PhD Thesis of Roderick Murray-Smith (1994) 
and examined further in the edited volume by R. Murray-Smith and T.A. Johansen 
(1997), which includes a review of the relationship between LMNs and other 
approaches including RBF networks, Takagi-Sugeno fuzzy models and probabilistic 
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methods involving hierarchical mixtures of experts (see e.g., (Jordan & Jacobs, 
1994)). 

 

The LMN can be interpreted as an extension or generalisation of the normalised form 
of RBF network. Instead of employing simple weights in the output layer, more 
complex weighting is used through the introduction of local models which are usually 
dynamic in form. In principle, the local models may have any form, but local linear 
models are often used as these are easier to implement and interpret than more 
general nonlinear descriptions. An advantage of this approach is that each local 
model, if carefully chosen using prior knowledge, can cover a significant part of the 
operating space. Each local linear model is usually established for a specific 
equilibrium operating condition. An LMN network of specified accuracy can 
therefore usually be constructed using a smaller number of basis functions than the 
equivalent RBF network, thus giving better computational efficiency. The 
interpretation of results and analysis of the structure of the overall model is also 
usually more straightforward. Engineers are generally experienced in the use of linear 
models, and most engineering systems are designed for operation near to equilibrium 
conditions for much of the time. This means that linear methods can be applied in the 
identification of the local models and the fact that the models are usually identified 
for conditions close to equilibrium suggest that the experimental testing of the real 
system is likely to be relatively straightforward. 
 

A local model network involving M local models may be described by an equation of 
the form: 
 

)()(
1

ψφρ i

M

i
i fy ∑

=
=)

     (2.5) 

 
where ŷ  is the output prediction, the )(φρ i  factors are scalar functions of the 

scheduling vector φ  and )(ψif  represents the outputs of the local models for input 

vector ψ . The functions  )(φρ i  are termed validity functions and are equivalent in 

some respects to the basis functions of an RBF network and are similar to 
membership functions of a fuzzy network.  
 
A validity function transforms its input to a value between 0 and 1. It has a smooth 
form with, a maximum at the middle of the range over which it applies and the set of 
M validity functions forms a partition of unity. The activation of a validity function 
decreases with increasing distance of its input from the point at which the maximum 
occurs.  Although there are many possible functions (such as normalised Gaussian 
bells) that could be used as validity functions, one common choice is a set of third-
order B splines which are composed of quadratic polynomials. A set of B-splines can 
be defined recursively (de Boor, 1978) and although they are, by definition, one- 
dimensional functions they can be extended to cover a multidimensional space (see 
e.g., (Kavli, 1993)). The use of functions such as B-splines ensures a localised region 
of activity for each local model and smooth interpolation between neighbouring 
models (Gollee, 1998). 
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The scheduling vector( )tφ  must be chosen with care. It must represent the nonlinear 
properties of the underlying system since its function, essentially, is to define the 
operating point so that the appropriate local models can be applied at each time 
instant. It can be related either to the output of the system or to the input or some 
combination of input and output (Gollee, 1998). 

 
The training process within an LMN involves two stages. Firstly, the number, 
position and shape of the validity functions must be established and this is, 
effectively, the identification of the model structure. Then parameters of the local 
models need to be found, usually through the application of least squares methods. 
These parameters can either be optimised globally or locally. In the global learning 
approach the parameters for all the local models are optimised simultaneously 
whereas in the local learning approach the parameters of each local model are 
optimised separately. Following successful identification of the validity functions and 
estimation of parameters of the local model network the overall model can be 
constructed from the local models through a process of “blending”.  
 
The LMN architecture is suitable for nonlinear dynamic systems where there is prior 
knowledge of the real system and empirical data may be collected through tests. The 
use of local linear models is especially appropriate for systems where prolonged 
periods of operation occur near steady-state operating points where experimental data 
can be collected in the necessary quantities. However, it has been shown by (Shorten 
et al., 1999) that this reliance on local linear models may compromise the validity of 
the LMN architecture when the off-equilibrium dynamics of the underlying system 
are considered. Each local model only provides useful information about the system 
behaviour in a small region of the operating space. During transients taking the LMN 
between operating points the model is unlikely to provide an accurate representation. 
This may not be a serious issue when the operating point and the scheduling vector 
change slowly. However, in situations involving large rapid transients the model may 
be forced far from any operating points about which the local models were identified, 
resulting in poor predictions of the system output.  
 
This problem of off-equilibrium dynamics may be overcome by including local 
models placed in off-equilibrium regions, but little experimental data is likely to be 
available for such regions. As discussed in (Shorten et al., 1999), non-unique 
parameterisations of the model behaviour may result in such cases. Also, the model 
structure for identified off-equilibrium models may be significantly different from the 
structure of the local models at equilibrium points. A paper by (Solak et al., 2003) 
shows how the incorporation of derivative information can allow potentially seamless 
fusion of models and points to some useful areas for further research. 
 
A paper by (Leith & Leithead, 1999) provides a slightly different analytical 
framework involving linearised velocity-based descriptions for relating global 
dynamic behaviour to local models. Further investigations by (McLoone, Irwin & 
McLoone, 2001) have shown that it is possible to construct a velocity-based LMN 
from experimental test data. However, the steady-state performance of the model is 
less accurate and since the velocity-based framework requires the derivative of the 
input there may be additional problems of measurement noise if rate sensors are not 
available. Section 5 includes some discussion of velocity-based models for nonlinear 
control. 
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The practical use of LMN concepts in modelling applications is described in Section 
2.4.2 in connection with the modelling of muscle and by (Gray et al, 1996b – 
supporting paper, [8]) for an application involving a simple laboratory process 
system involving two coupled tanks of liquid. This latter study demonstrates that an 
an inherently nonlinear system a number of models with parameters estimated at 
steady-state operating points can, in some cases at least, describe very effectively the 
behaviour of the system over the whole operating range since transients do not take 
the state of the system too far from the equilibrium conditions for the local models.  

 
2.3 Applications Involving Pulmonary Gas Exchange and 
Respiratory System Models 
 
Although there are many published models that describe aspects of pulmonary gas 
exchange processes, most early models were based on steady state assumptions. Since 
the 1970s the more widespread use of dynamic models based on differential equations 
or difference equations has provided a link between theoretical modelling and 
experimentation through the use of system identification methods. Dynamic models 
also allow full use to be made of techniques of experimental design to enhance the 
information content of experiments and make fuller use of transient response data. 
 
2.3.1 A dynamic model of pulmonary gas exchange processes 
 
The cyclic nature of ventilation has been incorporated in several lumped parameter 
dynamic models including one developed by (Pack et al., 1974 – supporting paper, 
[9] ). This model and later refinements of it (e.g. (Murray-Smith & Pack, 1977 – 
supporting paper, [10]) and (Bache, Gray & Murray-Smith, 1981 – submitted 
paper, [11])) were intended to be applied to simulation of the system for 
experimental situations involving tests of short duration. The model is compartmental 
in nature and consisted of a constant volume dead space compartment, representing 
the conducting airways, a single homogeneous alveolar compartment and a single 
compartment representing the tissues, as shown in Figure 2.2. In the simplest form of 
the model, which is still being applied in a number of applications areas, gas transfer 
between the tissues and the alveolar compartment is represented as a direct transfer 
process, without circulatory time delays. The venous blood volume is thus assumed to 
form part of the tissue compartment volume while the arterial blood volume is 
lumped into the alveolar compartment volume.  In the case of carbon dioxide there is 
a metabolic input of gas into the tissue compartment. A full description of the model 
and the underlying assumptions may be found in (Bache, Gray & Murray-Smith, 
1981 – submitted paper, [11]). 
 
Within the dead space and alveolar compartments of this model the respiratory cycle 
can be viewed as involving three stages. The first stage is transfer of gas to the 
alveolar compartment that was in the dead space at the end of the previous breath 
cycle. This is followed by inspiration of the gas mixture being used as input (e.g., 
atmospheric air). Thus stage (2) begins when the volume of the inspired mixture is 
greater than the volume of the dead space compartment. Stage (3) of the cycle 
involves expiration. 
 
The behaviour of this model can be described by a pair of ordinary differential 
equations, one for the alveolar compartment and one for the tissue compartment. For  
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the case of carbon dioxide, use of a linearised representation of the dissociation curve 
for carbon dioxide allows these equations to be written in standard state equation 
form. For inert gases the structure of the model is similar but slightly less complex as 
there is no metabolic input term. The state equation describing the alveolar 
compartment has a structure which changes with the stage of the breath cycle, as 
determined by a binary switching factor which has value one for stages (1) and (2) 
and zero for stage (3) . Details of the relevant equations may be found in (Bache, 
Gray & Murray-Smith, 1981 – submitted paper, [11]). 
 
The volume of the alveolar compartment changes during the breath cycle and the 
value at any time instant is determined by integration of the instantaneous gas flow 
rate, measured at the mouth, with respect to time. The variables of particular 
importance for this model structure and the intended applications are the partial 
pressure of carbon dioxide in the alveolar )(tPA , which may be regarded as a system 
output variable, together with the partial pressure of the relevant gas in the inspired 
mixture, )(tPI , and the measured gas flow rate at the mouth, )(tV& . The latter two 
variables are both quantities involved in the system input.  
 
External validation of this model was based on experiments which involved 
subjecting the model to an input that was identical to that used experimentally. The 
lung is particularly well suited to the use of such an approach since the input, which is 
the inspired gas flow measured at the mouth, can be measured continuously. The 
output of the model can be taken as the gas concentration measured at the mouth for 
the part of the breath cycle during expiration when gas from the alveolar 
compartment has completely filled the dead-space compartment volume. Over that 
section of the breath cycle this corresponds, approximately to )(tPA  if allowance is 

made for the transport delay in the dead space. The ventilatory flow )(tV& may be 
measured at the mouth using pneumo-tachographs while gas concentrations may be 
measured on a sampled basis during inspiration and expiration by means of a 
respiratory mass spectrometer. Delays need to be introduced through digital signal 
processing to ensure synchronisation of the signals. 
 
The performance of this model structure and the equivalent structures when other 
gases were used as test inputs was tested extensively. When a relatively insoluble gas 
such as argon is breathed the main parameter that can be adjusted is lung volume.  
With a suitable value for this quantity excellent agreement was found between the 
model output and that of the real system both for period of argon “wash-in” and argon 
“wash-out”. For carbon dioxide, a number of quantities that are assumed to be 
constant parameters of the model have to be estimated or tuned in some way (lung 
volume, cardiac output, initial partial pressure of the tissue compartment, metabolic 
production, tissue volume and the slope of the physiological dissociation curve for 
carbon dioxide). A similar situation arises for the case of the equations describing 
oxygen exchange. In the case of hyperventilation, model results were found to agree 
with measurements for the case of the partial pressure of carbon dioxide in the 
alveolar compartment. It was also found that hyperventilation caused an increase in 
the amplitude of oscillations of carbon dioxide partial pressure in that compartment 
which paralleled the measured increase of slope of the alveolar portion of the 
measured expired records. This was of physiological interest and led to further 
simulation studies to investigate hypotheses relating to the ventilation-perfusion 
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concept and the mechanisms involved in producing an arterial-alveolar gradient for 
carbon dioxide. These simulations were also found to be of value for teaching 
purposes (Murray-Smith, 1990a – supporting paper, [12]). 
 

Figure 2.2: Schematic diagram of pulmonary gas exchange model for carbon dioxide. 
 
 

 
2.3.2 System identification and parameter estimation for the gas-exchange model 
 
Interest in the use of system identification and parameter estimation techniques with 
dynamic models of pulmonary gas exchange processes has focused mainly on the 
development of techniques for non-invasive estimation of cardio-pulmonary 
quantities such as the lung volume, cardiac output and metabolic production. The 
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compartmental model outlined above provided a basis for a major programme of 
computational and experimental research during the 1970s based in the Centre for 
Respiratory Investigation at Glasgow Royal Infirmary (as outlined in (Murray-Smith 
& Pack, 1977 – supporting paper, [10]) and described in more detail in (Bache, Gray 
& Murray-Smith, 1981 – submitted paper, [11])). This research was aimed at 
clinical applications of an identification-based approach of this kind. The main 
objective was the development of a reliable inferential measurement technique for 
estimation of the blood flow through the lungs (which may be regarded as the cardiac 
output in normal subjects). This quantity has clinical importance and was, at that time 
at least, difficult to measure in a routine fashion by more conventional methods. 
 
Estimation of parameters of the gas exchange model from experimental data involved 
the introduction of an autoregressive moving average noise model and the application 
of a modified form of the maximum likelihood method of Ǻström and Bohlin (1966) 
as described in (Bache, Gray & Murray-Smith, 1981 – submitted paper, [11]) 
 
In terms of global identifiability it was found that it was possible to obtain a set of six 
relationships which allowed specific combinations of parameters of the model to be 
related to nine coefficients in the transformed equation and to the effective 
ventilation, which is a measured quantity. From inspection of these relationships 
between parameters it was shown that if the cardiac output, lung volume, metabolic 
production, tissue volume and the initial values of the partial pressures in the alveolar 
and tissue compartments are all to be estimated then the remaining two parameters of 
the  model (which describe the dissociation curve for carbon dioxide) must be known. 
 
Although analysis of global identifiability did not indicate any potential problems for 
the estimation of parameters of the homogeneous lung model, results of preliminary 
parameter estimation work using a modified form of the maximum likelihood method 
of Ǻström and Bohlin strongly suggested potential difficulties in terms of 
pathological unidentifiability. The experiments involved step function test inputs 
implemented in such a way that the subject had 40 seconds of air breathing followed 
by a sudden switch to a mixture containing 7% carbon dioxide for a further 80 
seconds. Following the approach outlined in Section 2.2.1, the indications of 
pathological unidentifiability are clearly evident from the large values of certain off-
diagonal elements within the parameter correlation matrix.  For a typical data set we 
have: 
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In (2.6) the parameters AV  and TCV  are the volumes of the alveolar and tissue 

compartments respectively, while AP (0) and TCP (0) are the initial values of partial 

pressures of carbon dioxide in the alveolar compartment and tissue compartment 
respectively. The parameter M& is the metabolic production rate of carbon dioxide (in 
the tissue compartment) and Q&  is the parameter representing the total blood flow 
through the lungs (the cardiac output). 
 
There are important limitations in terms of the design of identification experiments 
for this system due to the maximum permissible levels of concentration of carbon 
dioxide in the inspired mixture (IP ) and constraints in terms of the period of time 
over which the model may be considered a valid representation of the gas exchanging 
properties of the system. A further practical difficulty that affected experimental 
design was associated with the fact that variations of the inspired gas concentration 
could be achieved only using manual operation of a simple three-way tap. A decision 
was made that the form of signal should be restricted to square waveforms with equal 
intervals of air and 5-7% carbon dioxide breathing over a total period not exceeding 
ten minutes. In this case the problem of experimental design became one of 
determining the optimum frequency for switching from one gas mixture to the other. 
 
Through computer simulation it was possible to investigate the optimum frequencies 
for switching of the test input gas mixture for estimation of the main model 
parameters, Q& , )0(AV , TCV   and M& . Results indicated that a relatively short 

switching period is appropriate for estimation of the parameter )0(AV  whereas a 

much longer period is better in the case of M&  and TCV . In the case of the cardiac 

output parameter,Q& , which was of particular interest in the study described in 
(Bache, Gray & Murray-Smith, 1981 - submitted paper, [11]), the curve has a clear 
extremum within the range considered, at about a switching period of 24 breaths. Use 
of the D-optimal test signal design criterion, which is applied when it is important 
that all the parameters of a model be taken into account, gave results showing an 
extremum closer to the middle of the range of switching periods considered, at about 
55 breaths. The best design of experiment for estimation of the complete set of model 
parameters is therefore not the same as the best design for estimation of particular 
parameters, such as the cardiac output. 
 
Although optimal design of experiments for individual subjects is not possible 
because of model parameter uncertainties, sensitivity investigations have shown that 
the optimum switching periods are relatively insensitive to parametric variations 
within the normal physiological range for conditions that apply during testing. 
 
A standard form of test signal was derived on the basis of the results of the 
simulation-based studies outlined above. This test signal involved alternating periods 
of air and a mixture containing 5-7% carbon dioxide with a switching period of two 
minutes and an overall test duration of ten minutes. The results of experiments 
involving this form of input signal showed significant improvements in terms of 
identifiability. A typical set of results for the parameter correlation matrix P are 
shown below in (2.6a) and it is clear that there are no off-diagonal terms of magnitude 
approaching the limiting value of 0.95 (as discussed in Section 2.2.1). The 
interactions between estimated parameters have thus been reduced significantly.  
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Clearly the use of the square wave test signal eliminates problems of pathological 
unidentifiability that were encountered when using the simple step function for of test 
input.    
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Direct examination of the form of the residuals resulting from the application of this 
approach showed that these are approximately white and this finding was supported 
by the form found for the auto-covariance of residuals. Parameter values found in 
tests on four subjects using the approach outlined here, which is presented in more 
detail in (Bache, Gray & Murray-Smith, 1981 – submitted paper, [11]) and (Bache 
& Murray-Smith, 1983 – supporting paper, [13]), were within the physiological 
range expected for these subjects and showed an acceptable level of repeatability. 
Encouraging results were obtained from comparative measurements using a more 
conventional, but invasive, method for estimating cardiac output. 
 
Unfortunately this technique for estimation of cardio-pulmonary quantities did not 
lead directly to the development of new methods for routine investigation of clinical 
problems. This was mainly due to the relatively high cost, at the time of this 
development, of the computing equipment required and the additional cost of the 
specialist measuring equipment needed, such as respiratory mass spectrometers. 
However, the use of system identification and parameter estimation methods in the 
context of the cardiopulmonary system received further attention from a number of 
other research groups (e.g., (Brovko, O. et al., 1981)). The dynamic form of the gas 
exchange model has also been used in further research on problems of respiratory 
control (Greer, Jordan & Murray-Smith, 1982 – supporting paper, [14]), in the 
development of teaching software for students of physiology and medicine (Murray-
Smith, 1990a – supporting paper, [12]) and, very recently, exercise physiology 
(Thamrin & Murray-Smith, 2007 – supporting paper, [15]).  
 
Following the publication of papers describing applications of the dynamic gas 
exchange model outlined above, further work was carried out and a second model, 
also of lumped parameter form, was developed to allow various forms of 
maldistribution of ventilation and perfusion to be considered. These included features 
such as an alveolar dead space or a circulatory shunt. Investigations of identifiability 
for this inhomogeneous model for inert gases showed that neither the degree of a 
circulatory shunt nor the cardiac output could be estimated independently from 
measurements at the mouth (Bache & Murray-Smith, 1983 – supporting paper, [13]). 
However, the analysis did show that these quantities could be decoupled if 
measurements could be made of the gas partial pressure in arterial blood. Continuous  



 22 

 
measurements of that type were, however, beyond the capabilities of mass 
spectrometry at the time when the work was carried out and this aspect was not 
considered further.  
 
It has been noted (Murray-Smith, 1982 – supporting paper, [16]) that, in the 
identification of physiological systems, we are often dealing with very limited data. 
Also, uniform sampling may not always be possible (for example, in measurements 
involving samples of blood). Although not encountered in the work involving the 
application of system identification methods to gas exchange models, problems of 
sampling strategy and test signal design can be very severe in other types of 
physiological application (e.g. in the investigation of humoral systems). The research 
reported in (Bache, Gray & Murray-Smith, 1981 – submitted paper, [11]), with the 
emphasis on issues of identifiability and test signal design, represents an important 
contribution to the practical application of system identification and parameter 
estimation methods to physiological systems. 

 
2.4 Applications Involving Neurophysiological Models.   
 
Neurophysiology provides a few very interesting examples of situations where 
modelling and simulation methods have had a significant role in providing a formal 
basis for quantitative descriptions of real systems and in guiding the design and 
execution of experiments (e.g. the work of Hodgkin and Huxley (1952) on the basic 
processes of nerve conduction and more recent work by Prochazka and his colleagues 
(e.g., (Prochazka, 1996); (Prochazka, Gillard & Bennett, 1997); (Prochazka, 
Gritsenko & Yakovenko, 2002)) on neuromuscular control. However, most areas of 
neurophysiology appear to have been influenced very little by the techniques of 
experimental modelling.  
 
2.4.1 Modelling of muscle spindle receptors 
 
One area of neurophysiology where some very significant progress has been made in 
terms of quantitative experimental investigation involves the muscle spindle, which is 
believed to be an important element within the neuromuscular control system. 
Although control theory has provided a framework for descriptions of the function of 
the muscle spindle, and experimental techniques such as frequency response 
measurement have been applied, it is clear that little of the recent progress in muscle 
spindle physiology can be attributed to modelling and simulation. It is believed that 
this may be due in part to a failure to bring together experimental and modelling 
approaches and adopt a truly integrated approach to the investigation of this very 
complex physiological system (Murray-Smith & Rosenberg, 1983 - supporting paper, 
[4] ) 
 
Muscle spindles are receptors which respond primarily to length changes imposed on 
the muscles in which they are embedded. Each muscle involved with posture or the 
control of movement contains a number of these receptors, which lie in parallel with 
the load-bearing fibres. Muscle spindles consist of a number of specialised muscle 
fibres (the intrafusal fibres) which lie in parallel with each other. The intrafusal fibres 
are of different types (bag fibres and chain fibres) and these are known to have 
different mechanical properties. Inputs to the muscle spindle are through two types of 
fusimotor axon.  Neural activity in these fusimotor axons is known to alter the  
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response of the intrafusal fibres to length changes. Outputs from the muscle spindle, 
which are transmitted back to the spinal cord, are through two different types of axon 
(the primary (Ia) and secondary (II) afferent axons).  Measures of neural activity in 
these axons provide muscle spindle model outputs. 
 
One of the inherent difficulties is the fact that the muscle spindle is a multi-input, 
multi-output system of considerable complexity which involves an unusual 
combination of continuous and discrete variables. Activity in the axons leading to and 
from the intrafusal fibres takes the form of sequences of identically shaped pulses 
(action potentials), with the information content of the signals being coded through 
the instantaneous frequency of these pulse trains. The fusimotor axons from the spinal 
cord are of two types, termed static gamma axons (γs) and dynamic gamma axons (γd). 
Activity in these fusimotor axons alters the response of the Ia and II axons to imposed 
length changes. These fusimotor signals thus form two inputs to the muscle spindle, 
along with the length change variable which is a third input variable. 
 
One continuing problem that has an important bearing on the possible role of muscle 
spindles within the neuromuscular control system concerns the responsiveness of the 
Ia and II axons to muscle length changes in the presence of fusimotor inputs. Several 
possible mechanisms have been suggested, including changes in the mechanical 
properties of the intrafusal fibres following fusimotor stimulation. 
 
Attempts to model the muscle spindle have involved two distinct approaches. In one 
case available knowledge about the mechanical properties of the different types of 
intrafusal fibre and the processes that lead to the generation of action potentials in the 
Ia and II afferent axons has been used to produce detailed theoretical models (e.g. the 
publications of (Angers & Delisle, 1971) and (Rudjord, 1972) which provide 
interesting illustrations of early developments of this kind).  On the other hand, for 
many years experimentalists have been applying techniques from linear system theory 
to obtain transfer function descriptions from experimental test data (e.g., (Poppele & 
Bowman, 1970); (Hasan & Houk, 1975)). 
 
In the work described in the papers included in this thesis two distinctly different 
approaches have been investigated in an attempt to apply system identification and 
parameter estimation techniques to the combined muscle and muscle spindle system 
to throw light on the problems of muscle spindle behaviour. The first approach 
considered used classical identification techniques to determine a transfer function 
between mechanical inputs, such as length changes applied to the muscle, and neural 
outputs from the Ia and II axons represented by equivalent continuous signals based 
on instantaneous frequency measures. The intensity of fusimotor stimulation was also 
represented, through use of the instantaneous frequency measure.  The second type of 
approach put more emphasis on the multi-input multi-output nature of the muscle 
spindle and involved fewer implicit assumptions about the role of the muscle spindle 
within the neuromuscular control system. It involved the application of system 
identification methods to point processes so that useful information could be 
extracted from tests involving random test signals applied to both the continuous and 
discrete inputs. 
 
One example of the first type of approach is the work by (Maclaine, McWilliam et al., 
1977 - submitted paper, [1]), where experimentally- derived linear models,  
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identified by the maximum-likelihood approach of Ǻström and Bohlin (1966), were 
used to investigate interactions between the fusimotor and mechanical inputs to the 
muscle spindle. The results obtained by this identification method provided a basis 
for further analysis and interpretation in terms of the mechanical properties of the 
intrafusal fibres (Maclaine, McWilliam et al., 1977 - submitted paper, [1]). 
 
The second method of approach required some preliminary theoretical work before 
the developments by Brillinger’s group at the University of California, Berkeley, on 
the identification of point-process systems could be applied to the results of 
neurophysiological experiments. This allowed spectral estimation procedures, based 
upon the finite Fourier transform and the smoothed periodogram, to be used for the 
identification of linear point-process models to describe the relationship between a 
fusimotor input to a muscle spindle and the Ia and II responses. Results were 
expressed in terms of estimated gain, phase and coherence as a function of frequency 
(Murray-Smith, Rosenberg et al., 1985 – supporting paper, [17]). A range of 
frequencies can be found over which values of coherence are above an approximate 
95% confidence interval under the assumption that the two processes are independent. 
This may be taken as the range of frequencies over which the linear model may be 
assumed valid. Estimates for the 95% confidence intervals for the gain and phase can 
also be found and, over the range of frequencies for which the linear model is 
assumed valid, the confidence intervals for the gain and phase are found to broaden as 
the coherence falls. 
 
Applications of these point-process models include investigation of phenomena 
involving “driving” in which the application of a periodic spike train stimulus, 
through the fusimotor inputs, produces an afferent spike train which has a pulse 
frequency directly related to the input train.  This phenomenon was also the topic of 
an earlier investigation using other methods of analysis (Dutia, Murray-Smith et al., 
1977 – supporting paper, [18]). The range of pulse frequencies over which one-to-
one driving occurs in simple nonlinear muscle spindle models has been investigated 
through simulations and the model parameters which affect the ability of the model to 
exhibit driving have been found. Adjustment of these parameters has allowed the 
nonlinear simulation model to provide one-to-one driving over a frequency range that 
is very similar to that found in experiments (Halliday, Murray-Smith & Rosenberg, 
1992 – submitted paper, [3]) (Murray-Smith, Rosenberg et al., 1985 – supporting 
paper, [17]). 
 
2.4.2 Modelling of active skeletal muscle 
 
The modelling of muscle has traditionally been carried out on the basis of 
physiological understanding of the processes of muscle contraction, either at a 
microscopic or at a macroscopic level. Although the resulting models have the 
advantage that they involve parameters that have physiological significance these 
approaches lead to models that are complex and computationally expensive. In most 
cases they also fail to account fully for some well known nonlinear characteristics of 
muscle that are observed in experiments. For example, muscle characteristics vary 
significantly with stimulation frequency and, although models of this type have been 
developed that allow variation of motoneurone inter-pulse interval (e.g. (Murray-
Smith, 1994 -.supporting paper, [19])), the force developed by active muscle depends 
in a dynamic fashion on the history of the stimulation frequency. The nonlinear  
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summation of contractions for stimulation pulses involving very short inter-pulse 
intervals presents a challenge in terms of modelling. The phrase “catch-like effect” is 
used to describe a particular phenomenon that is observed when a doublet or triplet of 
pulses with very short inter pulse intervals is applied. 
 
Donaldson et al. (1995) successfully used a radial basis function network for 
modelling isometric contraction of muscle stimulated using pulse trains of varying 
frequency. This type of approach was used again by Gollee and Hunt (1997) using 
second order linear models to describe local descriptions of muscle. Second-order 
linear local models were blended together using a form of scheduler which could 
select the models closest to a given operating point and interpolate between models. 
The blended structure then forms a time varying description of the muscle. The model 
developed by Gollee and Hunt (1997) was, however, limited to muscle having a 
majority of fast motor units and was not applicable for other types of muscle. 
 
The work of (Gollee, Murray-Smith and Jarvis, 2001 – submitted paper, [20]) 
represents an attempt to extend and generalise the work of Gollee and Hunt (1997). 
The approach used involved dividing the complex task of modelling active skeletal 
muscle into smaller and simpler sub-tasks. Each of those sub-tasks could then provide 
the basis of a sub-model, valid locally, and a scheduler provided a way of establishing 
the relevance of the different sub-models for the current operating condition and 
weighted the contributions of those sub-models accordingly. The complete model was 
formed of the sum of all the weighted local models.  
 
The local models which form the sub-models within the system model can be of any 
linear or nonlinear form and may be based on a priori knowledge of the 
corresponding real system. In the case of the muscle modelling work local linear sub-
models were applied. Linear models of second order were used, with an added pure 
time delay. The scheduling variable was based on a measurement of the instantaneous 
stimulation frequency and this was found to work well with both fast and slow 
muscle. 
 
The experimental procedure involved system identification. Tests were used for the 
estimation of parameters of the local model network and for each model this involved 
30 data sets. The remaining test data sets (involving at least 30 sets) were then used 
for validation purposes. The procedure for identification involved starting with a 
single linear model and steadily increasing the number of units in the network. 
Although the error on the training data sets tended to decrease with the number of 
LMN units the error for the test data sets was found to rise once the optimum model 
size had been reached. The structure with the smallest value of test error was chosen 
as the optimal structure. 
 
Results from these experiments showed that, for fast muscle, six local models 
corresponded to the optimum while, for slow muscle, five sub-models were adequate. 
With both types of muscle an excellent match could be achieved and the “catch-like” 
effect was accurately represented. Although it is recognised that local model network 
methods have important limitations and that conclusions drawn from the behaviour of 
a local identified model must be treated with caution, it is clear from this study that 
the approach does provide a potentially useful method for the experimentally-based 
modelling of electrically stimulated skeletal muscle under isometric conditions. This  
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work on identification of muscle through the use of local model networks formed part 
of a broader study concerned with the use of electrically stimulated skeletal muscle 
for cardiac assist situations (Jarvis, Gollee et al, 1996 – supporting paper, [21]). 
Further work is necessary in order to be able to investigate the possible benefits of the 
local model network approach for the modelling of skeletal muscle for other 
experimental conditions. 

 
2.5 Applications in Helicopter Flight Mechanics Modelling 
 
The application of system identification and parameter estimation techniques to 
problems of helicopter flight mechanics modelling and control is of considerable 
practical importance, especially for flight test validation of predictive models 
developed on the basis of physical laws and principles. However, helicopters and 
other forms of rotorcraft present a number of problems in terms of system 
identification. In the identification of linearised multi-input multi-output models of 
the dynamics of the complete vehicle it is normal to be faced with test records that are 
short in relation to the dominant dynamic characteristics of the system. Nevertheless, 
these models involve many parameters and a wide range of frequencies, in addition to 
high levels of noise. This is a combination of factors that is generally considered 
undesirable for the successful application of system identification and parameter 
estimation methods. 
 
From the viewpoint of the helicopter industry the benefits of helicopter system 
identification relate to the potential to reduce the amount of flight testing that has to 
be carried out in the context of certification of new designs and to achieve 
improvements in agility and handling qualities through fine tuning of flight control 
systems. The costly and time-consuming flight testing programmes for new helicopter 
designs, while being concerned principally with certification issues, are also aimed at 
improving the confidence in underlying physically-based models used in design and 
in reducing the level of uncertainties in these models. Estimation of parameters from 
flight tests is increasingly seen as an important part of such testing and is especially 
relevant in the context of important aerodynamic stability and control parameters  
 
Another factor, which provided a further stimulus to those engaged in the application 
of system identification methods to helicopters and other forms of rotorcraft in the 
late 1980s and 1990s, related to the implementation of active control technology 
concepts in rotorcraft. Essentially, this is the fly-by-wire approach that had, by then, 
already been accepted in fixed-wing aircraft. The improvements in performance and 
operational capabilities expected from the introduction of active-control technology 
could only be achieved through the availability of accurate and proven mathematical 
models (Murray-Smith, 1995 - supporting paper, [22]) The publication in 1989 and 
in 1994, in the USA, of revised handling qualities requirements for military 
helicopters (Anonymous, 1994) provided a stimulus to flight control system design 
and created new interest in the potential and practical limitations of multivariable 
control system analysis and design methods. Enhanced performance requirements and 
developments in materials and rotor technology have led to major improvements in 
vehicle characteristics which mean that much enhanced performance is possible and 
traditional loop-by-loop design methods are no longer adequate. Multivariable control 
system design techniques, which more fully exploit the inherently multivariable  
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structure of these vehicles, have been applied in a number of investigations (e.g., 
(Manness & Murray-Smith, 1992 – supporting paper, [23]), (Gribble, Manness & 
Murray-Smith, 1994 – supporting paper, [24]), (Gribble & Murray-Smith, 1990 – 
supporting paper, [25]), (Hughes, Manness & Murray-Smith, 1990 – supporting 
paper, [26]), (Manness, Gribble & Murray-Smith, 1990 – supporting paper, [27])). 
However, ensuring an appropriate level of accuracy in the multi-input multi-output 
models used for active control system design is a major challenge. Models are 
required that perform adequately over a defined range of frequencies and over a 
specific range of manoeuvre amplitudes.Improved models undoubtedly offer direct 
benefits in terms of performance. For example, high-bandwidth model-following 
flight control systems based on accurate mathematical models may incorporate 
improved feed-forward control pathways and allow improved agility and some 
reduction of high feedback gain values that would otherwise have to be introduced to 
compensate for model deficiencies. 
 
System identification methods are also becoming increasingly important in the 
context of validation of ground-based simulators for rotorcraft of all types. Such 
simulators require highly accurate mathematical models if they are to be useful for 
pilot training (see, for example, (Hamel, 1994)). 
 
2.5.1 Identification methods for rotorcraft applications 
 
Prior to the 1990s most published accounts of applications of system identification 
techniques to helicopters and other types of rotorcraft involved time-domain methods 
of identification. Another approach, which is believed to have advantages, involves 
the use of frequency-domain methods. In this case the measured response data are 
transformed first into the frequency domain using an appropriate implementation of 
the Fast Fourier Transformation. This allows attention to be focused on a particular 
part of the frequency range and data lying outside the range of interest can be 
discarded or given less emphasis. This means that, for the identification of six-
degrees-of-freedom rigid body models, the rotor degrees of freedom, which involve 
higher frequencies can be excluded. Conversely, for the identification of rotor 
dynamics, the exclusion of lower frequencies involving the rigid-body response can 
be advantageous. This procedure allows, in a sense, a form of model reduction within 
the identification process (Padfield, Thorne et al., 1987 – supporting paper, [28]). 
Details of a frequency-domain approach to helicopter system identification developed 
during the period 1984-1988 may be found in a paper by Black and Murray-Smith 
(Black & Murray-Smith, 1989 – submitted paper, [29]). This approach was one of a 
number of methods of helicopter system identification successfully used by the 
NATO-supported AGARD Flight Mechanics Panel Working Group WG18 in the 
preparation of the AGARD Advisory Report 280 (Anonymous, 1991) on Rotorcraft 
System Identification. Frequency-domain methods have become increasingly widely 
used in the years since publication of that AGARD report, especially with the now 
widely available CIFER software developed by Dr Mark Tischler and his colleagues 
at the US Army Aeroflightdynamics Directorate (Tischler & Remple, 2006). 
 
In the system identification approach developed by Black and Murray-Smith, the 
selection of the model structure and the estimation of parameters involved a three-
stage approach. This is based on initial use of frequency-domain equation error 
techniques, followed by further refinements of estimates through the use of output-
error techniques and then a final time-domain output error procedure. Work was  
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carried out using single records for a number of simultaneously recorded variables 
and also combinations of records. The analysis of combinations of records involved 
the application of a technique for multiple-run identification which retains the 
individuality of separate runs and avoids some of the problems resulting from simple 
concatenation of files (Leith, Bradley & Murray-Smith, 1993 – submitted paper, 
[30]). This multiple-cost approach involves the introduction of an additional 
summation loop involving the individual cost functions for each of the separate data 
sets. This gives, for N data sets, a combined cost function  
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Analysis has also shown that, for appropriate conditions, estimates of multiple-run 
parameter values and their standard deviations may be obtained from the individual 
results obtained from the runs that form the basis of the multiple-run identification. 
This means that conventional single-run system identification techniques and 
software can be used without alteration for multiple cost identification. The paper 
includes an illustrative example, with excellent results, involving the application of 
the multiple-cost identification approach to flight data from a Puma helicopter.    
 
The individual cost functions used in the frequency-domain output-error stage of the 
three-stage identification procedure described in the paper by Black and Murray-
Smith (1989) are based on use of the maximum-likelihood approach and involved 
summation over a specified range of frequencies. A feature of this approach to state-
space system identification is the use of pseudo-control inputs and some parameters 
were fixed during the identification process. Within each iterative cycle the error-
covariance matrix estimate is updated using predicted model outputs. Minimisation of 
the cost function involved use of a quasi-Newton method together with an optimal 
linear search algorithm. In this output-error approach, convergence is necessary in 
both the model parameter values and in diagonal elements of the error-covariance 
matrix. The frequency-domain output-error identification process is followed by a 
time-domain output-error identification stage in order to estimate zero offsets and 
initial states which require information not included in the frequency-domain data. 
 
Although it may be stated, without question, that system identification and parameter 
estimation techniques are potentially very important in the context of helicopter 
development and flight testing, it has to be accepted that the benefit of these tools has 
not yet been fully realised. Many of the difficulties are associated with issues of 
robustness and these have been classified under the following headings (Murray-
Smith, 1991c – supporting paper [31]):   
1. robustness and reliability of a priori information, 
2. robustness of the identified model structure, 
3. robustness of estimated parameters, 
4. robustness of the resulting overall model. 
In the context of these robustness issues the properties of different estimators are 
likely to be less important than questions of identifiability, the quality of measured 
system response data and experimental design (Murray-Smith, 1991c – supporting 
paper, [31]), (Leith & Murray-Smith, 1989 –submitted paper, [32]), (Leith, 1994). 
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2.5.2 Test inputs for helicopter system identification and parameter estimation 
 
Test inputs commonly used for helicopter system identification include doublet 
signals, other forms of multi-step signals such as the so-called “3-2-1-1” pseudo-
stochastic signal (Plaetschke & Schulz, 1979, Kaletka, 1979) and frequency-sweep 
signals. The coherence function has been found to be a valuable measure of the 
degree to which a given type of signal provides satisfactory excitation in helicopter 
system identification (Tischler, 1987). This quantity provides a measure of the 
fraction of the output auto-spectrum which may be accounted for by a linear 
relationship with the input auto-spectrum. In the ideal case the coherence is unity over 
the complete frequency range of interest. Values of coherency smaller than one may 
be associated with nonlinearity in the system under test, process noise (such as 
turbulence in the case of aircraft applications) or lack of input signal power and thus 
response power (Bendat & Pearsol, 1980), (Bendat & Pearsol, 2000). 
 
Designs of test signals for practical system identification of a helicopter or any other 
air vehicle are inevitably based on a mathematical model of that vehicle. Because of 
uncertainties within that model they are unlikely to be optimal. Indeed, if 
uncertainties were not present there would be no need for system identification 
testing. This means that it is important to characterise some appropriate flight data 
from the vehicle in question as a first step towards experimental design. This is 
essentially the same procedure as was applied in the development of improved forms 
of test signal for investigation of the pulmonary gas exchange model in Section 2.3. 
 
As with the work on test input design for physiological systems, it is essential to have 
a quantitative basis upon which test signals can be compared. In the work outlined 
here this involved the use of quantities such as the parameter information matrix and 
the dispersion matrix, both of which have theoretical origins in the Cramer-Rao 
bound (Plaetschke & Shulz, 1979). This has led to test input design algorithms that 
minimise some appropriate function of the dispersion matrix or of the parameter 
information matrix, as outlined in Section 2.2. It should be noted, however, that care 
must be taken when applying such an approach due to the fact that, unless an efficient 
estimator is used, the approach may be invalid and the resulting designs cannot be 
relied upon. Inputs designed using measures based on the dispersion matrix are useful 
in cases where long test records are available and where maximum-likelihood 
estimators are being applied since such estimators are asymptotically efficient. 
 
2.5.3 Experimental design for linearised six-degrees-of-freedom helicopter 
models 
 
In cases where the purpose of the identification is concerned with validation of 
linearised flight mechanics models, the inputs that are being used for testing must be 
consistent with the modelling assumptions. This means that input design methods 
must take account of any input constraints that may exist. In addition, it is important 
to obtain long test records since parameter estimates then have time to converge and 
efficient (i.e. minimum variance) estimation is possible, thus allowing use of 
dispersion matrix criteria in the design process. 
 
The broad aim of research by (Leith & Murray-Smith, 1989 – submitted paper, [32]) 
was to design a test input which would give long test records while providing 
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providing a dispersion matrix that is reasonably “small”. Avoiding resonances in the 
system is an important requirement since an input that excites these resonances would 
produce a response that would rapidly become nonlinear and this might require the 
flight experiment to be prematurely aborted. Inputs should also be such that there is 
no steady state component in the signal. For many cases of practical importance a 
constant component in the test input will produce a steady-state constant component 
in the response and this tends to shift the operating condition of the aircraft. If the 
operating point is significantly different from the operating point used for 
linearisation of the theoretical model the parameter estimates obtained experimentally 
will be inconsistent with that model, thus making the whole procedure invalid. 
 
The paper by (Leith & Murray-Smith, 1989 – submitted paper, [32]) presents a 
method of autospectrum design that: 
a) ensures that resonances are avoided, to give longer test records. 
b) avoids exciting frequencies around the resonances, to give robustness 
c) excites the remaining frequencies to give a reasonably “small” dispersion matrix. 
A further requirement is that inputs have to be relatively simple in form so that they 
can be applied manually by the pilot.  
 
An optimal spectrum program was developed successfully to produce a binary multi-
step input having an auto-spectrum that satisfies a specification of the type outlined 
above. 
 
The starting point for the development of the optimal spectrum program was to 
consider a general a-periodic binary multi-step input which could be described in 
terms of its Fourier transform by : 
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where )(ωF is the Fourier transform of the signal, ω is the frequency (rad/sec), n+1 is 
the number of steps in the binary input sequence, ti is the time in seconds of the ith 
step in the input and t0 = 0 sec. 
 
The cost function is defined as  
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and the optimal spectrum program uses as input the number of steps n in the input 
sequence, the number, m, of weighting factors in the cost function I and the values of 
the frequencies kω and the corresponding weighting factors ak . These last two are 

chosen so that the requirements are satisfied in terms of frequencies that should and 
should not be excited. For a given value of n the cost function has to be optimised in 
terms of the timing of the fixed number of steps in the multi-step input. The 
specification of a large positive value of ak produces an input having a small 
component of the auto-spectrum at frequencykω , while specification of a large 

negative value gives an auto-spectrum with a small magnitude at that frequency. 
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This approach was applied successfully to the design of test inputs for a Lynx 
helicopter operating at RAE (Bedford). Flight trials were performed for a test input 
applied to the longitudinal cyclic control of the vehicle for a flight condition of 80 
knots level flight. As described in (Leith & Murray-Smith, 1989 – submitted paper, 
[32]), the optimal test signal design process was carried out with weightings chosen to 
ensure that the input auto-spectrum had no dc component, that it avoided known 
resonances at about 0.3 rad/sec and that the input excited frequencies between 2 and 3 
rad/sec but not above 3 rad/sec. The upper limit of 3 rad/sec was imposed because 
previous experience at RAE (Bedford) suggested that the theoretical model was 
useful only for frequencies below about 3 rad/sec. At higher frequencies it appears 
that dynamic effects within the rotor sub-system have a significant influence and 
these were not included in the model. A signal consisting of five steps was found to 
be particularly useful. This signal, a double-doublet, allowed long test records before 
the response became nonlinear. Typical record lengths for the double doublet with the 
Lynx helicopter were of the order of 30 seconds compared with 10-15 seconds for a 
traditional doublet input and only 3 seconds for the 3-2-1-1 input. Estimates of seven 
parameters of the pitching moment equation were obtained using the frequency-
domain equation-error approach described in (Black & Murray-Smith, 1989 – 
submitted paper, [29]). Other forms of multi-step input were considered and tested 
in flight but the double-doublet gave results that were consistently better than those 
obtained from the use of other inputs. The double doublet appears to be more robust 
to errors and uncertainties in the theoretical model used in its design.  
 
It is of interest to note that the techniques adopted for the design of test signals for the 
rotorcraft application differ from those applied in modelling the gas exchanging 
properties of the lungs. In that application the test signals were designed to minimise 
an appropriate function of the dispersion matrix, such as the determinant, in the time-
domain. In this application frequency-domain methods were adopted, partly because 
of the physical insight that these provide in the subsequent application of the models 
for flight control system design and also the fact that the frequency domain offers the 
possibility of separating six-degrees-of-freedom dynamics and rotor dynamics. 
 
A further paper (Leith & Murray-Smith, 1993 – supporting paper, [33]) - discusses 
the development of energy and amplitude constrained optimal inputs for use in 
system identification. Although that paper includes a study based on a fifth-order 
helicopter flight mechanics model as an example, the paper is written in a more 
general way and the results could be applied to any problem involving a combined 
input and state energy constraint or an output amplitude constraint. For these types of 
constraint the design of D-optimal inputs is first demonstrated for a simple first-order 
system and the insight provided by this approach is emphasised. The fifth-order 
helicopter example involves an output amplitude constraint. Although the best result 
was obtained using the output amplitude constrained test input, this example provides 
further evidence of the advantages of the double-doublet design over other 
conventional test signals such as the doublet.  
 
Further discussion of flight test procedures, design of experiments and robustness 
issues in helicopter system identification may be found in (Murray-Smith, 1991a – 
supporting paper, [34]), (Murray-Smith & Padfield, 1991 – supporting paper, [35]) 
and (Murray-Smith, 1991b – supporting paper, [36]). Further discussion of results 
from the application of system identification methods to helicopter flight mechanics  
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model development are presented in (Padfield & Murray-Smith, 1991 – supporting 
paper, [37]). 
 
2.5.4 System identification strategies for helicopter rotor models 
 
Coupled models describing rotor flapping dynamics and rotor inflow phenomena are 
of great importance in helicopter flight mechanics and for the design of flight control 
systems. The system identification technique developed by (Black & Murray-Smith, 
1989 – submitted paper, [29]) which involves a combination of equation-error and 
output error methods in the frequency domain, is well-suited to the investigation of 
rotor models although it was developed initially for the identification of rigid body 
helicopter models. The main advantage of this method of approach is that it provides 
a way of partially decoupling the estimation of parameters of a rotor model, involving 
relatively high frequencies, from the estimation of parameters within the rigid-body 
six-degrees-of freedom description which involves the low-frequency part of the 
spectrum. 
 
The application of system identification methods to models of the main rotor in a 
vehicle having a conventional single main rotor and tail rotor helicopter configuration 
is challenging because of difficulties in exciting the rotor blades over a wide enough 
range of frequencies and also because of the inherent problems of measuring the air 
flow though the rotor. A paper by (Bradley, Black & Murray-Smith, 1989 – 
submitted paper, [38]) describes the application of the frequency-domain approach 
to the estimation of parameters within four competing theoretical models 
incorporating induced flow. The most general form of model considered involved a 
second-order description with induced-flow dynamics, which could be reduced to a 
first-order description with induced-flow dynamics or to either a first or second order 
form without induced flow dynamics. A modified form of state equation: 
 
 

BuAxxE +=&       (2.10) 
 

 
was adopted because it was found that use of this form of mathematical description 
could facilitate direct estimation of physically meaningful parameters. With this 
representation defined relationships can exist between the elements of the A, B and E 
matrices. 

 
Conclusions from this work indicated that the time constant of the dynamics of the 
induced flow is of the same order as that of the dynamics of tilting of the rotor disc 
for the flight condition considered. The formulation of the equations using the 
structure of Equation (2.10) was found to be a particularly useful development 
because it facilitated physical interpretation of results and released investigators from 
the restrictions of the standard state-space formulation. 
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2.6 Discussion 
 
One important feature of the papers included in the thesis is that they discuss 
modelling and control applications from a variety of areas, including physiology, 
electro-optics and rotorcraft dynamics as well as more traditional control engineering 
areas such as ships, underwater vehicles and electrical power generation systems. The 
objectives of modelling in these different areas can differ significantly and prior 
knowledge of the real system can be very important. It is also essential to have a full 
understanding of how the model is to be used. The purpose of a model influences the 
type of model needed and, if the goal is to provide further insight about the 
corresponding real system, the form of the model may be significantly different from 
models used for quantitative prediction, simulation or control system design.    
 
The benefits of a cross-disciplinary approach to system modelling are believed to be 
very significant and the value in terms of cross-fertilisation of ideas resulting from 
involvement in a wide range of applications can be seen from the detailed content of 
the papers. Although the fields of neurophysiology, respiratory gas exchange 
processes, electro-optic sensor-systems, helicopter flight mechanics, hydro-electric 
power generation and surface ship or underwater vehicle control appear to have little 
in common, closer examination shows that systems from these different fields present 
many similar difficulties in terms of accurate modelling. The papers included here 
show that, in addition to displaying significant nonlinear behaviour, most credible 
models of such systems involve significant uncertainties in the early stages of their 
development. Significant simplifications may also have to be introduced, often for 
reasons of computational complexity, if the model is to be useful for an application 
such as non-invasive measurement, a real-time system simulator or the design of an 
automatic control system. 
 
System identification and parameter estimation techniques are important tools for the 
modelling of complex systems. The papers included in this section of the thesis focus 
on practical aspects of system identification and three very different fields of 
application are considered, two involving biological systems and one involving a 
complex engineering system. Similarities highlighted by the research reported in 
these different application areas include problems of inherent system complexity, 
difficulties caused by having to work with short data records and complications 
introduced by experimental constraints, poor signal to noise ratios and nonlinearities. 
 
When used as a tool for refinement of system models, or for the indirect estimation of 
physical quantities which are not accessible to direct measurement, system 
identification methods are needed which provide a clear indication to the user of the 
accuracy of parameter estimates and of the validity of the model structure. In 
parametric models, questions of accuracy can be closely linked to issues of numerical 
identifiability and thus to experimental design. However, in many cases, especially 
with nonlinear parametric models establishing the accuracy of estimated quantities is 
not straightforward (see, for example, (Nelles, (2001), pp. 431-434)). In the case of 
non-parametric models useful insight concerning the range of validity of estimates 
can be gained from the use of measures such as coherence. 
 
Following the successful application of identification methods, simulation tools can 
be used in the evaluation of the resulting models and for the assessment of competing 
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hypotheses in cases where major uncertainties remain. Such an approach can lead to 
the formulation of new experiments and to a further stage of model refinement if that 
is necessary for the intended application. 
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3. Inverse Simulation for System Modelling 
 
3.1 Introduction 
 
Inverse simulation techniques applied to linear or nonlinear dynamic models allow 
the determination of time histories of system “inputs” needed to achieve a specified 
time history for a given set of required “outputs”. This approach has attracted 
considerable attention in the field of helicopter flight mechanics and a number of 
methods of inverse simulation have been in use within the helicopter research 
community since the late 1980s and early 1990s. The techniques are of potential 
interest for other types of application as they provide important insight about 
requirements in terms of the actuator characteristics needed to achieve given levels of 
controlled output performance. This is especially important when constraints, such as 
amplitude and rate limits, are present and the approach is potentially useful for a wide 
range of mechatronic and control systems applications, including integrated control 
systems.     
 
The first techniques, developed mainly for aircraft applications, may be divided into 
three categories: (a) differentiation methods as developed by Kato and Saguira (1986) 
and by Thomson and Bradley at the University of Glasgow (e.g., (Thomson & 
Bradley, 1990); (Thomson & Bradley, 1994), (b) integration methods which 
originated with the work of Hess and his colleagues at the University of California, 
Davis (e.g., (Hess, Gao & Wang, 1991) and, independently, by Thomson and other 
members of his group at the University of Glasgow (e.g., (Rutherford & Thomson, 
1996) and (c) methods which adapt traditional numerical optimisation algorithms for 
use in inverse simulation (e.g., (de Matteis, de Socio & Leonessa, 1995), (Lee & Kim, 
1997) and (Celi, 2000).  
 
The mathematical basis of inverse simulation and the differentiation and integration 
based methods, which are based on the Newton-Raphson (NR) algorithm, are 
described in a review paper published in discussing inverse simulation methods and 
their applications (Murray-Smith, 2000b - supporting paper, [39]). The integration-
based approach using the NR algorithm is the most widely used technique at present. 
 
Known difficulties with the integration-based method involving use of the NR 
algorithm include: 
 

• the existence of oscillations in the calculated inputs which are of high 
frequency compared with the dynamics of the system being simulated; 

• possible non-convergence of the algorithm;  
• the occurrence of maintained or slightly damped oscillations (so-called 

constraint oscillations) of frequency similar to the frequency of an 
oscillatory mode of the system; 

• numerical issues associated with the use of derivative information in the 
calculation of the Jacobian. 

 
More fundamental issues that also apply to other techniques are concerned with the 
structure of the model. One important limitation is that redundancy issues when the 
number of system inputs is greater than the number of outputs may lead to non-
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convergence of inverse solutions. Another issue is that the stability of inverse 
simulation techniques for the case of non-minimum phase systems has been given 
little attention in the past.  
 
It should be noted that inverse simulation techniques differ significantly from the 
techniques of dynamic inversion which were developed by Brockett (1965), Dorato 
(1969) and Hirschorn (1979) and further developed by Isidori and his co-workers 
(e.g., (Isidori, (1995)). Dynamic inversion involves transformation of the original 
nonlinear system model into a linear and controllable model using a nonlinear state 
feedback control law using concepts from differential geometry. Surprisingly little 
consideration has been given in most published work to the relationship between 
model inversion and inverse simulation techniques.  
 
Although there have been a number of useful review papers describing the principles 
and practical application of inverse simulation methods to problems of flight 
dynamics, including two very useful reviews by Thomson and Bradley (1998) and 
(2006) and a more general review paper by (Murray-Smith, 2000b – supporting 
paper, [39] ), little progress appeared to have been made by the start of the twenty-
first century with the application of the inverse simulation approach to problems in 
other application areas. The approach also appeared, at that time, to have attracted no 
attention as a possible alternative to analytical methods of dynamic inversion for 
control system design. These areas of work, together with developments aimed at 
eliminating some of the current difficulties with inverse simulation algorithms, have 
been emphasised within the papers on inverse simulation that are included in this 
thesis.   
 
3.2 Developments in Inverse Simulation Methods 
 
3.2.1 An inverse sensitivity approach  
 
The paper published in 2007 by (Lu, Murray-Smith & Thomson, 2007- submitted 
paper, [40]) discusses numerical problems encountered with traditional methods of 
inverse simulation based on the NR algorithm and proposes a new method of inverse 
simulation based on sensitivity analysis theory. This new technique has been termed 
“inverse sensitivity”. The central idea in this approach is that the system input vector 
can be regarded as a vector of time-varying parametersα which are independent of 
the state variables. In the traditional inverse simulation algorithm the input vector is 
assumed constant within the small time interval 1+≤< kk ttt  and it follows that the 

vector )(tα is a constant vector over that interval. This means that within the interval 

1+≤< kk ttt  the standard state space form of description for a nonlinear system can be 

expressed in the form: 
 

),( αxfx =&      (3.1) 
 

),( αxgy =      (3.2) 
 

Transforming these equations into sensitivity equation form, as shown in (Lu, 
Murray-Smith & Thomson, 2007- submitted paper, [40]), leads to a set of equations 
in the form: 
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Equations (3.3) are the continuous sensitivity equations which allow the system 
output sensitivity functions to be calculated through forward simulation. It can then 
be shown that a small perturbation in the vector α  at time tk results in an output 
variation 1ky +∆  and the inverse simulation problem becomes an inverse problem for 

finding the value of kα∆  from an equation of the form: 

)( kα∆=∆ + Γy 1k      (3.4) 

Full details concerning solution of this equation are provided in the paper (Lu, 
Murray-Smith & Thomson, 2007 - submitted paper, [40]). The benefit of this 
approach is that it allows the Jacobian matrix to be obtained through simulation rather 
than by means of the usual approximation based on numerical differentiation and thus 
avoids many of the problems associated with that process. The disadvantage lies in 
the computational demands of this method since the order of the sensitivity equations 
is q times larger than the order of the original state equations, where q is the order of 
the input vector. There is thus a need to balance the improved accuracy against the 
increase in computational requirements.  
 
Certain basic rules for convergence and stability apply to the inverse sensitivity 
solution and numerical examples included in the paper show that inverse simulations 
based on the sensitivity analysis method can provide the same results as the 
traditional method based on the NR algorithm. However, detailed analysis shows that 
for a given time interval ∆t = tk+1 – tk results from the sensitivity approach can be 
approximately four times more accurate than results from the traditional NR 
approach. As the number M of Runge-Kutta integration steps within the interval ∆t is 
varied an accuracy improvement is found for the SA method up to a value of about 
M=20. No corresponding improvement is found in the results for the NR algorithm. 
Beyond M=20 in the SA method there can be further accuracy improvements but 
these are less marked and involve considerable computational cost. There is a clear 
trade-off between accuracy and computer time in the choice of M for the SA method 
and a large value of M is preferred but is not essential. In addition these results mean 
that it is not essential to use a small ∆t value in the application of the SA method. 
Thus, in some cases the problems associated with small ∆t values in the NR method 
that lead to high frequency oscillations can be avoided.     
 
 
 
 
3.2.2 The constrained Nelder-Mead method 
 
The established methods of inverse simulation, through the differentiation and 
integration-based approaches, introduce additional derivative information associated 
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with calculation of the Jacobian or Hessian matrices. Direct search methods of 
optimisation are derivative free and thus avoid issues that may arise in gradient based 
methods when discontinuities are encountered, such as input saturation. 
 
The 2008 paper by (Lu, Murray-Smith & Thomson, 2008 – submitted paper, [41]) 
provides details of a novel derivative-free approach to inverse simulation based on a 
version of the downhill simplex optimisation method of Nelder and Mead (1965).  
The Nelder-Mead (NM) approach is a widely used method for minimising a scalar-
valued nonlinear function of real variables, using only function values without any 
explicit or implicit gradient information. Recent developments in the method allow it 
to be applied to multimodal, discontinuous and constrained optimisation problems. 
The algorithm used as the basis for development of the derivative-free inverse 
simulation method is based on the version of the Nelder-Mead algorithm by Lagarias 
et al. (1998) with an additional feature to allow for input-constrained functions. 
 
As with the integration-based method using the NR algorithm, the NM approach 
involves consideration of an interval [tk, tk+1]. A key feature of the method is that the 
optimisation is based upon a cost function and the choice of this function is of critical 
importance.  
 
The paper by (Lu, Murray-Smith & Thomson, 2008 - submitted paper, [41]) 
discusses numerical issues and stability of inverse simulation with the integration-
based NR iterative scheme, including the constraint oscillation phenomenon and 
problems associated with input saturation and discontinuities. The same issues are 
also discussed in the context of the constrained NM method, outlined above, and two 
case studies are used to compare the use of the NM method with the more 
conventional NR approach. These investigations both involve nonlinear mathematical 
models used in ship steering control.  
 
The first of these case studies involved a relatively simple nonlinear model of the 
Norrbin type, which is a single-input single-output description. The model includes 
rudder amplitude and rate limiting. Although results from inverse simulations by the 
two approaches agree well with each other for ship manoeuvres that involve rudder 
angles and rates that are below the limits, it has been found that the NM-based 
approach can achieve good convergence and provides physically meaningful inverse 
simulation results in cases where the NR algorithm fails to converge. 
 
The second case study involved a nonlinear container ship model which has two 
inputs and three output variables. In this example turning circle and pullout 
manoeuvres were considered and good convergence was achieved for both the NR 
and NM methods with and without input saturation for the turning circle manoeuvre. 
However, in the case of the pullout manoeuvre, the NM method was successful but 
the NR algorithm failed to converge for any of the cases considered due to the 
discontinuity in the manoeuvre.  
 
It is concluded from the results of these case studies that the derivative-free procedure 
based on the constrained NM algorithm provides important benefits compared with 
the more conventional approach based on the NR algorithm. The new approach gives 
improved convergence and numerical stability properties compared with the NR 
algorithm for cases that include significant input saturation or involve a discontinuous 
manoeuvre. 
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3.3 Inverse Simulation Applications in System Modelling 
 
Aeronautical applications considered in the research on inverse simulation methods 
for system modelling include a relatively simple HS-125 fixed-wing aircraft model 
having thrust and elevator inputs and a Lynx helicopter model involving five sub-
systems: fuselage, tail plane, fin, main rotor and tail rotor (Lu, Murray-Smith & 
Thomson, 2007 – submitted paper, [40]). Surface ship applications are discussed in 
(Lu, Murray-Smith & Thomson, 2008 - submitted paper, [41]), and underwater 
vehicle applications in (Murray-Smith & Lu, 2008 – submitted paper, [42]) and in 
(Murray-Smith, Lu & McGookin, 2008 -  submitted paper, [43]). 
 
3.4 Inverse Simulation Techniques for Model Validation 
 
Conventional methods for the external validation of dynamic models generally 
involve comparisons of the real system with corresponding simulation model 
responses when both the real system and the model are subjected to the same input 
for exactly the same operating point. Methods of external validation based on this 
general approach have been found to be particularly useful in the case of linearised 
models and for some forms of nonlinear model. However, in the case of models that 
involve hard limits and other significant nonlinearities (for example, for helicopter 
flight mechanics models for applications involving manoeuvres, such as nap-of-the-
earth flight, that demand large and aggressive control inputs) most traditional 
methods of validation have been found to have practical limitations.  The use of 
inverse simulation methods and the comparison of inputs needed to achieve a 
specified form of response can offer insight that can be significantly different from 
any information derived from more conventional validation methods.  
 
This fact is especially true in the case of systems in which the immediate response to 
inputs is essentially one of integration. Drift is almost inevitably present in such 
systems and is due to small biases and offsets. Such offsets are unlikely to be the 
same in the system and the model and can cause considerable difficulties as they may 
produce effects having magnitudes that are similar to responses to the applied test 
input. This issue has been examined in detail in the paper by (Bradley, Padfield et al. 
1990 - submitted paper, [44]) in the context of helicopter nap-of-the-earth 
manoeuvres where a strong case is made for the development of a validation strategy 
that integrates forward and inverse simulation. Other published studies of inverse 
simulation for model validation applications have included the work of (Murray-
Smith & Wong, 1997 – supporting paper, [45]), where inverse simulation was 
applied successfully to a laboratory scale system involving two coupled tanks of 
liquid. Modelling errors observed in predictions made through conventional forward 
simulation runs were fully reflected in results from inverse simulation. The difficulty 
in terms of the model development process is that results from inverse simulation do 
not allow the deficiencies in the model structure or parameter values to be established 
directly. The investigation of modelling errors and uncertainties would require further 
inverse simulation tests based on other measured variables and possibly additional 
experimentation using conventional forward simulation. One important facility that is 
lacking at present is an efficient method of sensitivity analysis that would allow 
discrepancies between inputs predicted by inverse simulation and the inputs applied 
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experimentally to be related to the structure and parameters of the model under 
investigation. 
 
3.5 Discussion and Conclusions 
 
Developments in inverse simulation methods that are presented in the thesis include a 
sensitivity-based technique and the novel application of methods of search-based 
optimisation. Both these approaches show some interesting advantages over 
conventional methods of inverse simulation involving gradient techniques. In 
particular, the new derivative-free approach based on the use of the constrained 
Nelder-Mead algorithm has been shown to have important advantages for problems 
involving input constraints, abrupt changes of required output or discontinuities 
within the model. Simulation studies involving two different nonlinear models of 
ships which included actuator saturation and rate limit nonlinearities showed that the 
use of the Nelder-Mead approach could, for cases of this kind, give significantly 
improved properties in terms of convergence and numerical stability compared with 
more conventional methods.   
 
Investigations concerned with the traditional approaches to inverse simulation have 
included studies of numerical accuracy and stability and have provided an 
explanation of “constraint oscillation” phenomena in terms of internal system 
properties. In addition, these investigations have focused on the effect of 
discontinuous manoeuvres, discontinuities within the model and input constraints on 
instability and convergence failure for integration-based methods of inverse 
simulation based on the Newton-Raphson algorithm. These investigations have 
confirmed the superiority of the search-based type of algorithm for applications of 
this kind. 
 
Inverse simulation methods form an important area for further research, including 
work on the further development and refinement of inverse simulation algorithms. In 
their present state of development these techniques are very far from being 
engineering tools that are suitable for routine use in engineering system design and 
development. Although the underlying approach has been tested and has proved 
useful in a number of different application areas, much remains to be done. Even with 
present day personal computers inverse simulation computations using the well-
established Newton-Raphson integration-based approach or the new approaches 
discussed in this thesis (the inverse sensitivity approach and the Nelder-Mead search-
based method) are very time-consuming and also remain somewhat unpredictable in 
terms of convergence properties. They are therefore inappropriate for routine use in a 
design environment. Significant effort is needed to develop more efficient and robust 
inverse simulation tools. 
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4. Issues of Model Quality and the External Validation of  
    Dynamic Models 
 
4.1 General Issues 
 
For physiological and other scientific applications, the purpose of a model is usually 
to explain a complex set of behaviours or to help in the design of experiments as part 
of the process of hypothesis testing. In such fields, model development is a central 
element of the scientific method. In some engineering applications it may also be 
appropriate to use a model to describe, analyse or explain the behaviour of a highly 
complex system but it is much more common to find models being used to assist in 
decision making or to underpin design activities. A properly tested and well-proven 
model can reduce engineering system development times and costs significantly for 
many applications and complex computer-based models provide the basis for much 
analysis and design. 
 
In all such application areas it is usual to base the structure of the model on prior 
physical, chemical or biological knowledge but, in many cases, some sub-models may 
be based purely on input-output descriptions derived from tests carried out on the 
corresponding elements of the real system (i.e. “black box” models). Models can thus 
range from completely “transparent” descriptions based on the application of 
recognised and accepted scientific or engineering principles to purely empirical and 
thus more opaque “black box” forms. Between these extremes there is a very 
important class of description, sometimes referred to as a “grey box” model. In such 
cases some elements of the model are based on empirical descriptions derived using 
system identification and parameter estimation methods, but much of the model is 
based on prior knowledge and the application of well-established physical laws and 
principles.  
 
In industrial applications of modelling and simulation there is much interest in 
modularisation and component reuse as these are key productivity factors in the 
software development process. In both industry and the academic world, until 
recently at least, successive generations of simulation models were often restarted 
from scratch which is clearly time-consuming and wasteful. Recent advances in 
object-oriented design and programming methods allow for repositories of reusable 
objects that can help to reduce the problems associated with the generation of new 
simulation models for new objectives that are linked to earlier models of a similar 
kind. 
 
The concept of a generic model, which has a form that allows a single piece of 
simulation software to be used for projects covering a range of detailed applications, 
is seen as increasingly important. One particular approach to the development and 
validation of a generic model is described in (Smith, Murray-Smith & Hickman, 
2007a – submitted paper, [46]) and (Smith, Murray-Smith & Hickman, 2007b – 
submitted paper, [47]). Such a generic structure allows reuse of simulation software 
for a wide range of different projects with relatively minor reorganisation in terms of 
the associated modules that are used to define the case under investigation. Although 
these two papers relate specifically to the development of a generic model of electro-
optic systems, the central ideas and methodology are applicable to generic models in  
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other fields of application. The issues of validation of generic models present 
particular problems that are somewhat different from validation problems for more 
specific models and we address those issues in detail in (Smith, Murray-Smith & 
Hickman, 2007b – submitted paper, [47]). 
 
Quite apart from the concept of a generic model, the ideas of modularity and 
component reuse are of key importance. These ideas mean that if we wish to build a 
new model for new given objectives we can select existing sub-models from a model 
base to serve as elements of the new model. The new model can thus be synthesised 
largely from existing modules.  
 
A number of issues arise in the practical application of the concepts of model reuse  
and one of the most important is concerned with the issue of how component models 
can be designed so that they meet current requirements and also possible future needs 
(Cloud & Rainey, 1998, pp98-100). This can best be achieved by designing sub-
models as building blocks for a family of applications rather than for a single project. 
A second important point relates to practical issues of flexibility in the large-scale 
reuse of sub-models and the extent to which the object-oriented approach that is 
commonly used in present-day general purpose programming languages can be 
applied within more specialised dynamic system simulation languages.  
 
A paper by (Ostroversnik & Murray-Smith, 1998, submitted paper, [48]) presents a 
rationale for a modular and truly object-oriented dynamic system simulation 
language. Although many dynamic simulation languages claim to be object oriented 
they do not, in many cases, fulfil all of the required conditions (i.e, classes, instances, 
inheritance, etc.) to allow them to be regarded as truly object-oriented. One feature of 
particular importance for object-oriented simulation software is the requirement for 
sorting of code at run time rather than at the compile stage, as is more normal in 
simulation software. The paper presents a possible implementation of the sorting 
algorithm within a new object-oriented simulation language known as OOSlim 
(Ostroversnik & Murray-Smith, 1998, - submitted paper, [48]), (Ostroversnik, 
Murray-Smith et al., 2000 - submitted paper, [49]), (Ostroversnik & Murray-Smith, 
1995, - supporting paper, [50]) and (Ostroversnik & Murray-Smith, 1996, - 
supporting paper, [51]).  Sub-models implemented using the approach adopted in 
OOSlim are believed to represent one possible approach to the development of 
commercially available libraries of sub-models.  
 
The application of the OOSlim approach is illustrated in (Ostroversnik, Murray-Smith 
et al. 2000 - submitted paper, [49]), where the well-known PHYSBE physiological 
simulation model is adopted as a benchmark. PHYSBE (McLeod, 1966) is an 
established model of the circulatory system in which each body part is considered as a 
blood storage compartment. There are nine body elements in total with the first group 
involving four compartments (head, trunk, arms and legs) in parallel with a so-called 
“Inner Cycle” which is made up of five blocks connected sequentially through valves. 
These compartments represent the vena cava, right ventricle, lungs, left ventricle and 
aorta.  The head, trunk, arms and legs compartments are connected in parallel with 
the inner cycle compartments. This model is sufficiently large and complex to make it 
suitable for application of the OO approach.  
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In OOPhysbe the compartments representing the head, arms, trunk, legs and 
ventricles are similar and the only differences are the initialisation constants and their 
location in the model graph. An abstract sub-model is therefore appropriate for this 
and two classes (named “lump” for the external lumped elements and “ventricle” for 
both ventricles) can be formed. Then, instead of having six, largely duplicated, 
declarations in the simulation program there are only two class definitions and six 
short declarations and no code is duplicated unnecessarily.  
 
Since a model is, by definition, only an abstraction of the system it represents, perfect 
accuracy is impossible to achieve. A key question is how best to establish the level of 
model quality appropriate for an intended application and ensure that the model 
satisfies that requirement before it is used. Although vitally important, this is a much 
neglected aspect of system modelling. As has been pointed out by many concerned 
with modelling and simulation (e.g., (Cloud & Rainey, 1998)), the validation of 
models cannot be separated from the model building process and validation 
techniques should be applied repeatedly during model development. If model 
building is approached as an iterative process confidence in a model should increase 
steadily from iteration to iteration. 
 
This remaining sub-sections within this part of the thesis, together with the associated 
submitted papers, address a number of issues relating to model credibility, model 
verification methods and model validation methods. They describe, through selected 
published papers, a number of relevant and illustrative applications where issues of 
model quality are of great importance.  
 
4.2 External Validation Methods 
 
Errors and uncertainties in models arise in many different ways, including 
inappropriate assumptions, incorrect a priori information, inaccuracies in numerical 
solutions of model equations and errors in experimental data used in the model 
development process. A number of reviews of model quality issues and model 
validation procedures have been published (e.g., Murray-Smith, 1990b – supporting 
paper, [52]), (Murray-Smith, 1992 – supporting paper, [53]), (Murray-Smith, 
Bradley & Leith, 1993 – supporting paper, [54]), (Murray-Smith, 1995b – supporting 
paper, [55] ), (Murray-Smith, 1998 – supporting paper, [56] ), (Murray-Smith, 2000a 
– supporting paper, [57]), (Murray-Smith, 2006a – submitted paper, [58] ) and 
(Gray, Voon & Murray-Smith, 1997 - supporting paper, [59]). The most recent of 
these (Murray-Smith, 2006a – submitted paper, [58]) is included as a submitted 
paper within this thesis.  
 
Within engineering there are good examples, mostly in safety-critical application 
areas, where rigorous procedures are applied in the testing of models and where 
formal approval schemes for models are in place and routinely applied. However, the 
model development procedures used within many engineering organisations often 
involve surprisingly little systematic testing of models in terms of their useful range 
and limits of accuracy. External pressures, through developments such as “simulation 
based acquisition” and “smart procurement”, are beginning to change this situation in 
some areas such as the defence sector. In general, however, progress in the field of 
simulation model quality enhancement is slow. This is in marked contrast with related 
areas such as software engineering. As was pointed out in a paper by (Murray-Smith,  
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2002 – supporting paper, [60]) there are important lessons that the simulation and 
modelling community could learn from computing science and, especially, software 
engineering in the context of model documentation, systematic testing and version 
control. 
 
External validation, in which the behaviour of a simulation model is compared 
directly with the behaviour of the corresponding real system, is difficult in most 
practical applications due to the fact that models may contain dozens or even many 
hundreds or thousands of parameters that have values that are chosen by the user. 
Similarly, models may involve large numbers of output variables, all of which will 
exhibit differences from the corresponding quantities in the real system and these 
differences are likely to vary with time. For the purposes of assessing the overall 
quality of a given model it is important to know which of the output variables are of 
greatest importance for the given application and how much error can be tolerated. 
 
Confidence in a prediction depends critically on confidence in sub-system models as 
well as in the complete system model. This is particularly important when sub-system 
models can be tested experimentally. Comprehensive and detailed testing at the sub-
model level helps to establish confidence in the description at that core level and 
helps to allow it to be extended gradually to less well-defined situations involving the 
testing of the complete system model over a range of conditions. In the development 
of a new engineering system, test data are never available at the design stage. 
Historical data from earlier system designs of a similar kind may be helpful in 
evaluating the model but successful application of this approach depends on good 
documentation of models of those earlier systems and the tests to which they were 
subjected. 
 
Comparisons (of a graphical kind or involving use of a quantitative measure) of data 
from a system and the corresponding model provide one obvious approach to external 
validation. Complications arise with methods based on response comparisons when 
several output variables have to be considered simultaneously or where un-modelled 
disturbances or measurement noise are significant. In such cases techniques based on 
system identification and parameter estimation may provide a useful alternative to 
direct comparisons and can offer additional physical insight concerning model 
limitations. Methods based on parameter sensitivity analysis are also important and 
the techniques of inverse simulation discussed in Section 3 have proved useful in a 
number of application areas. Methods involving expert opinion are also important in 
evaluating the suitability of a simulation model for a specific application. Details of 
each of these approaches to external validation may be found in (Murray-Smith, 1998 
– supporting paper, [56] ) and (Murray-Smith, 2006a – submitted paper, [58]). 
Discussion of other approaches to model validation, including model distortion 
methods and comparisons with current practice within the software engineering field 
may be found in (Gray, Voon & Murray-Smith, 1997 – supporting paper, [59]) and 
in (Murray-Smith, 2002 – supporting paper, [60]).  
 
The external validation of nonlinear simulation models involves a number of 
important issues. Techniques for the identification of linear systems from measured 
experimental data can provide insight through establishing models for different 
operating points across the operating envelope of the system. These identified models 
can then be compared with linearised models derived from the full nonlinear  
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simulation model for the same set of operating conditions. Discrepancies between the 
identified models and the models derived from the nonlinear description have to be 
considered carefully and may lead to the credibility of the nonlinear model being 
questioned. If, however, the level of agreement between the two sets of models is 
considered adequate a second stage of the external validation process can be 
attempted. This involves comparison of responses of the nonlinear model with the 
responses of the real system for a range of large perturbations and is based on the 
direct comparison type of approach mentioned above. If, once again, the level of 
agreement is judged to be acceptable over an appropriate range of conditions the 
model can be released for use in the intended application. It can continue to be used 
until additional information or data raises new issues of model adequacy and the 
acceptability of the model has to be reconsidered in the light of such new evidence. 
This identification-based approach to the validation of complex nonlinear models is 
discussed in more detail in (Bradley, Padfield et al., 1990 - submitted paper, [44]). 
 
Whatever approaches to external validation are adopted in a particular application 
there are several issues concerned with identifiability and robustness that need to be 
considered carefully. Identifiability has been discussed in Section 2 in the context of 
system identification and parameter estimation, and especially in connection with 
experimental design. Robustness in this context relates to factors such as the 
magnitude of error bounds on model parameters estimated from experimental test 
data, the accuracy and repeatability of model predictions, the effect of test input 
magnitudes and the length of available experimental records. 
 
In a report by (Murray-Smith, 1991b – supporting paper, [36] ) and a related lecture- 
series paper (Murray-Smith 1991c) robustness issues have been classified in the 
following way: 
 
i)   robustness and reliability of a priori information used in model development 
ii)  robustness of system identification and parameter estimation techniques used for   
     model development or external validation purposes. 
iii) robustness in terms of consistency and accuracy of the model structure and 
      parameter values identified from system test data. 
 
One very important point, which is often disregarded, is that when a model includes 
information obtained from the use of system identification and parameter estimation 
methods it is vitally important that the data sets used for external validation do not 
include any of the data sets already used in the development of the model. At a very 
minimum there should be two sets of data, one used for model development purposes 
(such as parameter estimation) and the second used to test the model in terms of its 
predictive capabilities. 
 
The choice of data sets to be used in the testing of models that involve parameters or 
structures identified using other experimental data raises some interesting issues.  
Data sets used for the testing of models need to be broadly similar to the sets used in 
the identification process in terms of their spectral properties and amplitude 
distributions. On the other hand, it is clear that data sets used for testing should not be 
too similar to those used for identification and parameter estimation. Responses 
obtained from inputs other than those used at the identification and parameter 
estimation stage are bound to be different in terms of amplitude, frequency and  



 46 

 
energy distribution. However, the differences in model and system behaviour for 
those new inputs may well be understandable on a physical basis and the results of 
the tests may still be very helpful in assessing the quality and limitations of the 
model. 
 
One important point is that it is essential to properly match test data used for external 
validation to the intended application of the model. If that is not done it will not be 
possible to make decisions about the suitability and quality of the model in the 
context of that application. Proper use of the model may then be significantly 
restricted because of the set of conditions used for testing. Issues of this kind arise 
both in the validation of identified models derived from the application of 
conventional parameter estimation procedures for linear models and also from 
techniques leading more directly to the identification of nonlinear models.  
 
In the case of linear models, the issue becomes one of obtaining experimental test 
records that are significantly different in form from the records used in the parameter 
estimation process but are similar in terms of the amplitude range and frequency 
range. This can present difficulties in practical system identification and parameter 
estimation applications and the issue of the choice of experimental records for the 
validation of identified models has been discussed in a number of papers and reports 
relating to helicopter system identification (e.g., (Murray-Smith, 1991a – supporting 
paper, [34]), (Murray-Smith and Padfield, 1991 – supporting paper, [35]), (Murray-
Smith, 1991b – supporting paper, [36]), and (Hamel 1994)). 
 
For the validation of nonlinear models the task of choosing appropriate test records is 
more complex since the test signals must excite the system in such a way that all the 
significant nonlinearities are fully explored while also covering the entire frequency 
range of interest.  
 
4.3 Issues of Model Validation and Model Quality in Typical 
Application Areas 
 
Model accuracy has, for a very long time, been recognised as an issue of central 
importance for the design of engineering control systems. For high performance 
closed-loop systems it is vitally important to have highly accurate models of the plant 
in a frequency range that includes the frequencies where the phase lag of the forward 
path system transfer function approaches 180 degrees (the so-called “cross-over” 
region). Model uncertainties within the cross-over region lead to major difficulties in 
guaranteeing that stability and performance requirements are met in the closed-loop 
system design (Murray-Smith, 1995a – supporting paper, [22]), (Murray-Smith, 
1991b – supporting paper, [36]), (Murray-Smith, 2000a – supporting paper, [57]). 
 
Other application areas, such as models that may provide a basis for the development 
of novel methods for non-invasive measurement in medicine and physiology (e.g., 
(Bache, Gray & Murray-Smith, 1981 – submitted paper, [11]), (Murray-Smith, 
1990a – supporting paper,  [12]), (Thamrin & Murray-Smith, 2007 – supporting 
paper, [15] ), models that are used within system simulators for staff training or 
education (e.g., (Murray-Smith, Murray-Smith et al., 1995 – supporting paper, [7]),  
(Murray-Smith, 1990a – supporting paper,  [12])), models used in systems for  
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automatic fault detection or models that are used for prediction or hypothesis testing, 
all impose important requirements in terms of model quality if the application is to be 
successful. The sections that follow provide a few examples of fields in which some 
experience has been gained in the successful application of validation methods.  

 
4.3.1 Helicopter flight mechanics model development 
 
The validation of helicopter flight mechanics models is a topic of considerable 
practical interest. As in most other engineering applications, validation in this field 
has to be regarded as a relative concept and the validation procedures have to be 
related to the intended use of the model. Factors that are particularly important 
include the frequency range over which the model quality has to be established and 
the range of values over which particular response variables have to be considered 
(i.e. amplitudes). The paper by (Bradley, Padfield et al., 1990 submitted paper, [44]) 
is concerned with the validation of helicopter flight mechanics models intended for 
the prediction of flying qualities and vehicle dynamic performance. In terms of 
frequency the requirements extend beyond the range of human pilot control 
(approximately 5 rad/s) to cover the whole range of frequencies that could be 
involved in active control of the vehicle (about 20 rad/s). Amplitudes, specified 
through translational and rotational velocities and accelerations, depend largely upon 
the intended application of the model under investigation.  
 
Techniques of system identification and parameter estimation, discussed in Section 2, 
have been applied successfully to the external validation of helicopter flight 
mechanics models (e.g., (Murray-Smith, 1995a – supporting paper, [22]), (Black & 
Murray-Smith, 1989 – submitted paper, [29]), (Leith, Bradley & Murray-Smith, 
1993 – submitted paper, [30]), (Padfield & Murray-Smith, 1991 – supporting paper, 
[37] ), and (Bradley, Padfield et al., 1990 submitted paper, [44]). Particular problems 
include the fact that helicopters generally involve a relatively high-vibration 
environment, allow only short test records due to marginally stable or unstable 
dynamics under open-loop test conditions, involve strong nonlinearities and have a 
strongly non-uniform flow field. During a ten year period from about 1985 to 1995 a 
number of software tools for state estimation, model structure identification and 
parameter estimation were developed in a collaborative activity involving the Royal 
Aerospace Establishment, Bedford, (latterly the UK Defence Evaluation and 
Research Agency, Bedford) and the University of Glasgow (Departments of 
Aerospace Engineering and Electronics and Electrical Engineering). Some of these 
software tools concerned with the implementation of specific identification and 
parameter estimation methods have been referred to already in Section 2.  
 
One important aspect of external validation that has been emphasised in work relating 
to helicopter flight mechanics modelling is that the validation process may be best 
viewed as a form of model calibration aimed at establishing the range of conditions 
over which a given model may be used successfully. Outside that range of operating 
conditions the suitability of the model may be open to question. The external 
validation process can address issues of possible model refinement or correction in 
order to extend the range of applicability of a given model. 
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4.3.2 Modelling limitations for helicopter flight control system design 
 
Good generic flight vehicle models are essential for the successful design of high-
bandwidth full-authority active flight control systems for helicopters and other forms 
of rotorcraft, such as tilt-rotor aircraft. Published examples provide plenty of evidence 
that the achievable performance of helicopter flight control systems has been over-
estimated in initial design studies because of limitations in the flight mechanics 
models of the vehicle (see, for example, (Murray-Smith, 1995a – supporting paper, 
[22] ), (Murray-Smith, 1991b – supporting paper, [36]), (Murray-Smith, 2000a – 
supporting paper, [57]) for relevant discussion). These problems may not be 
appreciated until the flight testing stage and can results in costly redesign, extended 
flight test programmes and delays in certification. Improved modelling procedures 
and improved models offer significant benefits. Control system designs can always be 
made robust to compensate for poor model accuracy, but only at the expense of 
performance.  
 
Accurate linearised models are especially important for the initial stages of flight 
control system design, as exemplified in the work of (Manness & Murray-Smith, 
1992 – supporting paper, [23]) on the application of eigenstructure assignment 
techniques to helicopter flight control. That paper shows clearly that when one has 
confidence in the available model of the vehicle, very stringent performance 
requirements can be satisfied. However, good validated nonlinear models are also of 
great importance in the subsequent evaluation of designs. For example, published 
examples are avbailable which make it clear that the attainable bandwidth of high 
performance helicopters has often been overestimated in design. Differences between 
control system design approaches are probably of less importance than having a 
proven vehicle model which performs well in the critical ranges of frequency and 
amplitude, although robust control system design methods do have potential 
advantages over other methods. 
 
The helicopter is nonlinear in its behaviour over most of its useful flight envelope and 
there is a need both for linearised models in the initial stages of control system design 
and for externally validated nonlinear simulation models in evaluating overall 
performance in the later stages of the design process. Issues of experimental design 
for model validation become particularly important in the context of this application 
area. For example, in a control system design context, the frequency content of test 
input signals must be chosen to give due emphasis to the part of the frequency range 
close to the nominal cross-over frequency, whereas in the context of other 
applications of flight mechanics models other requirements for test input design may 
be more important.  
 
4.3.3 Issues of model quality in ship control system design 
 
Accurate navigation and autopilot system design are important concerns for control 
engineers working in the marine field. As the size of vessels such as oil tankers has 
increased new problems have been identified due to incompatibility in terms of the 
rudder surface area in relation to the size of the vessel. In order to make a large 
manoeuvre a large turning moment must be generated by the flow of water over the 
deflected rudder. The magnitude to this turning moment depends on the rudder 
dimensions and the forward speed of the vessel. Since these attributes determine the  
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manoeuvring capabilities of the vessel they need to be accurately represented in any 
mathematical model used in the design of the ship steering controller. 
 
A paper by (McGookin & Murray-Smith, 2006b – submitted paper, [64]) discusses 
problems associated with a model based on dynamic equations published by Fossen 
(1994) using data from a paper by van Berlekom and Goddard (1972). These 
problems became evident when the model was used in a paper by Çimen and Banks 
(2004) that attempted to develop a novel form of nonlinear optimal controller design 
for an oil tanker. Within the model, as applied by Çimen and Banks, the flow of water 
over the rudder involved incorrect terms which made the turning moment too large 
for a vessel of the size considered in the paper. This made the heading dynamics 
unrealistically sensitive to changes of rudder angle so that, in simulation studies, the 
vessel responded more rapidly than it should to controller commands. A modified 
form of relationship that had been used in a model discussed in an earlier paper by 
(McGookin, Murray-Smith et al., 2000a – submitted paper, [65]) represents the 
manoeuvring capability of a vessel of this size much more accurately. 
 
The 2006 paper by (McGookin & Murray-Smith, 2006b – submitted paper, [64]) 
provides simulation results for standard open-loop manoeuvring tests. Responses of 
the modified and original models have been compared with data of Van Berlekom 
and Goddard (1972) and the simulated behaviour of the ship under open-loop 
conditions has been found to be significantly more realistic for the modified model.  
 
The results of this investigation show that, although the controller design 
methodology applied by Çimen and Banks (2004) is a useful development in non 
linear optimal control theory, the ship responses presented in the illustrative example 
included in their paper are not realisable in a practical tanker application for this size 
of vessel. The controller design could not, therefore, be used in practice and a 
complete redesign, using the modified model suggested by McGookin and Murray-
Smith (or some other form of improved model), is required. 

 
4.3.4 Model quality and external validation in the development of generic models 
of electro-optic sensor systems  
 
Electro-optic (EO) sensors convert photons into electrical signals and are used within 
electro-optic systems for imaging. A number of different technologies allow 
operation of electro-optic systems for the infrared, visible and ultraviolet waveband.  
Common applications include infrared search and track systems (IRST), missile 
warning systems (MWS) and thermal imager systems (TI). 
 
EO sensor systems involve elements such as scanning and steering devices, optical 
components, detector elements with associated electron hardware and signal 
processing hardware and software. Models of complete electro-optic systems may 
involve dynamic systems (e.g motion of the target), atmospheric effects such as 
atmospheric attenuation, characteristics of optical and detector elements, electronic 
circuits and associated noise sources and a display system (the modelling of which 
may involve representation of the eye-brain system in an elementary way). 
 
The assessment of the performance of an EO sensor system is a difficult, time-
consuming and costly exercise. Although the performance of individual components  
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can be established readily under laboratory conditions, quantitative assessment of the 
complete system requires field trials on production or pre-production systems. As is 
the case with the helicopter flight control system design, problems identified in trials 
may well lead to costly redesign and, subsequently, to further testing. Field trials may 
also only cover parts of the operational envelope of the system and the successful 
completion of initial trials may not identify all the problems that could adversely 
affect the performance in an operational environment.  
 
It is believed that modelling and simulation techniques can help to address some of 
the problems of EO sensor system development. Early assessment of overall 
performance within or beyond the normal operating envelope and insight regarding 
parameter sensitivities and inter-dependencies form important ways in which 
modelling and simulation can assist in design optimisation and minimise rework. 
 
The paper by (Smith, Murray-Smith & Hickman, 2007a – submitted paper, [46]) 
outlines a generic approach to EO system modelling. Here the similarity of the 
structure of different types of EO system (all involving an optical chain, a detector, 
together with electronics, processing and display elements) provides the basis for the 
generic form of model. From a single generic model structure of this kind all specific 
types of EO system can readily be derived and the adoption of a generic approach 
facilitates model reuse in successive projects. The paper discusses the role of 
modelling and simulation in the EO systems field, from requirements engineering to 
system performance evaluation and design optimisation. This is relevant to many 
areas of engineering and especially for the development and design of integrated 
systems. In such applications a highly simplified conceptual model of the proposed 
complete system may provide a starting point, with the model then being further 
developed and transformed as the project progresses and firm design decisions are 
made. 

 
 
One very important issue relating to generic models is the question of internal 
verification and external validation. The generic nature of the model gave rise to a 
number of special questions in the context of model quality and credibility. These 
issues are discussed in detail in a second paper by (Smith, Murray-Smith & Hickman, 
2007b – submitted paper, [47]). Undoubtedly, issues of model credibility lead to 
more problems when a generic model is considered than they do in special-purpose 
models developed for a single application. This paper addresses the issues of model 
testing, internal verification and external validation for the generic EO sensor system 
model. A structural approach is proposed that develops increasing confidence during 
the modelling process through repeated bottom-up testing, structured verification 
procedures and carefully selected metrics for external validation. These validation 
metrics are based on a geometrical view of model outputs that may be compared with 
measurements using qualitative methods or quantitative approaches involving image 
processing, artificial neural networks or fuzzy pattern recognition. The advantages 
over traditional methods of external validation are most marked in the case of 
complex models with many key quantities, where this new approach not only 
provides useful insight about the credibility of the model but also about sensitivities. 
These tools for external validation have been applied, in conjunction with other more 
traditional metrics to the testing, verification and validation of the generic EO sensor 
system model configured as a thermal imager system. 
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One important development in this work, that may have value in other applications 
involving external model validation, involves taking a number of key system 
quantities and plotting these as radial lines on a polar diagram. Values are normalised 
and shown as points on the radial axes. These points are then joined by straight lines 
to form a polygon of the type shown in Figure 4.1. By creating a polygon of model 
results and a polygon of corresponding measurements on the same polar diagram an 
immediate indication of the validity of the complete model may be obtained. 
Generally, the more similar the polygon shapes the more valid the model is declared. 
Aspects of the system that are represented accurately are immediately obvious and 
areas requiring further analysis are also highlighted. Although they have been 
developed independently for model validation purposes, these diagrams have many 
features that are similar to those of the Kiviat diagrams (Grant & Murray-Smith, 2004 
– supporting paper, [66]) that are used in the software engineering field for computer 
software and hardware performance evaluation.  
 

                                                                           
 
Figure 4.1. Example of polygon representation for model validation results. Here solid lines represent 
modelled results for eight different quantities while the dashed lines indicate the corresponding 
measured values.  (Adapted from diagram in (Smith, Murray-Smith & Hickman, 2007b - submitted 
paper, [67]). 
 
Diagrams of this kind, as shown through illustrative examples in (Smith, Murray-
Smith & Hickman, 2007a - submitted paper, [46]), also have a role in analysing the 
effect of system parameters on overall performance metrics of a system. Shape-
processed visualisation methods such as these lend themselves to image processing 
methods for quantification and a number of approaches have been considered (Grant 
& Murray-Smith, 2004 – supporting paper, [66]). 
  
 
 
4.4 Issues of Model Quality in Model Reduction 
 
Model reduction has for long been recognised as an important aspect of the process of 
developing a model for a specific application. For example, in the evaluation of 
aircraft handling qualities it is important to ensure that the model is of an appropriate 
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accuracy over a defined frequency range. Frequencies outside that range are not 
usually of very great importance in terms of the interactions between the pilot and the  
 
vehicle. Similarly, as already discussed in Section 4.3.1, it is often important to 
ensure that the plant model in control system applications is highly accurate for a 
range of frequencies in the vicinity of the gain cross-over frequency but lower levels 
of accuracy can often be tolerated at frequencies well removed from that critical 
range. 
 
Although the use of a relatively complex model that is applicable over a wide range 
of frequencies may not present difficulties in some types of application, there are 
other situations in which a simplified description with more limited applicability may 
be preferred. Situations of this kind can arise in applications involving real-time 
simulation where the use of a complex model that is applicable over a wide range of 
frequencies may introduce significant computational overheads. 
 
One issue that is important in modelling of helicopters and other multi-input multi-
output (MIMO) systems is to be able to derive a simple low-order model which has 
characteristics capable of approximating those of a higher order description for a 
specific frequency range. Simplified models of this kind can be important at several 
different stages of design.  
 
A number of different time-domain and frequency-domain techniques exist and have 
been widely used, especially in the single-input single-output case. These include 
methods, such as those those of Davison (1966) and Bacon and Schmidt (1988), 
which involve the derivation of a model that includes only the dominant eigenvalues 
from a given higher-order description. Another group of methods involves the fitting 
of a low-order model directly to frequency response or time response data. In the 
time-domain case, an example of this approach can be found in the work of Anderson 
(1967), while in the frequency-domain the derivation of low-order models directly 
from frequency response data has been described by Levy (1959), Payne (1970) and 
Elliott and Wolovich (1980). 
 
The paper by (Gong & Murray-Smith, 1993 – submitted paper, [67]) describes work 
carried out, in the context of helicopter modelling for flight control system design, on 
the development of a MIMO model reduction method which involves an extension of 
a complex curve-fitting approach described in the paper by Levy (1959) and further 
developed by Sanathanan and Koerner (1963) and by t’Mannetje (1973). The 
approach is transfer function based and uses a modified least-squares approach to fit 
transfer functions to the target frequency response data. The method presented by 
Levy (1959) involves minimisation of a sum of the squares of the differences between 
the absolute magnitudes of the frequency response values for the given data and the 
reduced model over a specific range of frequencies. The cost function in this case has 
the form  
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where n is the number of points in the frequency range considered and )( kωε  is the 

difference between the magnitude of the target frequency response and the frequency 
response of the fitted transfer function at frequency kω .  

 
 
For the MIMO  application the cost function is a modified form of the cost function 
applied by Levy (1959) and subsequently developed further by Sanathan and Koerner 
(1963) and by t’Mannatje (1973). Levy’s method, which is an optimisation-based 
approach, was developed for application to measured frequency response data but, as 
described in the paper by (Gong & Murray-Smith, 1993 – submitted paper, [67]), it 
has been applied to model simplification. The significant development in this paper is 
the extension of Levy’s technique from the single-input single-output case to multi-
input multi-output situations. A number of illustrative examples involving models of 
an advanced fighter aircraft and also a large transport aircraft have been considered. It 
has been found that, in order to obtain satisfactory results, it is essential that two 
factors must be chosen with particular care. The first of these is a weighting factor 
within the frequency-weighted cost function used for optimisation that allows fitting 
errors in chosen parts of the frequency range to be given particular emphasis. The 
second  is the number of points used within the frequency range of interest and the 
applications considered show that this has a definite optimum for a given model 
reduction problem. The examples considered show that the optimisation process 
converges very rapidly and that systematic investigation of the two factors that have 
to be chosen by the user is not difficult or time-consuming.  
 
A different example of model reduction is discussed in a paper by (Bryce, Foord et 
al., 1976 – submitted paper, [68]) which describes the development and application 
of a model of a hydro-electric generator system intended for real-time simulation. 
This work related specifically to the power station at Sloy which, at the time when the 
work was carried out, formed part of the system owned and operated by the North of 
Scotland Hydro-Electric Board (NSHEB).  The objective was to develop the real-time 
simulation as a test-bed for work that was being carried out on a fast-acting form of 
analogue electronic governor to replace the hydraulic governor that had been installed 
when the station was built in the late 1940s. This model also provided a basis for 
models used in the subsequent development of microprocessor-based governors. 
Although some tests on the real system were permitted during the model development 
process, tests to investigate the dynamics of the pipeline system, which is a vitally 
important part of the overall system model, were not possible for practical and safety 
reasons. Extensive modelling of the pipeline network had been undertaken previously 
by NSHEB engineers and a well-proven finite-element model existed, although this 
relatively complex and numerically intensive model could not be implemented within 
a real-time simulation. A decision was made to develop a lumped-parameter model of 
relatively low order that could capture the main features of the more complex finite-
element pipeline model over the frequency range of most significance for turbine 
control. Versions of this lumped parameter description of different complexity were 
tested against the finite-element description using frequency-domain plots of the 
performance of the full and reduced models as a basis for comparison. A model of 
acceptable accuracy was then selected which could be implemented easily in real-
time using the available computer hardware. This reduced model of the pipeline 
system was then integrated into the overall system model which was then subjected to 
external validation using data from tests carried out on the full system.  The real-time 
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simulation was also subjected to detailed evaluation and testing for conditions that 
could not readily be included in the site tests. This evaluation involved experienced 
operators from the Sloy Power Station as well as NSHEB engineers. The eventual 
approval of the real-time simulation by the NSHEB engineers allowed it to be used as  
 
a basis for evaluation of novel forms of governor under a wide range of operating 
conditions prior to their installation and testing on-site. 
 
4.5 Discussion 
 
The ideas of “verification, validation and accreditation” methodologies, “smart 
procurement” methods and the concept of “the model as a specification” are currently 
being emphasised in the defence procurement area on both sides of the Atlantic. 
Books and technical reports dealing with applied modelling and simulation topics in 
the context of very large and complex systems (e.g., (Cloud & Rainey, 1998)) are 
appearing in ever increasing numbers from government laboratories and agencies 
due, in part at least, to concerns about excessive cost and time over-runs in major 
projects. There appears to be a growing understanding that in many cases project 
failures can be traced back to failure to use modelling and simulation methods in an 
appropriate fashion at an appropriate phase of system development. This interest in 
issues of model testing and model quality for the design and development of very 
large systems is to be welcomed. However, it must also be realised that there are 
many aspects of model validation, model optimisation and model tuning that require 
very careful consideration even in the case of relatively simple dynamic models. 
Inadequate attention to model quality at an early stage, however simple the 
application, can lead to inappropriate design decisions that may be difficult and 
possibly expensive to correct at a later stage. 
 
Issues of model quality and model validation cannot be separated from other 
processes of model development. The modelling of a real system is an iterative 
process in which testing, evaluation and tuning are of central importance and, 
whatever the context, it is essential to ensure that the model being used is appropriate 
for the purpose. An application based on a model that does not have the necessary 
quality is bound to lead to difficulties.  
 
In the practical application of modelling and computer simulation methods, models 
are often developed on a one-off basis for a specific task. In industry, new designs of 
engineering systems similar in many respects to earlier systems often lead to 
completely new models. Also, these models are seldom subjected to a rigorous 
process of validation and are seldom documented in an adequate fashion. A poorly-
documented model of questionable validity is unlikely to be helpful in the project for 
which it was intended. It is also unlikely to be considered for reuse in some future 
project which means that expensive manpower and resources may have been 
employed in creating a new model. This is undoubtedly short-sighted and wasteful. 
 
As model libraries and generic descriptions are becoming more widely used in many 
application areas there is a new opportunity to try to ensure that model documentation 
and testing receives the necessary level of attention in future. Clearly the elements 
within model libraries have to be accompanied by information about the accuracy and 
limitations of each model or sub-model. Without documentation of an appropriate 
standard such libraries are going to be of little value and model documentation 
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should, therefore, always include information about the accuracy and limitations of 
the model with supporting evidence relating to the tests that have been performed. 
Such libraries should ideally involve precompiled sub-models and this necessitates 
the use of a simulation language having special features. As described in Section 4.1 
above, an example of such a language is the OOSlim object-oriented simulation 
language developed through a cooperative project with the Jožef  Stefan Institute, 
Ljubljana, Slovenia (Ostroversnik & Murray-Smith, 1998 – submitted paper, [48]), 
(Ostroversnik, Murray-Smith et al., 2000 – submitted paper, [49]). 

 
 In dealing with specific problems, whether to enhance our understanding of an 
existing system (as in physiology) or to improve the quality of a design (as in 
engineering), it is important to ensure that the necessary attention is given to the most 
relevant issues in each application. Modelling and simulation tools produce results 
that are of no practical value if they are applied in an inappropriate way and the old 
adage that “garbage in produces garbage out” applies as much in this field of 
computer applications as in any other. However, if simulation and modelling methods 
are applied in a highly focused fashion, with the right questions in mind, they can 
help to produce new insight that would be very difficult to obtain in other ways. The 
research reported in the paper by (Halliday, Murray-Smith & Rosenberg, 1992 – 
submitted paper, [3]) on the phenomenon of “driving” in the muscle spindle 
receptor provides an interesting example of the benefits of a focused approach of this 
kind. A relatively simple single-output model structure, with nonlinearities and 
parameter values determined from physiological evidence, was found (with some 
minor tuning of parameter values) to provide simulation results that matched very 
closely those obtained experimentally. 
 
In other fields of application, such as helicopter flight mechanics, difficulties can be 
encountered due to the presence of close coupling of variables and parameters within 
the system.  The fact that such systems are inherently multi-input multi-output in 
form means also that a number of output variables of the system have to be 
considered simultaneously and this tends to introduce additional problems. Although 
quantitative measures of performance, such as Theil’s Inequality Index (Murray-
Smith, 1998 – supporting paper, [56]) are appropriate for applications of this kind, 
the use of such criteria reduces the model quality assessment process to consideration 
of values of a single index which masks the true complexity of the situation and 
provides little or no physical insight. Methods for displaying results efficiently for 
multi-output situations and for models where there can be strong interactions between 
parameters are more desirable and the type of polygon diagram introduced in the 
papers by (Smith, Murray-Smith & Hickman, 2007a – submitted paper, [46]), 
(Smith, Murray-Smith & Hickman, 2007b – submitted paper, [47]) and discussed in 
Section 4.3 offer new opportunities. Further discussion of these diagrams may be 
found in the paper by (Grant & Murray-Smith, 2004 – supporting paper, [66]). 
Diagrams of this kind provide a basis for comparing different results from different 
models and results for different sets of parameters found from system identification 
and parameter estimation. They also allow results of sensitivity analysis to be 
displayed in a simple and efficient fashion. They are clearly applicable to problems in 
many areas where there is a need to depict relationships among multivariable data. 
The use of such diagrams in the context of detailed model analysis is believed to be 
novel, at least when first applied. One advantage of the polygon diagram approach to 
visualisation is that it is extremely flexible in terms of the comparisons that can be 
made. It is also appropriate for use with deterministic measures of performance such 
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as overshoot magnitude or frequency of oscillations. It might well provide a useful 
approach to the problems of comparing model and system behaviour in the type of 
situation that arose in the work on water turbine modelling outlined in Section 4.4 and 
described in (Gong & Murray-Smith, 1993 – submitted paper, [67]) and even in  
 
situations involving simpler nonlinear system such as the coupled tanks systems used 
for laboratory teaching in control (Gong & Murray-Smith, 1998 – supporting paper, 
[62] ). 
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5. Optimisation Methods in Nonlinear System Modelling 
    and Nonlinear Control System Design Applications 
 
5.1 Introduction 
 
In the case of nonlinear systems some aspects of the model structure usually need to 
be determined from experiments as well as the values of some parameters. 
Identification of the model structure itself, including the nonlinear elements, can be 
difficult. Often a trial and error approach involving a mix of expert knowledge and 
experimental investigation is adopted to choose between several candidate models. 
Such an approach is time-consuming and, inevitably, somewhat subjective. Some 
form of automation of the procedure through the application of global optimisation 
techniques would allow a larger number of possible model structures to be 
investigated in a much shorter time.  
 
The optimisation of linear and nonlinear systems is also of central importance for 
design in many areas of engineering and especially with highly integrated systems. 
Many aspects of present-day linear control theory have origins that relate in some 
way to optimisation methods but in the case of systems that involve significant plant 
nonlinearities, or applications in which controllers with intentional nonlinearities are 
introduced, the situation is more complex and there is considerable scope for the 
direct application of global optimisation methods. 
 
5.2 Methods of Optimisation Considered 
 
5.2.1 Simulated Annealing (SA) 
 
Simulated annealing is a probabilistic hill-climbing technique that is based on the 
annealing of metals (see, for example, the work of Metropolis et al., (1953), 
Kirkpatrick (1983) and van Laarhoven and Aarts (1987)). This natural process occurs 
after the heat source is removed from molten metal and the temperature of the metal 
starts to fall as heat is transferred to the environment. At each temperature level the 
energy of the metal molecules decreases and the metal becomes more solid. This 
continues until the temperature of the metal equals the temperature of the 
surroundings and, at this stage, the energy has reached its minimum. The simulated 
annealing process mimics this natural annealing process as it searches for a solution.  
 
In the SA algorithm the solution space is searched by imposing perturbations on the 
estimates of the parameters that are being optimised. These perturbations depend on a 
“temperature” index T and their magnitudes at any stage in the process are given by 
an equation of the form: 
 

randTkTpert ××=)(      (5.1) 
 

where pert(T) is the perturbation at temperature index T, k is a scaling constant and 
rand is a uniformly distributed random number lying between 0 and 1. In this 
algorithm the temperature index T becomes smaller with each iteration, thus reducing 
the size of the parameter perturbation, with large perturbations at the start of the  
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iterative process and small perturbations as conditions come close to the optimum. 
Each set of parameters arising from the application of this procedure is substituted 
into the equations defining the controller and the performance of the system with 
these parameters is evaluated through simulation. This performance evaluation 
involves comparison of the desired and simulated responses and is quantified using 
the relative cost (C). If the cost value is smaller than the previous best cost the new 
parameter set replaces the previous set. However, if the new cost is not smaller the 
new set of parameters is not immediately discarded and the cost value is subjected to 
a check in which the probability, P, of the cost associated with the new parameters 
(Cnew) is compared with the previous best cost (Cprev) through the equation: 
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This has the same form as Boltzmann’s Equation and the result obtained from its 
application is compared with a threshold number, n. If P > n the new parameter 
values are accepted in the same way as if prevnew CC <  but the new values are 

rejected if P > n. This so-called Metropolis Criterion (Metropolis et al., 1953) 
ensures that the SA avoids premature convergence to a local minimum. 
 
Following this step the temperature index is reduced by the annealing schedule 
involving an equation 

0)( TTTAS d
d γ==      (5.3) 

 
where T0  is the initial temperature, γ is the reduction constant and d is the number 
of iterations. The whole process is repeated until either the cost has reached some 
preset threshold level or the temperature value has become so small that the 
parameters are no longer being perturbed significantly. If the cost value has reached 
the minimum level, it follows that the SA should be giving the optimum set of 
parameters but if the temperature is too small the results may not be optimal. 
 
5.2.2 Segmented Simulated Annealing (SSA)  
 
Segmented simulated annealing (SSA) involves the application of a number of simple 
SA processes consecutively (e.g., (Atkinson, 1992), (McGookin, Murray-Smith and 
Li, 1996a – supporting paper, [94])). SSA attempts, in this way, to overcome the 
limited convergence properties of the SA method if the parameters are not close to the 
optimum initially. Each of the consecutive runs starts at a different point in the search 
space so that, in effect, the search space is segmented into number of smaller regions. 
The final cost values, arising from the separate runs, are then sorted in ascending 
order and the smallest cost is taken as the optimum. The parameter values 
corresponding to the best cost value form the optimum result.  
 
 
 
 
 
 
 



 59 

 
5.2.3 Genetic Algorithms (GA) 
 
The genetic algorithm (GA) approach to optimisation is based upon the concept of 
survival of the fittest. The GA emulates the processes of evolution, with the strongest 
elements becoming stronger while the weakest elements are eliminated.  
 
The solution of an optimisation problem using the GA methodology involves a 
stochastic search of the solution space using strings of integers, known as 
chromosomes, which represent the parameters that are being optimised. Each integer 
within these chromosomes is known as a gene and, in the context of the work being 
discussed here, each gene has a decimal value between 0 and 9. It should be noted 
that this is not the traditional GA approach where genes are binary quantities. The 
advantage of the decimal representation for this type of application is that it allows a 
wider range of possible values in smaller chromosomes.  
 
An initial population of chromosomes is generated at random and these are decoded 
to obtain the corresponding parameters. These parameter values are then introduced 
into the system model or controller. A simulation is run and results are obtained for 
each set of parameters within the population, using a measure of performance based 
on a cost function similar to that used in simulated annealing. When the cost values 
are all found they are sorted into ascending order along with the corresponding 
chromosomes. As before, the smallest cost values are chosen as the best and are then 
subjected to operations involving reproduction, cross-over and mutation.  This 
provides different points for analysis within the search space. 
 
Reproduction is a procedure that involves retaining the best chromosomes (say 20%) 
for the next population. The remaining chromosomes are replaced by new 
chromosomes which are formed through the processes of crossover and mutation. 
This type of reproduction process is known as rank-based selection and it allows only 
the elite chromosomes to move on to the next iteration. This class of optimisation 
method is known as an elite genetic algorithm (Brooks et al., 1996). 
 
Crossover is a process in which two chromosomes from the current generation (the 
parent chromosomes) are involved in a procedure in which some of the genes from 
one chromosome are interchanged with genes from the corresponding positions in the 
other. This process produces two new chromosomes (the offspring) and the procedure 
is repeated until there are sufficient offspring to replace the 80% of the present 
population having the worst cost values. A procedure known as two-point crossover 
has been used in the work reported in the papers included in this thesis. 
 
Mutation involves selection, on a random basis, of a certain number of the genes in 
the current population and random alterations are then made to their values. This 
provides a random element within the GA search process and thus ensures that more 
of the search space is included. 
 
Once the chromosomes have been changed to provide the new population they have 
to be evaluated, as was done for the previous generation. The whole procedure is then 
repeated for a predefined number of iterations (termed generations) to produce a final 
solution.     
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The 1996 paper by (Li, Ng et al., 1996 – submitted paper, [69]) provides an 
overview of the use of GAs in the design of a form of nonlinear control system and 
illustrates the application of this approach to design automation in the context of a 
practical, but relatively simple, application involving a laboratory-scale system.   
Further developments in terms of techniques have been reported in subsequent 
papers. These include a population minimisation process for genetic algorithms 
(McGookin, Murray-Smith & Li, 1997 – supporting paper, [70]) and the inclusion of 
non-uniform mutation (Alfaro-Cid, McGookin & Murray-Smith, 2005 – supporting 
paper, [71]).  
 
5.2.4 Genetic Programming (GP) 
 
Unlike the GA approach where, in a control engineering context, the objective is 
parameter optimisation, the methodology known as genetic programming (GP) 
involves an approach where there is no prior specification of the size, shape and 
structure of the solution and algebraic expression evolve from a database of nonlinear 
algebraic functional elements (Koza, 1992). Like the GA it is an evolutionary 
optimisation method but, unlike the GA, it does not require a structure that is rigid in 
form. While the problems to which the GA has been applied involve a set number of 
tuning parameters and a fixed-length string representation for the solutions, the 
application of genetic programming leads to a situation in which the size and shape of 
solution evolve dynamically. Thus, in a control context for example, genetic 
programming can provide a controller structure as well as an optimal set of 
parameters.  
 
The GP approach to evolutionary computation allows optimisation of a tree structure 
representation of a symbolic expression. The tree structure has a variable length and 
is made up of a series of nodes. These nodes can be terminal nodes, representing an 
input variable or a constant. They may also be non-terminal nodes representing 
functions involving some form of operation on one or more variables of the system. 
Figure 5.1 shows an example of a tree structure and, in this particular case, the 
terminal nodes are system inputs and variables of the system under investigation or a 
constant. The non-terminal nodes, in this diagram, represent the operations of forming 
a square root, addition and subtraction.  

 
The GP algorithm chooses possible elements from a library to build trees of this kind 
and each tree is evaluated as an algebraic expression to provide a fitness function 
value. There is a population of trees of this kind and this population evolves through 
the processes of crossover, selection and mutation towards a structure that is optimum 
in the sense of the chosen fitness function. The process is not deterministic and 
repeated runs are therefore likely to produce different solutions and analysis of a set 
of runs is necessary in order to produce an expression that is potentially useful. 
 
5.3 Nonlinear Model Structure Identification using Genetic 
Programming 

 
Genetic programming can be used to introduce an element of automation in the model 
structure identification process through the use of a fitness function which involves a 
measure of the agreement between the model and the system responses. A set of 
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possible model structures evolves, through many generations, towards a solution by 
means of a selection scheme based on “survival-of-the-fittest” and using evolutionary 
operators. At each stage the equation generated through genetic programming is 
combined with other equations involved in the model description to produce a 
simulated time response which must be compared with experimental data to give a 
fitness value for that model. 
 
 
 

 
 

Figure 5.1: Structure of GP tree representing the function )3( −+−= uvxy . Here the circles 

represent non-terminal nodes whereas the rectangular blocks are terminal nodes. 
 
 
The parameters of the candidate models can be estimated using numerical 
optimisation based on simulated annealing, or on simulated annealing combined with 
Nelder-simplex optimisation. It should be noted that gradient methods of optimisation 
cannot be used in the parameter estimation process because many models generated 
through the GP process contain linearly dependent parameters or parameters that have 
no effect on the model output. The fitness function value from the best parameter fit 
is then used by the genetic programming algorithm to define the fitness of that 
specific function tree. 
 
Experimental design is of particular importance in the identification of nonlinear 
systems since the system must be excited over the whole frequency range of interest 
and also, in terms of amplitude, over the range of all the nonlinearities in the system. 
This means that a large training data set is needed. However, large data sets imply 
additional computational demands in terms of the chosen optimisation process so 
there is an inevitable trade-off between model accuracy and optimisation time. 
 
The papers (Gray, Li, Murray-Smith & Sharman, 1996a – submitted paper, [72]), 
Gray, Murray-Smith et al., 1996b – supporting paper, [73]), (Gray, Murray-Smith et 
al., 1997 – supporting paper, [74]), (Gray, Weinbrenner et al., 1997 – supporting 
paper, [75]) and (Gray, Murray-Smith et al., 1998 – submitted paper, [76]) describe  
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the successful application of genetic programming methods to the identification of 
nonlinear model structures for continuous-time models. In this approach the candidate 
models may be described using both block-diagram and ordinary differential 
equation-based representations and prior knowledge of the physical system can be 
incorporated within those descriptions. The unknown dynamics evolve through the 
processes of genetic programming as an algebraic expression that forms part of the 
set of ordinary differential and algebraic equations describing the system. The genetic 
programming algorithm builds the models from a library of available functions. This 
library is very important and must be sufficiently flexible to allow for a wide range of 
functions, but not so general that a purely empirical representation can evolve. It 
should include basic algebraic operations (such as addition, subtraction, 
multiplication, squaring etc.) together with functions that represent common forms of 
dynamic characteristics (such as first or second-order linear sub-models) that might 
be expected to appear as elements within a complex description. Each member of the 
genetic program population represents a possible candidate model for the given 
system.   It is important to note that any model structure identified using genetic 
programming needs to be validated using a data set that is different from the data set 
used for the optimisation.  
 
Although not concerned with the use of genetic programming it is worth mentioning 
that genetic algorithms and simulated annealing have also been shown to be useful 
tools in system modelling from empirical data. The paper (Tan, Li et al., 1995 – 
supporting paper, [77]) gives an account of the application of these techniques to 
system identification and linearisation. 
 
The papers (Gray, Li et al., 1996a – submitted paper, [72]) and (Gray, Murray-
Smith et al., 1998 – submitted paper, [76]) include results obtained from the 
successful application of the GP approach to a number of different systems. These 
include a simple simulated system involving a linear transfer function and a pure 
delay element in cascade, a laboratory system involving a coupled tanks fluid flow 
system and a system for engine and rotor speed control in an MBB Bo105 helicopter. 
The results show that genetic programming can be used to fit a model intelligently, in 
terms of the topology and types of block structure employed, while the parameters 
can be estimated through the application of simulated annealing. With suitable 
constraints this approach could provide insight regarding physically-based model 
structures or could be used to validate a given nonlinear model using experimental 
data. 
 
The paper by (Gray, Murray-Smith et al., 1998 – submitted paper, [76]) describes 
one particular approach to the use of genetic programming within the modelling 
process and describes its successful application to a number of simulated and real 
physical systems. The main applications considered involve test data from a coupled 
system involving a pair of water tanks and helicopter flight test data for modelling of 
helicopter engine dynamics. 
 
Results from these applications show that genetic programming is a valuable tool for 
the modelling of nonlinear dynamic systems using experimental test data. This 
approach can allow nonlinear model structures to be developed through automation of 
the trial and error processes traditionally used for model structure estimation. It thus 
allows more candidate model structures and components to be evaluated. This method  
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allows poor features to be eliminated and good features of specific structures to be 
combined to give new forms of sub-model. 
 
There is, however, an important issue in the selection of the fitness function that 
forms the basis for measuring the level of agreement between each candidate model 
and the measured response from the real system. It is essential that the fitness 
function should be chosen with due regard to all the available information about the 
real system and also the intended application of the model. The simulation routines 
used should return a value of the model fitness that is scaled in a suitable way for the 
GP selection operator. 
 
Although the process of selection of the optimum description from among the 
candidate models is automated in this approach, the human skill in the choice of 
fitness function is vitally important for the ultimate success of the method. It is also 
important that the simulation methods used are numerically efficient and fast because 
each evaluation of the fitness function involves one simulation run and the number of 
evaluations needed may be large.  
 
A model structure that has evolved from the application of the GP approach can often 
reveal new information about the system under investigation or can lead to additional 
experimental testing that can, in turn, throw new light on the physical processes 
involved.  
 
5.4 Optimisation in PID, State Variable Feedback and H∞ Control 
Schemes 
 
Issues associated with the optimisation of classical controllers of the PID type have 
been explored in the paper by (Alfaro-Cid, McGookin & Murray-Smith, 2001c – 
supporting paper, [78]) and discussed further in (Alfaro-Cid, McGookin & Murray-
Smith, 2006 –submitted paper, [79]). This work builds, to some extent, on earlier 
research reported by (Li, Tan et al., 1995 – supporting paper, [80]) at the 1995 IEEE 
Conference on Decision and Control involving linear control system design by 
genetic evolution with simulated annealing. Both the 2001 and 2006 papers involve 
genetic algorithm optimisation methods and include discussion of the encoding of 
each parameter value as a string of five genes to allow representation of controller 
parameters between 0.001×10-2 and 9.999×103. For a PID controller with three 
adjustable parameters 15 genes are needed to represent the controller. Results from 
the application of GA optimisation have been compared with results from 
conventional manual tuning of the PID controller for an example involving heading 
and propulsion control systems for physical scale models of two oil platform supply 
ships. These scale models (Cybership I and Cybership II) are used as test vehicles at 
the Marine Cybernetics Laboratory of the Norwegian University of Science and 
Technology (NTNU) in Trondheim. The Laboratory is equipped with a water basin 
with a wave generator. The objective in these studies was to make the vessel track 
desired dynamic responses with minimum actuator effort so that cost function, with 
two terms for each controller, has the form: 
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where iψ∆  is the i th value of the heading angle error, yiτ  is the i th value of the yaw 

thrust force, iu∆ is the i th value of the surge velocity error, siτ  is the i th value of the 

surge thrust force, tot is the total number of iterations and 1λ and 2λ  are scaling 
factors. It should be noted that since the yaw thrust force and surge thrust force terms 
are of increasing importance as the error terms become smaller, these input terms tend 
to dominate the cost values near the optimum. This is why the two scaling constants 
are included in the cost function and a careful choice of these can ensure that the four 
terms within the cost are optimised equally. Although there is no difficulty in 
achieving acceptable responses using manual tuning methods, the time history for siτ  

showed oscillations when the system was subjected to step changes in the reference 
inputs to both controllers simultaneously. This oscillatory behaviour was also 
observed in the case of the same controllers optimised using GAs and, since such 
behaviour could lead to excessive wear and possible fatigue in actuators, a modified 
form of cost function involving an additional pair of terms representing the rates of 
change of control inputs was considered. This led to the adoption of a modified cost 
function of the form: 
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which gave, with appropriate choices of the scaling constants 1µ  and 2µ , a 
satisfactory overall performance involving a good trade-off between tracking 
accuracy and actuator oscillations. 
 
The paper by (Alfaro-Cid, McGookin & Murray-Smith, 2006 – submitted paper, 
[79]) compares GA-optimised PID controller performance with the performance of 
pole placement (PP) controllers also optimised using GA methods for the same 
application. Interestingly, it is shown in the paper that the optimised controllers 
provide very similar responses for both control configurations (PP and PID). In 
addition to extensive simulation studies, tests were carried out at NTNU in Norway 
on the Cybership II 1/70th scale model on which both types of controller were 
implemented. It is interesting to note that the implemented controllers required no 
adjustments beyond the tuning processes that had been carried out as part of the 
simulation studies.  
 
The paper by (Alfaro-Cid, McGookin & Murray-Smith, 2008 – supporting paper, 
[81] ) is concerned with the design and optimisation of H∞ controllers. An H∞ 

controller is a form of optimal controller which involves minimisation of an H∞ norm 
instead of the more normal L2 quadratic norm. The advantage is that the H∞ norm 
allows specification both of the level of plant uncertainty and the signal gain from 
disturbance inputs to error outputs and this provides robust stability. The performance 
of a controller of this kind depends critically on the choice of certain weighting 
functions. A poor choice leads to poor control system performance. The paper 
describes the use of GAs for automatic optimisation of these weighting functions. 
Two approaches were considered and these involved (i) a conventional GA and also  
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(ii) a related method, developed by Dasgupta and McGregor (1992), known as a 
structured genetic algorithm (SGA). This latter approach is generally believed to be 
more suited to structural optimisation problems and, since the weighting functions in 
the H∞ problem involve transfer functions, this was an appropriate choice of method. 
The application considered involved heading and propulsion control systems for an 
oil platform supply ship. Results obtained suggest that the SGA can be very useful for 
establishing appropriate weighting functions in that the tracking performance of the 
system developed using the SGA approach was better than the performance of the 
equivalent system designed using the GA approach. It is important to note that this 
improvement was achieved with weighting functions of lower order (with 
corresponding advantages in terms of implementation) and that actuator usage for the 
system designed using the SGA was significantly reduced compared with the usage 
level for the other system.   
 
Work on a novel non-uniform mutation operator reported in a paper by (Alfaro-Cid, 
McGookin & Murray-Smith, 2005 – supporting paper, [71] ) showed that 
optimisation results could be further improved in the case of H∞ controllers. The 
inclusion of non-uniform mutation, together with a modified form of crossover 
operator involving exponential crossover probability, was shown to give significant 
benefits in an application involving ship control.  

 
5.5 Optimisation Techniques in Sliding-Mode Controller Design 
 
Sliding-mode controllers represent an important class of nonlinear control systems 
that have been widely applied. In its early development the approach received 
particular attention in the Soviet Union and in eastern European countries but has 
been very widely accepted in recent years as being a useful and highly practical 
approach to control system design and implementation. This acceptance is due to the 
inherent properties of control systems designed using this approach, which provide 
robustness in applications involving a wide range of operating conditions and 
stringent requirements in terms of disturbance rejection. Such performance could not 
be achieved so readily using linear controllers. 
 
The favourable characteristics of sliding-mode controllers are provided by a 
switching term within the controller structure. This extends the action of the so-called 
nominal equivalent controller (which is usually a linear form of controller designed 
about a selected operating point) by providing control action over a wider operating 
envelope. The controller can then compensate for un-modelled dynamics and external 
disturbances. 
 
The determination of the optimum set of values of the adjustable parameters within a 
sliding-mode controller is not a straightforward process due to complex interactions 
between these quantities. This makes the design process tedious and time-consuming 
and is one of the reasons why nonlinear controllers of this type have not been more 
widely used in industrial applications. There is a clear need for a more automated 
design process. 
 
A number of different approaches to the automation of the design process for sliding-
mode controllers have been considered, mainly in the context of marine applications. 
The findings from these investigations of different optimisation tools are, however,  
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quite general and are applicable to many problem areas. The methods selected for 
comparison are simulated annealing (SA), segmented simulated annealing (SSA), 
genetic algorithms (GA) and genetic programming (GP).  
 
The paper by (Li, Ng et al., 1996 – submitted paper, [69]) describes the application 
of design automation based on the use of GAs to the development of a sliding-mode 
controller for a two-input, two-output system. The specific application involved 
control of liquid levels in a pair of coupled tanks used for teaching. Results showed 
that design automation based on GAs avoided tedious trial and error methods. It also 
produced a system which had a performance that was better than the performance of 
designs produced manually.  This is extended in (Ng, Li et al., 1995 – supporting 
paper, [82]) to the design of sliding mode controllers that incorporate fuzzy elements.  
The idea, in this case, was to incorporate fuzzy control to the switching logic to 
overcome problems of chattering in conventional sliding-mode systems. The adoption 
of the fuzzy approach increases the complexity of the design and makes a trial-and-
error approach very hard to apply successfully. Some form of automated design 
method really becomes essential in this case. The paper describes the development of 
methods involving tournament and rank-based genetic algorithms. The method was 
applied very successfully to the control of a two-tank coupled liquid-level system. 

 
The optimisation of non-linear control systems by genetic algorithms is also 
discussed in the paper by (McGookin, Murray-Smith et al., 2000b – submitted 
paper, [83]). This paper involves applications to ship control systems and two 
specific systems are considered. Both systems relate to a nonlinear model of a 
190,000 ton oil tanker. One system is concerned with course changing and the other 
with track keeping through a form of line-of-sight autopilot. Various operating 
conditions were used in the evaluation of system performance. In the case of the 
course changing controller these involved changes of desired course and changes in 
water depth. For the case of the track-keeping controller, the system performance was 
tested in terms of positional accuracy for both deep water and shallow water 
conditions and for different loading conditions. The controllers used for both 
applications were of the sliding-mode type using a derivation by Fossen (1994) and 
Slotine and Li (1991) in which switching action is provided by a hyperbolic tangent 
function. In order to smooth the switching action a boundary layer is incorporated.  
 
The switching action of the sliding mode controller determines how robust the system 
is to model uncertainties and also to external disturbances, such as waves and wind 
forces. Four parameters have to be optimised in the controllers and these key 
parameters have to be adjusted so that an appropriate cost function is minimised in 
each case considered. The results presented in the paper show that optimisation based 
upon the use of genetic algorithms can be very effective in obtaining values of design 
parameters in complex nonlinear controllers and that these controllers perform well in 
simulations. It is suggested that the form of sliding-mode controller presented in the 
paper has a structure suitable both for the course changing and track keeping 
applications. It is also suggested that the chosen form of controller exhibits excellent 
robustness for the complete range of operating conditions considered. The type of 
sliding-mode controller developed in the course of this investigation was therefore a 
strong candidate for further testing and evaluation on a vessel or using a scale model 
vessel in a testing tank. 
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A further more detailed publication by (McGookin, Murray-Smith et al., 2000a – 
submitted paper, [65]) describes the application of sliding mode control, optimised 
using genetic algorithms, to the performance optimisation of a navigation system for 
the same tanker model as that discussed above. This fully autonomous navigation 
system involves two major sub-systems in control systems terms. The first of these is 
a line-of-sight autopilot which determines the desired heading of the tanker from 
positional information and the second is a heading control system. The nonlinear 
sliding-mode control features arise in the heading control loop and genetic algorithms 
are applied to the optimisation of that sub-system. The overall system performance 
has been evaluated for a variety of different operating conditions for the tanker 
model, including different waypoint courses, altered waypoint acceptance radii, 
different loading conditions and different forward velocities for the vessel.  
 
Simulated responses for the optimised system show that the design criteria for the 
optimisation were satisfied and that the solution compares favourably with designs 
derived using traditional engineering judgement alone. The overall conclusion from 
this investigation was that genetic algorithms can allow a general-purpose navigation 
system to be designed with sliding-mode controller parameters which provide a very 
satisfactory level of performance robustness. In most of the cases considered the 
system completely satisfied the design criteria, but situations involving a reduction in 
forward velocity affect the flow over the rudder and this reduces the turning moment 
until a point is reached where there is insufficient torque to complete the commanded 
manoeuvre. 
 
The work on optimisation of sliding-mode controllers has been taken forward in a 
significant way in work described in a more recent study by (Alfaro-Cid, McGookin 
et al., 2005a – submitted paper, [84]). This involved implementation and extensive 
testing of sliding mode controllers for propulsion and heading control on the oil 
platform supply ship (Cybership II) at NTNU in Norway. This vessel has a tunnel 
thruster at the bow, two main propellors at the stern and two rudders at the stern. 
Facilities on the model and in the basin allow measurements of the heading angle and 
(x,y) coordinates of the vessel. Cybership II is equipped with an on-board personal 
computer (PC) but control calculations are performed in real-time using an on-shore 
PC which communicates with the on-board computer through a wireless link The 
simulation work required for design optimisation was based upon a nonlinear 
hydrodynamic model of the vessel. 
 
Controllers optimised through simulation studies (without waves) have been 
subjected to tests in the water basin both in the presence of wave disturbances and in 
still water. Without waves the results showed that the tracking performance of the 
control system was excellent and that in the presence of waves the tracking 
performance of the system was not degraded significantly. The results for controllers 
optimised in the presence of simulated waves were less satisfactory, with a significant 
reduction of control effort but a relatively poor response in terms of surge error. 

 
The paper by (McGookin & Murray-Smith, 2006a – submitted paper [85]) on the 
optimisation of SM controllers for submarine manoeuvring using SA, SSA and elite 
GA methods builds, in part, on a paper by McGookin, Murray-Smith and Li presented 
at the UKACC Control ’96 Conference (McGookin, Murray-Smith & Li, 1996b –  
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supporting paper, [86]). Two controllers were involved in this investigation, one for 
depth control of the vehicle and the other for heading control. In this case there is 
significant dynamic cross-coupling between the two systems. Results showed that, 
while SA is a useful local optimisation technique, it is not particularly useful as a 
design automation tool. The reason is that it requires prior information about the 
region of the parameter space in which the optimal solution lies. It is, however, a 
potentially useful method for fine tuning of a controller that has been designed 
initially by some other method. Application of the elite GA provided results that were 
good in many respects but showed problems in that this global search method 
provided very few incremental changes in the final generations. This means that there 
was no fine tuning of results and there were 16 candidates in the final generation that 
exhibited similar characteristics. However, this does imply that a region has been 
found that is near the global optimum and one can therefore have confidence in the 
final solution provided by the GA. The SSA approach was found to overcome the 
restrictions of the SA method and could provide the basis of a useful global 
optimisation method. In comparison with the GA, however, the SSA approach had 
only 4 final candidates (compared with 16 from the GA method) and the confidence 
level is inevitably lower. Both the GA and SSA methods have advantages and 
disadvantages for this application but, on balance, it was concluded that the GA 
approach provided the best overall performance. 
 
Work presented at the 2005 IFAC World Congress in (Loo, McGookin & Murray-
Smith, 2005 – supporting paper, [87]) involves the application of sliding-mode 
control for feedback controller design combined with inverse model control for a 
tanker. In this case it was found that the sliding-mode controller could act as a 
corrective controller with the inverse model acting as a feed-forward controller. The 
use of inverse model feed-forward control in conjunction with a corrective feedback 
controller was found to provide benefits when compared with conventional feedback 
controllers. In particular the sliding-mode control scheme benefits from the combined 
control structure and the two controllers together outperformed conventional 
feedback control methodology. This topic is explored in more detail in Section 6 in 
the context of inverse simulation methods applied to control system design. 
 
Ship control applications involving sliding-mode controllers and other forms of 
nonlinear controllers are reported in a number of additional publications including 
(McGookin, Murray-Smith et al., 1997a – supporting paper, [88]), (McGookin, 
Murray-Smith et al., 1997b – supporting paper, [89]), (McGookin, Murray-Smith & 
Fossen, 2000 – supporting paper, [90]) and (Alfaro-Cid, McGookin & Murray-
Smith, 2001a, -supporting paper, [91]). Gain scheduling controller analysis and 
design using genetic algorithms is discussed in (Gray, Li et al., 1997 – supporting 
paper, [92]). The use of genetic algorithm optimisation in the development of a ship 
navigation system is described in (Alfaro-Cid, McGookin & Murray-Smith, 2001b – 
supporting paper, [93]). Other work carried out on the application of advanced 
optimisation methods to sliding mode controller design includes research on the 
application of segmented simulated annealing methods (McGookin, Murray-Smith & 
Li, 1996 – supporting paper, [94]). Results of research on the specification of a 
control system fitness function using constraints for genetic algorithm based design 
methods may be found in (Gray, Li et al, 1995 – supporting paper, [95]). 
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5.6 Controller Design using Genetic Programming 
 
The 2005 and 2008 papers by Alfaro-Cid, McGookin, Murray-Smith and Fossen 
(Alfaro-Cid, McGookin et al., 2005b – supporting paper, [96]) and  (Alfaro-Cid, 
McGookin et al., 2008 – supporting paper, [97]) are both concerned with the 
application of a GP approach to the selection of controller structures for heading and 
propulsion systems for a surface vessel. The aim was to provide good tracking of the 
desired response in each case while minimising control effort. The function set 
involved 11 functions that included variations on PID control, sliding-mode control 
and pole placement techniques. The vessel considered in this work was the Cybership 
II  scale model of an oil platform supply ship which was described in more detail in 
Sections 5.4 and 5.5. Experimental evaluation of the controllers optimised by the use 
of GP methods was carried out at NTNU. 
 
Optimisation, with and without wave disturbances, converged to trees that gave very 
similar control strategies and this was considered encouraging. The best results 
involved a controller structure that was based on a hyperbolic tangent function in the 
heading control loop (representing a form of sliding-mode control approach) and 
either a proportional term or a second hyperbolic function in the propulsion loop. 
However, the terminal values resulting form the search mean that the hyperbolic 
functions were operating in the proportional range rather than in the switching area. 
In the case of the propulsion loop this meant that the system was effectively providing 
proportional control while, in the case of the heading loop, it is shown in the paper 
(Alfaro-Cid, McGookin et al., 2008 – supporting paper, [97]) that the solution found 
effectively involves full state-feedback control. 
 
Another recent paper describing advances in the application of genetic algorithms and 
genetic programming methods to ship control problems is (Alfaro-Cid, McGookin & 
Murray-Smith, 2009 – supporting paper, [98]) which presents results of a 
comparative study of genetic operators for controller parameter optimisation.     
 
 
5.7 Other Approaches involving Nonlinear Controllers 
 
5.7.1 Artificial Neural Network (ANN) methods 
 
Artificial neural network (ANN) and fuzzy logic methods have received considerable 
attention for nonlinear control system applications in recent years. These areas of 
research have often been grouped together with evolutionary computing methods 
under the heading of “biomimitic” approaches since they have some links with 
biological systems. Although the biological analogies are not emphasised in the work 
presented in this thesis, these methods do provide an interesting alternative to more 
classical methods for nonlinear control system design. Applications have been 
concerned mainly with laboratory-scale applications and with problems of ship-
steering control. 
 
In contrast to other work concerned with direct neuro-controllers (e.g., (Häussler, Li 
et al., 1995 – supporting paper, [99]),  the approach emphasised in this thesis for the 
implementation of neural network based controllers involves training the network to  



 70 

 
behave like a specific form of conventional controller. Input and target data for the 
training process can be generated from the input and output of the controller when 
operating in normal closed-loop fashion in conjunction with the plant. It should be 
noted that the simple replacement of a conventional controller by an equivalent ANN 
controller would give no benefits since this would require the design of the 
conventional controller by traditional methods and then the training of the ANN 
controller. The potential advantages come only if it is possible to train a single 
artificial neural network, using a number of conventional controllers (optimised for 
different operating points), to cover a range of conditions that would otherwise 
necessitate the use of some form of scheduled controller system.  
 
The main emphasis in the research on artificial neural networks included in this thesis 
is on applications involving ship steering control. The first work carried out at 
Glasgow in this field, by (Simensen & Murray-Smith, 1995 – submitted paper, 
[100]), involved simulation studies in which a feed-forward network was trained to 
behave like a feedback linearisation controller. The ship model used was a relatively 
simple description involving an extended version of Nomoto’s first order model (e.g., 
(Fossen, 1994)), which has been used as the basis for many other ship steering 
studies. The network configuration used was a conventional feed-forward network 
with six inputs, one hidden layer and one output. Tan-sigmoid activation functions 
were used on the hidden layer neurons and a linear activation function on the output 
layer neuron.   Bias inputs were applied to the hidden layer and output layer neurons. 
The back propagation algorithm, with momentum and adaptive learning, was used for 
training. The results obtained showed that the approach could yield a control system 
which provided a satisfactory level of performance for a range of operating 
conditions.  
 
The success of the neural-network controller was found to depend very much on the 
choice of input variables and on the training data set being used. Physical insight was 
recognised as an important factor for both of these issues. One particular issue 
investigated, using simulation, concerned the effect of external disturbances and 
whether or not disturbances should be included in the training data. The conclusion 
reached was that, for this application at least, training data should include 
disturbances due to the fact that this makes the training data more varied in character 
and this appears to yield a more robust form of controller.  
 
A second paper by (Unar & Murray-Smith, 1997 – supporting paper, [101]) 
investigated the application of radial basis function (RBF) networks to problems of 
ship steering control.  For training and testing purposes models of three different 
ships were considered. A supervised learning strategy was applied for training the 
networks, with PD and PID controllers designed for different forward speeds being 
used as supervisors for the training process, as in the earlier work described in 
(Simensen & Murray-Smith, 1995 – submitted paper, [100]). The networks were 
found to be capable of yielding satisfactory performance at different forward speeds 
within the range considered in the training phase. That paper includes comparisons of 
the performance of the RBF networks with the performance of conventional MLP 
type feed-forward networks trained using back-propagation methods. It was shown 
that adoption of the RBF type of network can provide benefits in terms of reduced 
training time and improved performance robustness in some cases.    
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A subsequent paper (Unar & Murray-Smith, 1999 – submitted paper, [102]), builds 
upon the foundations established in (Simensen & Murray-Smith, 1995 – submitted 
paper, [100]) and (Unar & Murray-Smith, 1997 – supporting paper, [101]) and 
describes both a successful investigation of radial basis function networks for ship 
steering control and also discusses the use of local model networks, as discussed in 
Section 2, for the representation of ship dynamics. The conclusions reached in that 
1999 paper are that radial basis function networks allow a controller to be derived that 
incorporates the characteristics of a number of conventional controllers and that this 
form of network has some advantages over multi-layer perceptron type networks for 
this application. These advantages are in terms of the simpler network structure and 
the improved approximation properties of the resulting neural network based 
controller. The paper also shows that local model networks, trained from simulation 
data, could be used successfully to represent ship dynamics for a range of operating 
conditions. This takes account of the limitations that are known to exist (see e.g., 
(Shorten et al., 1999)) for local model networks when operating far from the 
equilibrium points at which the local models were established.  

 
5.7.2 Nonlinear control through velocity-based linearisation methods 
 
A paper by (Kocijan & Murray-Smith, 1999 – submitted paper, [103]) describes the 
application of velocity-based linearisation methods to the design of a gain-scheduling 
controller for ship steering. The main advantage of this type of approach is that it 
links nonlinear control system design with the type of knowledge required for the 
analysis and design of conventional linear control systems. In this approach a 
nonlinear controller is designed via a velocity-linearised nonlinear system description. 
The extended form of Nomoto’s first order model was again used in this work (as in 
(Simensen & Murray-Smith, 1995 – submitted paper, [100]), (Unar & Murray-
Smith, 1997 – supporting paper, [101]) and (Unar & Murray-Smith, 1999 – 
submitted paper, [102])). Robustness may be achieved during the linear phase of the 
design process and is preserved when the nonlinear form of controller is 
implemented. Performance requirements in terms of tracking of the reference model 
signal were found to be met for the full operating range. Stochastic robustness 
analysis showed that this nonlinear controller successfully performed its task 
regardless of plant variations over a wide range. The advantage of this approach is 
that it provides a single controller of moderate complexity which is valid for a wide 
range of operating conditions and is robust to parameter variations. It is thus similar 
in its objectives to the work described above involving the use of ANN methods for 
ship steering control. One perceived advantage of the velocity-based linearisation 
method over the approach based on ANNs is that it provides increased physical 
insight. 
 
5.8 Discussion 
 
This section of the thesis has highlighted the potential for automation of some aspects 
of the processes of system modelling and controller design. Although computational 
tools such as genetic algorithms and genetic programming can help to eliminate trial 
and error methods and make the processes of modelling and design more systematic, 
it must be emphasised that the use of automation in this way does not diminish in the 
importance of the investigator or designer. The use of these advanced optimisation 
methods undoubtedly changes the nature of some of the tasks involved. Their use  
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eliminates some subjective elements of the procedures but inevitably introduces 
others, such as the choice of fitness function. The main benefit is that, when properly 
used, these powerful methods for global optimisation allow a significantly larger 
number of solutions to be considered than would otherwise be possible.   
 
Similar issues arise in the use of artificial neural networks in controller design. It is 
believed that the approach considered in this case, involving the training of an 
artificial neural network to capture the characteristics of a number of conventional 
controllers which have been optimised separately for a number of different operating 
points, has particular benefits in that it builds upon  the expertise of the designer. The 
approach produces a single “scheduled” type of controller that can give satisfactory 
control system performance for a wide range of operating conditions within the limits 
for which it has been trained. This produces a simpler controller to implement in 
software than would be possible with a conventional scheduled control scheme. The 
approach may be viewed as being similar to the use of artificial neural networks to 
represent a complex multi-input multi-output look-up table for nonlinear function 
generation. Physical insight and understanding of the dynamics of the real system 
were found to be important factors in the selection of training data sets and the input 
variables for the neural-network based controller.   
 
An alternative approach to gain scheduled controller design, considered in Section 
5.7.2, involves velocity-based linearisation. It is believed to have potential advantages 
over methods based on artificial neural networks due to the fact that the approach 
retains the possibility of interpreting features of the overall system performance using 
basic physical insight.  
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6. Inverse Simulation Methods for Control System Design 
    Applications 
 
6.1 Inverse Simulation Techniques in Control System Design 
 
Control schemes for output tracking based on a two degrees-of-freedom approach, of 
the type shown in Figure 6.1, frequently involve methods of design based on model 
inversion. These techniques have been used extensively to design feed-forward 
controllers.  Key publications in this area include the papers by Francis and Wonham 
(1976), Hirshorn (1979), Isidori and Byrnes (1990) and Devasia, Chen and Padden 
(1996). In the block diagram Kff is a model-inversion based feed-forward controller 
and Kfb is a feedback controller. If the inverse model in the feed-forward path were 
perfect and if the system was not subject to any external disturbances there would be 
no need for the corrective feedback pathway.  
 

 
 
Figure 6.1: Block diagram of model-following control system based on the two degrees-of-freedom 
approach involving a feed-forward controller Kff and a feedback controller Kfb. 

 
The control system structure of Figure 6.1 arises because it is impossible to produce a 
perfect inverse model and external disturbances are present in almost all control 
system design problems. Thus, for practical purposes, the corrective feedback 
controller is essential to provide the control action that is not provided by the feed-
forward controller to compensate for external disturbances and plant model 
uncertainties.   The design and analysis of schemes of this kind has been an active 
topic of research since the 1990s and such systems have received particular attention 
in the context of aircraft applications. The feedback controller may be designed by 
any one of a number of well known methods such as PID control, the H∞ algorithm, 
the linear quadratic approach, or through sliding mode control principles.  
 
Inversion of the system dynamics for feed-forward system design, although well 
proven through a number of published studies, presents practical difficulties in the 
case of nonlinear plant models. The mathematical basis of the approach leads to 
problems in terms of translating the approach into a technique that can be applied 
routinely by design engineers in industry. The difficulties are particularly important in 
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Kfb  G 
r 
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the case of systems that have to be represented by high–order models, as is often the 
case in aircraft flight control or marine applications. Some success has been reported 
in the use of inverse models for feed-forward control schemes based on linearised 
plant descriptions. An example of an application in the marine area may be found in 
the paper by (Loo, McGookin & Murray-Smith, 2005 – supporting paper, [87] ). 
 
Inverse simulation algorithms, of the types described in Section 3 of this thesis can 
generate control inputs such that the mathematical model can follow an ideally 
defined trajectory. Thus, model inversion and inverse simulation both involve 
specification of a required manoeuvre and determination of the inputs required to 
follow that pre-defined manoeuvre. Replacement of an inverse model in a control 
system design process by an inverse simulation does not appear to be a difficult step, 
provided the inverse simulation can satisfy all of the conditions that must be met for 
the successful implementation of an inverse model within a control system. 
 
Previously, inverse simulation does not appear to have been used within output-
tracking schemes, except for the work of Avenzini (2001) who has investigated the 
possible use of inverse simulation to provide the reference input for a controlled 
helicopter model. 
 
The papers by (Lu, Murray-Smith & McGookin, 2006 – supporting paper, [104]), 
(Lu, Murray-Smith & McGookin, 2007 – submitted paper, [105]) show that inverse 
simulation can provide an alternative to model inversion for some important cases. 
The type of system considered involves a combination of feed-forward and feedback 
control and corresponds to the general form of block diagram of a model-following 
control scheme of the type shown in Figure 6.1.  
 
In this work inverse simulation was used to design the feed-forward controller and the 
mixed sensitivity H∞ algorithm (see e.g., (Skogestad & Postlethwaite, 1996)) has been 
used for the design of the feedback controller.  Applications described in the paper 
(Lu, Murray-Smith & McGookin, 2007 – submitted paper, [105]) involve a linear 
non-minimum-phase helicopter model and a nonlinear container ship system. A 
further example is described in (Lu, Murray-Smith & McGookin, 2006 – supporting 
paper, [104]) and this involves an application based on a nonlinear model of the 
HS125 fixed-wing aircraft, where results from inverse simulation are compared 
directly with results from the application of model inversion techniques. The inputs 
found from the application of the two approaches are identical. 
 
The overall conclusions of the studies described in (Lu, Murray-Smith & McGookin, 
2006 – supporting paper, [104]) and (Lu, Murray-Smith & McGookin, 2007 – 
submitted paper, [105]) are that it is feasible for inverse simulation to replace model 
inversion in output tracking applications. In the case of minimum-phase systems, for 
an appropriate choice of discretisation interval, inverse simulation provides a viable 
alternative approach. The inverse simulation method is easier to apply, generally, than 
model inversion. Depending upon what can be achieved in terms of zero 
redistribution within the process of inverse simulation it may also be possible to apply 
inverse simulation for linear non-minimum-phase systems. One major advantage of 
the inverse simulation approach is that the computational overheads are modest 
compared with those involved in dynamic inversion. 
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6.2 Inverse Simulation in Man-Machine Control Systems 
      Investigations and the Predictive Inverse Simulation Approach 
 
As mentioned in (Bradley, Padfield et al., 1990 – submitted paper, [44]) and other 
papers (e.g., (Rutherford & Thomson, 1996)), the investigation of inverse simulation 
techniques for the validation of helicopter flight mechanics models highlighted an 
issue when a defined standard manoeuvre, such as a side-step or quick-hop 
manoeuvre, was used as a basis for comparing flight test results with model 
predictions. While it is straight-forward to use inverse simulation methods to find the 
pilot control-inputs that are appropriate for flying the given manoeuvre, flight test 
results tend to show control-input time histories that are different in form from those 
predicted from the simulation model. While part of the difference is inevitably due to 
errors in the mathematical model, there is a second factor that is also very important. 
In the flight testing case, the pilot is continually adjusting inputs during the 
manoeuvre to ensure that the helicopter keeps as closely as possible to the desired 
flight path. Thus, there is a complex process of feedback present that does not exist in 
inverse simulation with an open-loop flight mechanics simulation model. While this 
is important in the context of the external validation of simulation models, it also 
suggests that benefits could result from a study of inverse simulation in pilot-in-the-
loop modelling and thus also in the more general context of man-machine control 
systems.  
 
The paper by (Cameron, Thomson & Murray-Smith, 2003 – submitted paper, [106]) 
describes the development of an approach to aircraft handling qualities investigation 
using inverse simulation together with a pilot model. This combination provides an 
integrated description of the complete system involving man and machine. In order to 
include pilot-generated effects within the data generated by inverse simulation, the 
output obtained from an inverse simulation run is applied as input to a closed-loop 
system model that includes the dynamics of the vehicle and a highly simplified model 
of the pilot. This approach has been used in an investigation simulating a predefined 
mission task involving a lateral manoeuvre. For this, a simple mission-programmable 
real-time flight simulator was constructed to allow experimentation using human 
subjects and thus estimation of parameters for the pilot model. The conclusions of 
that investigation suggested that, in principle, inverse simulation methods and a 
simple real-time simulator could be used to generate simulated flight data for 
handling qualities investigations at an early stage in the design of a new vehicle. The 
principles of this approach could be applied to other man-machine control problems 
involving a human within the feedback loop.  
 
It is recognised that simple inverse simulation techniques can produce control 
strategies for aircraft applications that an experienced pilot would not normally adopt. 
This could be, as discussed in the first paragraph of this sub-section, because pilots 
use feedback on a continuous basis to monitor the vehicle’s performance and this 
feedback is of vital importance when external disturbances are present. As indicated 
above, such feedback pathways are not normally included in the models that are used 
for handling qualities investigations based on inverse simulation methods. Another 
reason why solutions provided by simple inverse simulation algorithms may not 
match the strategies adopted by pilots is that, in inverse simulation, no account is 
taken of constraints that are well known to experienced pilots and are taken into 
account in determining appropriate control actions. These constraints include 
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mechanical limitations of actuators, limitations in terms of main rotor and tail rotor 
torque and structural limits of key components of the vehicle.   
 
It has been shown in the 2007 IFAC Symposium paper by (Bagiev et al., 2007b – 
submitted paper, [108]) that conventional inverse simulation can be improved by 
incorporating predictive capabilities for applications involving manoeuvring flight. 
As noted in Section 3, conventional approaches to inverse simulation, such as the 
differentiation or integration based methods involving the Newton-Raphson 
algorithm, do not accommodate control constraints. This paper (Bagiev et al., 2007b) 
provides details of the development of a predictive algorithm and provides a number 
of examples showing the application of the approach to aggressive helicopter 
manoeuvres.  The results show that the method can improve the realism of inverse 
simulation results for controlled manoeuvring flight. It is also believed that the 
approach could be helpful in the conceptual design of new vehicles and could also 
provide a basis for a trajectory generating algorithm. Such an algorithm could be 
useful in terrain following guidance aids such, as a “tunnel in the sky” system. It is 
clear that the methodology of predictive inverse simulation has potential value in 
other fields, such as robotics, underwater vehicles and automotive applications. These 
results are further supported by similar findings from the application of the receding 
horizon approach to a different set of aggressive manoeuvres in (Bagiev et al., 2007a 
– supporting paper, [107]).  
 
Although the examples considered in the work reported in the two papers discussed in 
this section all relate to helicopter applications there is no reason why the predictive 
inverse simulation algorithm could not be applied equally well to problems in many 
other application areas. The approach has much in common with nonlinear predictive 
control.      

 
6.3 Discussion 
 
Inverse systems have provided a basis for much theoretical research in the control 
systems field over the past two decades and some significant applications have been 
reported by others. Despite the inherent difficulties in the mathematical methods 
needed for the nonlinear case, potential benefits in control applications are believed to 
be significant. Inverse simulation methods have potential advantages compared with 
classical methods of inversion in that they are applicable, with some restrictions in the 
case of non-minimum phase systems, to any model for which a forward simulation 
can be developed. 
 
A number of control engineering applications of inverse simulation have been 
presented, some of which involve helicopter flight control problems while others 
involve the design and evaluation of feed-forward controllers for ship steering 
systems. The possible benefits of using inverse simulation methods for the design of 
combined feed-forward and feedback control systems, for cases where actuator 
saturation and other nonlinearities are significant, has been a topic of particular 
interest. The use of predictive control principles within the inverse simulation process 
is a recent area of research that has produced some promising possibilities for future 
work. 
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7. Sensitivity-Function Based Optimisation for Controller 
    Tuning 
 
7.1 Introduction 
 
Computer-aided control system design techniques can lead to automatic control 
systems that give excellent performance when sufficient information is available 
about the system being controlled (the plant) and about the environment within which 
it operates. In real applications, whether in engineering or involving problems in the 
biomedical field, a mismatch always exists between the plant and the corresponding 
model used as the basis for system design. However, the effects of modelling errors 
and plant uncertainties can often be overcome, during commissioning of the system, 
through iterative tuning.  
 
In the case of some commonly-used controllers, such as proportional, integral and 
derivative (PID) controllers, there are well-known and widely used procedures for 
tuning that can lead rapidly to a satisfactory performance. For most other forms of 
continuous and digital controller structures convenient tuning algorithms do not exist 
and, in practice, controller tuning often involves trial and error procedures. This can 
add significantly to the overall time for commissioning and thus to the overall cost of 
control system implementation. As the control system performance requirements 
become more demanding, the complexity of the resultant controller tends to increase. 
The extent to which controller parameters interact in terms of their effects on the 
overall system response also tends to increase with controller complexity. This 
usually leads to additional problems for those involved in on-site tuning.   
 
7.2 Parameter Sensitivity Functions for Tuning Feedback Control 
Systems 
 
Sensitivity functions offer valuable information for system design through providing 
a measure of a change in the system response that will result from changes in 
parameters of the system. The relative magnitudes of these sensitivity functions 
indicate which parameters are most significant in terms of their influence on system 
output variables. By selecting parameters that have the greatest effects on the steady 
state and dynamic performance of the system, the number of adjustable quantities can 
be kept to a minimum. If one knows the form of the desired response characteristics it 
is then possible to use sensitivity information to systematically improve the system 
performance. 
 
Conventional approaches to the estimation of parameter sensitivity in closed-loop 
control systems (and also in other types of system that do not necessarily involve 
explicit feedback pathways) are mostly based on parameter perturbation methods or 
on the use of a sensitivity co-system (see, for example, (Tomović, 1963)). 
Perturbation methods involve calculation of differences between responses before and 
after changes of each adjustable parameter and thus, for p parameters, this process 
requires at least 2p separate tests. This approach also involves small differences 
between responses of similar magnitude and the results are likely to be adversely 
affected by measurement noise. Although the use of the sensitivity co-system 
approach reduces the number of tests to be carried out and, in the special case of 
single-input single-output linear systems, allows simultaneous estimation of all 
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parameter sensitivity functions from a single test, it does depend on precise a priori 
knowledge of the structure and parameters of the system. Such information is seldom 
available in practical control applications. 
 
What is required for the tuning of parameters within the controller blocks of feedback 
systems is an approach that does not require a priori knowledge of the plant in the 
form of a detailed mathematical model and also avoids the need for large numbers of 
repeated tests, as is the case with parameter perturbation methods. Such an approach 
is provided by the so-called signal convolution method for the estimation of 
parameter sensitivities. The technique was developed initially for an application 
involving adjustment of synchronous generator excitation controllers in electrical 
power systems, but the approach has been shown to be applicable to many other 
problems involving closed-loop control. 
   
 
7.2.1 A sensitivity function method for feedback controller tuning in 
multivariable closed-loop systems 
 
For multivariable closed-loop systems described by the block diagram shown in 
Figure 7.1, a general method for controller tuning based on controller parameter 
sensitivity functions has been developed from results published in (El-Shirbeeny, 
Murray-Smith and Winning, 1974 – submitted paper, [109]) and (Winning, El-
Shirbeeny, Thomson and Murray-Smith, 1977 – supporting paper, [110]). These 
papers relate specifically to iterative tuning of single-input single-output voltage 
regulator systems. 

 
 
Figure 7.1: Block diagram of single-input single-output system with cascade and feedback controllers, 
where R(s) represents the Laplace transform of the reference input r(t) and Y(s) represents the Laplace 
transform of the system output y(t). The variables e(t) and b(t) correspond to the transformed variables 
E(s) and B(s) shown on the diagram. 

 
The generalisation of this approach from the voltage regulator application to other 
forms of single-input single-output closed-loop system showed that the method 
avoids the need for explicit a priori information about the plant, provided the system 
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does not depart significantly from a linear mode of operation (Murray-Smith, 1986 - 
submitted paper, [111]). 
 
In the multi-input multi-output case the block diagram is a straightforward 
multivariable system equivalent of the single-input single-output situation shown in 
Figure 7.1. The tuning algorithm allows predictions to be made of the effects of 
changes in parameters of the controller blocks C and H in the multivariable version of 
the diagram. Assume, first of all, that sensitivity functions iqt ∂∂ )(y for the response 

y(t) to variation of the parameter qi of the cascade controller, C, or of the feedback 
controller H are available. It is possible then to express the difference between the 
desired response yd(t) and the actual response y(t) by an equation of the form: 
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where it α∂∂ )(y and it β∂∂ )(y are the matrices of first order sensitivity functions of 

the system response y(t) to variation of the controller parameters iα  and iβ  and Re(t) 

is the residual error. The parameter vectors A∆  and B∆  in Equation (7.1) are defined 
as follows: 
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where the quantities iα  are parameters of the cascade controller C and 

  

[ ]T2..... nβββ ∆∆∆=∆ 1B      (7.3) 

 
where the parameters iβ   are parameters of the feedback block H. 

 
 In addition to reflecting the difference between the desired and actual responses of 
the model the quantity Re(t) includes components associated with higher order 
parameter sensitivity functions which have been neglected. 
 
Equation (7.1) shows clearly that it is possible to influence the residual error by 
adjusting the controller parameters and this allows minimisation of an appropriate 
cost function involving Re(t). In the case of multi-input multi-output systems, the 
performance index to be minimised involves the sum of a number of distinct time 
histories because separate tests have to be carried out for each of the inputs (Murray-
Smith, 1986 – submitted paper, [111]), (Manness & Murray-Smith, 1987 – 
supporting paper, [112]). Since there is an inherent approximation in the use of 
sensitivity functions in this way, the process of parameter adjustment is iterative. A 
number of different optimisation approaches have been used successfully in this 
work, including quasi-Newton methods which have been adopted for most of the 
applications reported in later sub-sections. 
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7.2.2 A signal convolution method for estimation of controller parameter 
sensitivity functions 
 
In addition to direct estimation of parameter sensitivities by parameter perturbation, 
there are a number of ways, such as the sensitivity co-system approach of Tomović 
(1963), in which parameter sensitivity functions may be determined if there is a 
parametric model of the plant available. This process of sensitivity analysis becomes 
more difficult if no reliable plant model is available and this is a commonly 
encountered situation in practice. 
 
The paper by (El-Shirbeeny, Murray-Smith & Winning, 1974 – submitted paper, 
[109]) established the foundation of an approach for estimation of controller 
sensitivity functions through simple iterative tests on the closed loop system and the 
application of signal processing techniques. The approach was extended to 
multivariable systems in the paper by (Murray-Smith, 1986 – submitted paper, 
[111]) and subsequent papers by (Manness & Murray-Smith, 1987 – supporting 
paper, [112]) and by (Gong, Oppen & Murray-Smith, 1995 – supporting paper, 
[115]) provide evidence of the effectiveness of this approach in a number of 
applications. A further publication in 2003 by (Murray-Smith, Kocijan & Gong, 2003 
– submitted paper, [116]) brings together the main results of this research and 
compares the approach with the iterative feedback tuning method of Hjalmarsson 
(2002). 
 
For multivariable systems having the feedback structure shown in Figure 7.1 
involving a plant transfer function matrix G(s), a cascade controller transfer function 
matrix C(s) and a transfer function matrix in the feedback path H(s), it can be shown 
that  
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where ( ) )()()()()()()( 1 sssssss rCGHCGIW −+= is the transfer function matrix of 
the closed-loop system. If the cascade and feedback controllers then depend on a set 
of adjustable parameters q it may be shown, for a given parameter qi , that 
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In cases where the parameter qi is a parameteriα of the cascade controller it may be 

shown that  
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and when  the parameter qi is a parameteriβ of the cascade controller 
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Hence the output sensitivities can, in both cases, be expressed as a product of the 
closed-loop system transfer matrix W(s) and a sensitivity vector Zqi (s) so that: 
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This sensitivity vector has the form: 
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loop transfer function can be estimated, it is clear that the sensitivity functions may be 
found by applying signals e(s) and y(s), which are both available within the system 
itself, to filters that have forms that depend only on the cascade controller transfer 
function matrix or on the feedback path transfer function matrix. These filters are 
independent of the plant transfer function matrix G(s). 
 
The closed-loop system transfer function matrix W(s) may be estimated directly using 
unit impulse or unit step signals applied at the reference input. In the case of a 
reference input test signal which approximates a unit impulse Equation (7.8) 
becomes: 
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For a reference input test signal in the form of a unit step Equation (7.8) takes the 
form: 
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In both cases the sensitivity signal vectors )(sqiZ may be found by applying the error 

signal e(s) or the output y(s) to filters Fqi(s) which have a structure and parameters 
that depend only on C(s) or H(s). This is illustrated in the block diagram of Figure 7.2 
which is, again, shown in single-input single-output form for reasons of clarity. 
 
In the case of a parameter of the cascade controller block C(s) we have 
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and, for a parameter of the feedback block H(s) 
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. 
Transformation of Equation (7.9) and Equation (7.10) to the time domain is 
straightforward and gives, in the case of Equation (7.9) 
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Figure 7.2: Block diagram for single-input single-output case showing method of generation of the 
sensitivity signals for one parameter of the cascade controller and one parameter of the feedback 
controller. Additional parameters can be handled by introducing extra sensitivity filters in parallel with 
each of the two sensitivity filters shown in this diagram.   

 
 
 
In the case of Equation (7.10) the vector y(t) is simply replaced by its derivative with 
respect to time. Several different numerical techniques are available for calculation of 
a convolution integral of this kind in the time domain.  
 
The approach may also be applied using the relevant equations directly in the 
frequency domain. This is discussed further in the 1986 paper by (Murray-Smith, 
1986 – submitted paper, [111]). The experimental estimation of controller 
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sensitivity functions in the frequency domain, using broad-band signals applied at the 
reference input, is described in a paper by (Gong, Oppen & Murray-Smith, 1995 – 
supporting paper, [115]). 
 
The paper by (Gong, Oppen & Murray-Smith, 1995 – supporting paper, [115]) also 
presents the theory for the signal convolution approach when applied to a digital 
control system. The approach adopted there uses a conventional system structure 
involving idealised representations of the analogue-to-digital and digital-to-analogue 
conversion processes. In this case z-transform analysis is used to show that the 
sensitivity functions may be found directly by simple arithmetic operations on the 
sampled variables at the output, at the summing element in the feedback path and at 
the outputs of the sensitivity filters. Once again it is demonstrated that the sensitivity 
functions for the parameters of the digital controller may be estimated entirely from 
measured response signals and calculations require no detailed information about the 
plant and its parameter values.     
 
7.3 Applications of the Controller Tuning Method based on 
      Sensitivity Functions Estimated using Signal Convolution. 
 
There have been a number of different applications of the methods of controller 
tuning and sensitivity analysis based on signal convolution methods. Published 
accounts of applications to single input single output systems have included electrical 
power systems applications involving on-site adjustment of automatic voltage 
regulator systems (Winning, El-Shirbeeny et al., 1977 – supporting paper, [110]), 
and an application to a simulated aircraft flight control system (Murray-Smith, 1986 – 
submitted paper, [111]). Published applications to multi-input multi-output systems 
have included simulation studies for helicopter flight control and related handling 
qualities investigations (Manness & Murray-Smith, 1988a – supporting paper, 
[113]), (Manness & Murray-Smith, 1988b – supporting paper, [114]) and  a detailed 
investigation of the application of the method two a two-input two-output laboratory 
system for liquid level control involving two coupled tanks (Murray-Smith, Kocijan 
& Gong, 2003 – submitted paper, [116]).  

 
7.3.1 The signal convolution method applied to the tuning of a two-input two-
output liquid-level control system 
 
Figure 7.3 is a schematic diagram of a two-input two-output coupled tanks laboratory 
system. This system is a modified version of equipment available commercially 
(TecQuipment Ltd.). Changes made to the standard system involved replacement of 
resistive liquid level sensors by differential-pressure based depth sensors and the 
introduction of an additional pump to provide a flow input to the second tank. As 
outlined by (Murray-Smith, Kocijan & Gong, 2003 – submitted paper, [116]), the 
system may be described by a linearised state-space model  
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and where a  is the cross-sectional area of tank 1 and tank 2, 1a  is the total cross-
sectional area of orifices linking the two tanks (with an associated discharge 
coefficient 1dC ) and 2a  is the cross-sectional area of the outlet from tank 2 (with a 

discharge coefficient 2dC ).   

 
Figure 7.3: Schematic diagram of the coupled-tanks system showing the output variables H1 and H2 

(corresponding to the variables h1 and h2 which, in the linearised equations, represent perturbations in 
the depths of liquid H1 and H2 in tanks 1 and 2 respectively) and the two input flow variables Qi1 and 
Qi2 (which correspond to the variables qi1 and qi2 in the linearised model). It should be noted that the 
quantity H3 (and thus h3 in the linearised representation) is a constant which represents the level of the 
centre point of the outflow pipe from tank 2. 
 
Figure 7.4 shows a block diagram of the complete control system involving 
continuous proportional plus integral type controllers which have been designed to 
provide independent control of liquid level in the two tanks for operations about a 
selected steady state condition. 
 
It should be noted that, because of the fact that tank 1 communicates only with tank 2 
but tank 2 has an outlet, it is impossible for the system to operate in the desired 
fashion as a two-input two-output system with completely independent control of the 
two levels. Specifically, the design requirements cannot be satisfied if the steady state 
level for tank 2 is set to be greater than the demanded level for tank1. This is not a 
significant limitation since, for most practical operating requirements, the level in 
tank1 would be greater than the level in tank 2.  
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Figure 7.4: Structure of the liquid level control system showing the two-input two-output diagonal 
form of proportional plus integral controller.   
 
Initial design values for the proportional and integral constants in the controller of 
Figure 7.4 were found by use of the individual channel analysis and design (ICAD) 
approach of O’Reilly and Leithead (1991). Tuning of the system by means controller 
parameter sensitivity functions found using the signal convolution approach, outlined 
above, was carried out successfully. Details of this work, including plots of the 
sensitivity functions estimated experimentally and the final form of control system 
transients may be found in (Murray-Smith, Kocijan & Gong, 2003 – submitted 
paper, [116]). Changes in the values of some parameters as a result of tuning were 
significant, with the proportional gains being altered by a factor of more than three in 
both loops. However, the number of iterations required to meet the design 
requirements, despite these large changes in parameters, was only three.   
 
Experience gained with this application confirmed results found previously during 
studies involving the tuning of automatic voltage regulators in electrical power 
systems (Winning, El-Shirbeeny et al., 1977 – supporting paper, [110]), where the 
presence of significant measurement noise was not found to present difficulties for 
the numerical convolution approach. Although the sensitivity function estimates may 
be biased in situations with significant measurement noise, the results obtained from 
the two-tank system application show that the tuning process converges rapidly and 
produces system output responses which show small residual errors compared with 
the desired responses.     
 
Although the technique is based entirely on linear theory, nonlinearities within the 
two-tank system resulting from fluid flow phenomena did not lead to difficulties 
although they do lead to large changes of the model parameters 1dC  and 2dC  for 

different operating conditions. The tuning process was found to be affected adversely 
by saturation of the pumps, but successful tuning could be achieved if the magnitudes 
of step or pulse test inputs were chosen to ensure that pump saturation did not occur. 
 
The main benefit of using the signal convolution approach for the generation of the 
controller parameter sensitivity functions, compared with more traditional parameter 
perturbation methods, is that a minimum of two tests is needed (one for each 
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reference input) compared with a minimum of ten tests using parameter perturbations 
to generate the data for calculation of all eight sensitivity functions. This is due to the 
fact that, in the parameter perturbation approach, one test signal would have to be 
applied separately to each reference input with the unperturbed parameter settings and 
then four tests would have to be applied for each input for the four parameters 
perturbed individually. Results show that sensitivity functions found from the 
application of the signal convolution approach agree closely with corresponding 
results obtained using parameter perturbation  (El-Shirbeeny, Murray-Smith & 
Winning, 1974 – submitted paper [109]), (Murray-Smith, Kocijan & Gong, 2003 – 
submitted paper, [116]). 

 
7.3.2 Application of the controller tuning technique to helicopter flight control 
systems  
 
Although helicopter flight mechanics models are steadily being improved in terms of 
their fidelity, limitations of these descriptions can still have a significant and 
degrading influence on the overall performance of flight control systems designed on 
the basis of such models. As the bandwidth requirements of flight control systems are 
extended to higher and higher frequencies in order to further enhance the agility and 
handling qualities of the vehicle, factors involving un-modelled or incorrectly 
modelled higher order dynamics continue to present difficulties. In particular, the 
effects of imperfect modelling of the dynamics of the main rotor, tail rotor and 
associated inflow dynamics and tip vortex phenomena commonly lead to 
requirements for retuning of the controller parameters following initial flight tests. 
Trial and error solutions do not provide cost effective solutions in terms of satisfying 
the demanding requirements of modern flight control systems and suffer from a lack 
of quantitative information about parameters to be adjusted and the amount by which 
they should be changed. Such an approach is certainly inadequate for the tuning of 
full authority fly-by-wire systems where the high level of system integration tends to 
obscure relationships between the overall system performance and the individual 
settings of adjustable parameters of the controller. 
  
The technique developed for systematic tuning of helicopter flight control systems 
and described in the papers by Manness and Murray-Smith ((Manness & Murray-
Smith, 1988a – supporting paper, [113]) and (Manness & Murray-Smith, 1988b – 
supporting paper, [114])) relies on information provided by sensitivity functions. The 
signal convolution approach, outlined in Section 7.2.2 above, is ideal for the 
estimation of controller parameter sensitivity functions since this method does not 
require an accurate dynamic model of the vehicle. Flight testing is also kept to a 
minimum by the adoption of this approach but it is not feasible to carry out the tuning 
process in real time or even using a single test. Since helicopters are multi-input 
multi-output systems separate tests must be carried out involving the application of 
appropriate inputs perturbations to each channel of the multivariable control system 
in turn. Controller adjustments must therefore be made on the ground, between each 
set of flight experiments. 
 

 
7.4 Discussion 
 
Controller parameter sensitivity functions provide information which is potentially 
very useful for the purposes of control system tuning, especially at the system 
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commissioning stage. The iterative approach, being suggested here, is potentially 
attractive for practical industrial applications because it involves manual 
implementation of changes in controller parameter settings at each stage of the 
procedure. This allows those carrying out the tuning procedure to review results at 
each step in the light of their underlying knowledge of the system.  
 
Methods for estimation of controller parameter sensitivity functions based on signal 
convolution lead to a single-stage time-domain procedure from data obtained from 
step or impulse response tests carried out on the closed-loop system. The approach 
does not require explicit a priori knowledge of the plant model and uses tests on the 
real system to generate a non-parametric description of the closed-loop system, in 
addition to the sensitivity functions for controller parameter tuning.  The tuning 
process based on sensitivity functions converges rapidly and the computational 
demands in terms of numerical calculation of convolution integrals are not limiting 
for an off-line or semi-off-line tuning procedure. Implementation of the sensitivity 
filters for each adjustable parameter in the numerical convolution approach does not 
lead to significant additional problems since these filters have a relatively simple 
form for most controller transfer functions of practical importance.   
 
The applications have allowed investigation of issues of convergence and robustness 
of the approach. Although the technique for calculation of controller parameter 
sensitivity functions is based on linear theory and, strictly speaking, is not applicable 
to systems with significant nonlinearities, practical experience with real applications 
suggests that this tuning method is remarkably reliable and robust. Applications 
involving physical systems, such as the voltage regulator system and the coupled 
tanks equipment, have shown that convergence of the tuning process was not 
adversely affect by the plant nonlinearities present. Issues of measurement noise have 
also been investigated extensively through those applications and measurement noise 
was not found to present any insuperable problems, provided appropriate signal 
conditioning filters are applied in the instrumentation and data collection systems 
(Murray-Smith, Kocijan & Gong, 2003 – submitted paper, [116]). 
   
The approach must certainly be applied with caution if it is known that the plant has 
significant nonlinearities, such as saturation effects or other hard nonlinearities, 
within its normal operating range. Care must also be taken if significant levels of 
measurement noise are encountered during preliminary testing of the closed-loop 
system.  
 
Results presented in the accompanying submitted papers and in the supporting 
publications show the significant practical benefits that can be obtained from the 
application of this approach to controller tuning. The applications considered are 
typical of many practical control problems and of the situations encountered during 
system commissioning tests that lead to a need for adjustments to parameters within 
controllers.     
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8 Related Work involving System Modelling and Control 
Applications 
 
8.1 Other Contributions in System Modelling and Control 
 
Further original contributions have been made in a number of areas. These include: 

• Sensitivity analysis of linear closed-loop systems (especially in the context of 
pole placement techniques for feedback system design) (Murray-Smith, 
2003c – supporting paper, [117]), (Murray-Smith, 2004b - supporting paper, 
[118]).  

• Applications of established multivariable control system design methods to 
problems of helicopter flight control (Parry & Murray-Smith, 1985 – 
supporting paper, [119]),( Manness & Murray-Smith, 1992 – supporting 
paper, [23]), (Gribble, Manness & Murray-Smith, 1994 – supporting paper, 
[24] ), (Gribble & Murray-Smith, 1990 – supporting paper, [25]), (Hughes, 
Manness & Murray-Smith, 1990 – supporting paper, [26]), (Manness, 
Gribble & Murray-Smith, 1990 – supporting paper, [27]). 

• Control and simulation problems in systems involving single and multiple 
unmanned underwater vehicles (Mitchell, McGookin & Murray-Smith, 2003 – 
supporting paper, [120]), (Mitchell, McGookin & Murray-Smith, 2004 – 
supporting paper,[121]), (Carruthers, McGookin & Murray-Smith, 2005 – 
supporting paper, [122]), (Zenor, Murray-Smith, McGookin & Crosbie, 2009 
– supporting paper, [123]).   

• The design of observer systems for state estimation, fault detection and 
system reconfiguration in helicopters and autonomous underwater vehicles 
(Paterson  &  Murray-Smith, 1987 – supporting paper, [124]), (Mitchell, 
McGookin & Murray-Smith, 2004 – supporting paper, [121]).  

• Biomimetic concepts and human factors aspects in control and robotics  
(Murray-Smith, 2003b – supporting paper, [125]), (Murray-Smith, 2005 – 
supporting paper, [126]).  

• Methods for the quantitative investigation of neuronal activity (Downie & 
Murray-Smith, 1981 - supporting paper, [127]), (Olsen & Murray-Smith, 
1993 - supporting paper, [128]), (Davey, Ellaway, Halliday, Murray-Smith 
& Rosenberg, 1986 - supporting paper, [5]), (Conway, Lau et al., 1990 – 
supporting paper, [6]), (Murray-Smith, Murray-Smith et al., 1995 – 
supporting paper, [7]). 

• Implementation and experimental performance evaluation of fuzzy control 
systems for a pH neutralisation process (Ibrahim & Murray-Smith, 2007 – 
supporting paper, [129]). 

  
Although none of the publications on these topics is included among the papers 
submitted as part of the work of this thesis, they are relevant since they provide 
information about some aspects of the broader context within which the research on 
system identification, modelling and system optimisation has been undertaken. Our 
publications relating to multivariable control system design techniques applied to 
helicopter flight control are especially relevant in this respect, as it was through that 
particular application that model quality and simulation model validation became one 
of my strong research interests. 
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8.2 Developments Relating to Education 
 
Contributions have also been made to the field of system modelling and control 
through publications describing educational developments. Some of these are 
specifically concerned with engineering education, while others describe new 
developments in the use of dynamic system concepts, control and computer 
simulation methods in the education and training of students in physiology and 
medicine. Relevant examples, which can in many cases be linked to specific 
developments described elsewhere in this thesis, include: 
 

• Presentation of basic ideas of mathematical modelling methods and computer 
simulation techniques for biologists together with case studies on applications 
of modelling in medicine (Pack & Murray-Smith, 1972 – supporting paper, 
[130]). 

• Development of educational material relating more specifically to simulation 
and modelling in the teaching of respiratory gas exchange and respiratory 
control (Mills, Middleton et al., 1974 - supporting paper, [131]),  (Carson & 
Murray-Smith, 1988 – supporting paper, [132]), (Murray-Smith & Carson, 
1988a – supporting paper, [133]), (Murray-Smith & Carson, 1988b – 
supporting paper, [134]). 

• Development of an educational case study on the modelling of muscle,  
muscle receptors and neuromuscular control (Murray-Smith & Zhao, 2007 – 
supporting paper, [135]). 

• Development of a practical exercise on simulation model validation involving 
experimental and analytical work (Gong & Murray-Smith, 1998 – supporting 
paper, [62]). 

• Development of a case study relating to the use of an aircraft lateral beam 
guidance system simulation in the teaching of control engineering (Murray-
Smith, 1983 – supporting paper, [136]). 

• Development of a case study involving use of a hydro-electric generator and 
governor system simulation in the teaching of control engineering (Murray-
Smith, 1984 – supporting paper, [137]).   

• Development of case studies on issues of model quality and inverse 
simulation, in the context of the teaching of  integrated control system design 
concepts (Murray-Smith, 2003a – supporting paper, [138]), (Murray-Smith, 
2004 – supporting paper, [139]). 

• Preparation of two additional review papers, both dealing with biomedical 
engineering topics relating to aspects of the neuromuscular system ((Murray-
Smith, Rosenberg & Rigas, 1987 – supporting paper, [140]), (Murray-Smith, 
2006b – supporting paper, [141]). 
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9. Discussion and Overall Conclusions 
 

The papers submitted in this thesis are strongly applications-oriented and this is 
believed to be one of the most important features of the work. The emphasis on 
applications has allowed situations to be considered where currently available 
techniques of system modelling and control system design have significant limitations 
and where developments of methodology could provide important benefits. The work 
described in the different sections of the thesis and the associated papers has explored 
some of these limitations and has provided evidence which may be of help to others 
in dealing with new applications or in moving towards new and more appropriate 
techniques for analysis or design for more highly integrated and complex systems. 
The combination of system modelling and control also serves to emphasise important 
links that should always exist between the processes of model development and the 
intended application of the model.  
 
9.1 The System Modelling Aspects of the Research 
 
The research on system modelling methods and applications emphasises the value of 
integrating system identification and parameter estimation techniques within a 
modelling approach based mainly on the application of physical laws and principles. 
Also, the research helps to demonstrate that some techniques which have attracted 
only specialist interest in the past, such as inverse simulation, have much to offer 
within the more general areas of model development and model validation. This is 
particularly important in dealing successfully with issues of model structure and 
structural uncertainties. 
 
Issues of experimental design, which have for long been recognised as very important 
in system identification, are also important for other aspects of model development 
and especially in the external validation of simulation models. Assessing the 
adequacy of a model for a specific use is a difficult task and the problem of upgrading 
or tuning a model which is shown to be inappropriate for an intended application 
raises many questions which, ideally, should involve further experimentation or the 
use of available experimental data. Unfortunately, the whole area of assessment of 
model accuracy, model suitability for a specified application and external validation 
of models attracts relatively little attention in terms of research. Donald Rumsfeld’s 
much quoted statement, made during a US Department of Defense news briefing 
(Rumsfeld, 2002) has direct relevance to the issues of model accuracy and 
uncertainties:  
 
"… as we know, there are known knowns; there are things we know we know. We also 
know there are known unknowns; that is to say we know there are some things we do 
not know. But there are also unknown unknowns - the ones we don't know we don't 
know”.  
 
His statement has been much ridiculed and took the UK Plain English Campaign’s 
award for the most baffling remark by a public figure later in the same year, but those 
words could certainly be applied to the processes of developing models. The 
“unknown unknowns” in modelling are among the most important things that have to 
be exposed by testing and by the whole process that we describe as “model 
validation”.  
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Use of the term “validation” may itself give a false impression of model capabilities. 
Terms such as “model testing” or “model evaluation” are really more appropriate. 
They reduce the possibility of false confidence being built into model-based 
predictions just because the model involved has been subjected to some form of 
“validation”. Theories can be proved to be wrong but cannot ever be proved to be 
right. Thus, models that can be shown to provide accurate predictions of reality in 
some circumstances cannot be assumed to be capable of giving good predictions in all 
cases. The “unknown unknowns” mean that there can never be a simple conclusion in 
the processes that we conventionally call “model validation”. 

 
A second important feature of the papers included in the thesis is that they discuss 
modelling and control applications from a variety of areas, including physiology, 
electro-optics and rotorcraft dynamics, as well as more traditional control engineering 
areas such as ships, underwater vehicles and electrical power generation systems. The 
benefits of a cross-disciplinary approach in system modelling are believed to be very 
significant. The value, in terms of cross-fertilisation of ideas resulting from 
involvement in a wide range of applications, can be seen from the detailed content of 
these papers. Although the fields of neurophysiology, respiratory gas exchange 
processes, electro-optic sensor-systems, helicopter flight mechanics, hydro-electric 
power generation and surface ship or underwater vehicle control may appear, 
initially, to have little in common, closer examination shows that systems from these 
different fields present many similar difficulties in terms of accurate modelling. The 
papers included in the thesis show that, in addition to displaying significant nonlinear 
behaviour, most credible models of such systems involve significant uncertainties in 
the early stages of their development. Important simplifications may also have to be 
introduced, often for reasons of computational complexity, if the model is to be useful 
for an application such as non-invasive measurement, a real-time system simulator or 
the design of an automatic control system. 
 
One recurring theme that is important in the modelling work is the additional insight 
that can be gained through the dual use of time-domain and frequency-domain 
information. One example of this is the importance of coherence information in 
establishing the existence of linear or nonlinear relationships between variables. This 
has proved to be of considerable value, both in the experimental investigation of 
neuromuscular systems and in the identification of helicopter models from flight test 
data. Frequency-domain techniques have also proved useful for the reduction of high-
order multi-input multi-output models.  
 
Inverse systems also receive significant attention in the thesis. Inverse simulation 
methods, developed initially for use in handling-qualities studies for fixed-wing 
aircraft and helicopters, have been shown to provide important insight in modelling 
and simulation of complex systems of a more general kind. One aspect of this is the 
different physical insight that can result from examining the input needed to allow a 
specific form of output to be achieved. This is vitally important in actuator design and 
it is believed that the examples from the ship steering area show very clearly the 
benefits that inverse simulation can provide in assessing the effects of control surface 
limitations on performance. 
 
Similar issues of robustness of the tools that are currently available arise in 
considering the routine use of evolutionary methods for system modelling. Genetic 
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algorithms offer a potentially important element of automation for optimisation 
procedures, both for model development and for design. However, such methods are 
at the stage where they could only be applied routinely in an industrial design 
environment if there was a significant period of training for those involved.  
 
The use of genetic programming for system modelling applications has certainly led 
to interesting results in a number of applications considered in the papers within this 
thesis, but it is also clear that this is still very much a research area. Although it was 
concluded from the research reported in the papers on this topic that genetic 
programming methods were useful for the identification of the structure of nonlinear 
dynamic models, the success of the approach depended critically on the selection of 
appropriate functions for the function library. This requires good understanding of the 
likely physical phenomena in the system under investigation and therefore does not, 
in any way, imply a fully automated approach. Examples of prior knowledge that can 
be helpful in establishing the elements needed in the function library and the initial 
form of model include the following: first estimates of the order of the model, first 
estimates of the forms of nonlinearity most likely to be involved, known interactions 
between variables of the system and the form and limitations of existing models of 
similar systems. It is also important for the investigator to have an understanding of 
the availability of experimental data, the limitations of experimental design and the 
possibility that the resulting experimental data could be unevenly distributed over the 
operating range.  
 
The role of the investigator is still vitally important and interaction between the user 
and the evolutionary optimisation tools is essential at various stages. Similar 
conclusions can be reached in the context of artificial neural networks and the closely 
associated methods involving local model networks. Here factors such as the choice 
of sub-models, the number of hidden layers and the number of neurons in a neural 
network, the choice of learning rates and other factors have to be chosen by the user, 
mostly on the basis of previous experience. Indeed, virtually all methods of system 
modelling involve issues of this kind where manual intervention by the user is 
essential.  
 
In some cases this may involve the selection of parameters which are essentially 
“fiddle factors”, whereas in others the manual process involves more fundamental 
choices. In many cases, however, the reason for undertaking these procedures 
manually is associated with the fact that available algorithms for the more automated 
aspects of the system identification and model development process are not 
sophisticated enough to carry out the necessary additional optimisation. In other cases 
the objectives of this further level of optimisation cannot even be expressed in a 
sufficiently simple fashion. In many applications constraints have to be considered 
and there may also be a number of different objectives that have to be satisfied 
simultaneously. Trial and error procedures can be very tedious and also introduce 
additional subjective aspects to the modelling process. This is clearly an area in which 
additional research is necessary, aimed at developing techniques that lead to an 
improved interface between the computer user, the model being developed and the 
available system identification and optimisation tools. 
 
It is generally accepted that an integrated approach to design should, ideally, involve 
use of generic forms of description and re-usable sub-models. Established examples 
of such a generic modelling approach can be found in application areas such as 
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automotive engineering (Sayers & Han, 1995) and gas turbines (Visser & 
Broomhead, 2000) as well in as the generic electro-optic sensor system model which 
is discussed in Section 4 and presented in more detail in (Smith, Murray-Smith & 
Hickman, 2007a – submitted paper [46]). Object-oriented methods are relevant for 
this and it is suggested that appropriate software environments may offer significant 
advantages for the development of re-usable and readily extendable models.  
 
Block diagrams and flow graphs have for long been used to describe the processes of 
system modelling, including the processes involved in the application of system 
identification and parameter estimation techniques. It is therefore appropriate to 
conclude this sub-section with the construction of a diagram that attempts to bring 
together some of the factors that are particularly emphasised in this thesis, including 
prior knowledge, experimental design, model optimisation and external validation.  
 
The most important fact about the system modelling process is that, when properly 
applied, it is an iterative procedure that involves development, testing and refinement. 
Figure 9.1 represents an attempt to incorporate the main steps involved in this cyclic 
process. The blocks associated with the real system and system test data are shown in 
yellow while steps concerned directly with the model are represented by pale blue 
blocks. Blocks that represent the processes of external validation and decisions on the 
adequacy of a model for the intended application are shown in pale green. Other 
blocks concerned with defining the purpose of the model, the intended application 
and the vitally important process of model documentation have no background 
colour.   
 
What is particularly attractive about this particular form of diagram is that it 
emphasises the vitally important role of external validation and the importance of 
prior knowledge about the real system. If a model proves inadequate for the intended 
application when subjected to the rigorous processes of external validation, there is a 
possibility of correction through feedback. Feedback pathways lead not only to the 
blue blocks representing the model but also, through the block representing 
knowledge of the real system, to the yellow blocks involving experimental design and 
thus to further tests to collect additional data from the real system. The importance of 
documentation is also emphasised in the diagram and it must be noted that 
documentation must be put in place as soon as a model is approved for use in the 
intended application. The model documentation must be updated if, at any stage 
during its life cycle, the model has to be modified because of evidence that was not 
available when the initial positive decision was taken on its adequacy. The presence 
of the uppermost block in this diagram (involving definition of the modelling 
objectives and the application) also emphasises the fact that a model developed for 
one specific purpose cannot be used for another application without going through the 
whole process of external validation, testing and further refinement if necessary.  It 
should be noted that the structure of Figure 9.1 applies to the development and 
assessment of inverse simulation models as well as to conventional models. 
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Figure 9.1: Block diagram of iterative processes of model development showing from formulation of 
modelling objectives to external validation and testing of model adequacy. 
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9.2 The Control Systems Aspects of the Research 
 
Optimisation methods are particularly important in control systems that involve 
significant nonlinearity, either within the plant or within the controller. Particular 
emphasis has been placed in this thesis on sliding-mode controllers and their design 
using evolutionary techniques, together with research involving the application of 
other forms of advanced optimisation method, such as simulated annealing.  
 
Results obtained from the work on sliding-mode control systems are very 
encouraging. The conventional approach to sliding-mode control system design 
involves manual adjustment of controller parameters within a simulation. That 
approach is very time-consuming and relies very much on the qualitative judgement 
and experience of the designer. The automated approach involving evolutionary 
techniques has been found to give reliable solutions in a reasonable period of time.  
 
Other developments in terms of sliding-mode control methods have been associated 
with the successful introduction and practical application of “soft switching” 
techniques to eliminate problems associated with chattering in conventional forms of 
sliding-mode controller. While beneficial in improving robustness, the switching term 
in a sliding-mode system can cause oscillations of the control input which result in 
unwanted wear within the actuators. The soft-switching approach that has been 
adopted to avoid this problem involves use of a continuous hyperbolic tangent 
function instead of the discontinuous sign function of conventional switching-mode 
systems. In one application a soft switching sliding mode control system for ship 
navigation and propulsion has been tested using a hardware implementation of the 
controller as well as through computer simulation. The parameters of the control 
structure were adjusted to optimise performance using the genetic algorithm approach 
and the robustness was evaluated in the presence of environmental disturbances. The 
performance was found to be satisfactory and the results from hardware testing were 
entirely consistent with those found from simulation. Investigations of robustness for 
other ship control system applications through computer simulation studies, involving 
factors such as changes of loading and increased forward speed, have provided results 
that demonstrate good performance of sliding-mode systems for significant changes 
of operating condition.  
 
Inverse simulation methods have also been examined closely in terms of their 
potential for control systems design in place of analytical inverse models which can 
present difficulties in the nonlinear case. Applications to problems involving the 
design of combined feedback and feed-forward control systems for ship steering 
applications have shown very encouraging results. This is believed to be a 
particularly important and promising development. 
 
Techniques for the tuning of feedback systems, based on the on-line estimation of 
parameter sensitivity functions, have been shown to provide a viable approach to the 
on-line optimisation of closed-loop system performance during system 
commissioning tests. Tests on a variety of different systems have demonstrated the 
capabilities and potential of this approach.   
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9.3 Links between Modelling and Engineering System Design 
 
One general point is that the complexity and detail of modern systems in some fields, 
such as in the defence and aerospace sectors, is beyond the level at which simple 
paper specifications seem appropriate. Although no systems of this complexity are 
considered in the papers in this thesis, other perhaps than the electro-optic sensor 
systems of Section 4, it is clear that conventional paper-based documentation and 
performance specifications have significant limitations. Some of these limitations are 
linked to the kind of errors to which humans are prone. In recent years there have 
been a number of well publicised examples from NASA, Airbus, BAE Systems and 
Boeing of complex systems that have failed or been seriously delayed because of 
design issues. These design problems often resulted from human errors, oversight or 
inappropriate specifications. Current limitations in conventional methods of 
documentation are referred to in the reviews of model validation methods (e.g., 
(Murray-Smith, 1998 – supporting paper [56]) and (Murray-Smith, 2006a – 
submitted paper, [58])) and this is further emphasised by T.S. Ericsen of the US 
Office of Naval Research in the context of the design of highly complex power 
electronic systems. In a recent paper (2005), Ericsen states: 
 
“…… The model is the only vehicle capable of conveying the engineering details 
needed and flexible enough to be used in a true engineering design cycle. Moreover, 
the model is the only vehicle that has the potential for multi-physics relationships 
supporting integrated multi-discipline design. Thus the model must become the 
specification and simulation the design medium for future systems”   
 
Ericsen goes on to point out that today’s modelling and simulation tools are primarily 
analysis tools and are not really designed for creativity and synthesis. The tools of the 
future will have to be more synergistic, with machines and designers working 
together. The machines would be handling large numbers of equations in a highly 
automated fashion, with the human designers monitoring solutions, observing trends 
and making jumps in terms of the overall design goals, on the basis of experience and 
inspiration. It is hoped that the methodological developments and accounts of 
successful applications in the areas discussed in this thesis, such as system 
identification and parameter estimation, inverse simulation, generic models, object-
oriented simulation methods, model validation, and optimisation based on 
evolutionary methods can contribute in some small way to this long term objective.                   
 
One further important issue concerned with modelling and design relates to 
engineering education. Engineering students encounter mathematical modelling 
principles early in their university education and may also have met these ideas at an 
earlier stage, although the word “model” may not have been applied. However, they 
seldom have to consider what constitutes a good model and this issue is seldom 
discussed in introductory textbooks on modelling and simulation methods. Many 
students, therefore, lack an adequate understanding of the effects of modelling errors 
and uncertainties in design, since the emphasis usually given in undergraduate 
courses is on the formulation of models and on numerical methods of solution. Issues 
concerning accuracy and fitness for purpose need to be emphasised more. Students 
also need to be exposed to the iterative process of model development from the initial 
formulation stage, through simulation, internal verification, external validation and 
then back to the earlier stages for re-formulation and re-testing.  
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At a more specialised level, students in areas such as control engineering or 
aeronautics should also be exposed to multidisciplinary problems such as those 
arising in integrated flight control systems or in robotics. Group design projects 
involving students from different disciplines could provide valuable opportunities for 
an introduction to some of the more complex issues that can arise in multidisciplinary 
problem solving. 
        
9.4 Areas for Further Research 
 
Several research topics discussed in the papers included in this thesis provide areas of 
work in which further developments are required. In some cases, such as inverse 
simulation, the need is to take existing methods, which have been demonstrated 
successfully in a research environment, and translate them into robust and reliable 
tools for analysis and design that could be applied routinely by engineers in industry. 
Evolutionary methods of optimisation have also been highlighted as being important 
for modelling and system design optimisation applications, but existing 
computational tools tend to limit the routine applicability of these techniques to 
research and development types of environment.  
 
A further area of this kind is helicopter system identification where it has been 
accepted by industry that system identification and parameter estimation methods 
have the potential to reduce the time required for flight testing within the processes 
leading to certification. This would reduce the development time and costs of new 
aircraft. However, because the currently available software tools lack robustness and 
require specialist knowledge in their use, those involved with new projects in industry 
are reluctant to make the investment of time and effort to ensure that their staff have 
the necessary expertise to apply identification or optimisation methods reliably. 
 
Further development of software tools is therefore seen as being one of the main 
priorities for further, more general, acceptance of techniques outlined in this thesis. 
This suggestion is closely linked to the needs that are now emerging as a result of 
increased levels of design integration where currently available tools do not 
adequately handle all of the necessary technologies. For example, an understanding of 
how model approximations and uncertainties propagate through a highly integrated 
design is very complex but is also very important and justifies more investigation.   
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