
 

HYBRID ACTIVE FORCE CONTROL FOR FIXED BASED ROTORCRAFT 

 

 

 

 

 

 

 

SHERIF IBRAHIM ABDELMAKSOUD MOHAMED 

 

 

 

 

 

 

 

A thesis submitted in fulfilment of the  

requirements for the award of the degree of 

Doctor of Philosophy 

 

 

School of Mechanical Engineering 

Faculty of Engineering 

Universiti Teknologi Malaysia 

 

 

 

 

 

 

FEBRUARY 2022 



 

iii 

 

DEDICATION 

 

 

 

 

 

 

 

 

 

This thesis is dedicated to my dear parents for their tireless support since my 

childhood, who taught me that even the greatest task can be accomplished with step-

by-step effort, to my supportive and beloved wife and daughters, who have been my 

source of encouragement and support throughout my studies, and to everyone who 

believes in me. 

  



 

iv 

 

ACKNOWLEDGEMENT 

Alhamdulillah, all praise is due to ALLAH S.W.T, the Most Beneficent and 

the Most Merciful, who has taught me what I knew now. I am sincerely thankful to 

Him for His kindest blessings on me and all my family members. He was with me in 

the most difficult of times and always. Peace and blessings of Allah be upon our 

dearest prophet, Muhammad, his family, and his companions. 

I wish to express my profound appreciation and gratitude to my supervisor, 

Prof. Dr. Musa Mailah, for his continuous support, guidance, motivation, and patience 

throughout my research work.  

I am also very grateful to my Co-supervisor, Dr. Tang Howe Hing, and my 

External Co-supervisor, Dr. Ayman M. Abdallah, Chairman of Aerospace 

Engineering, King Fahd University of Petroleum and Minerals, Saudi Arabia, for their 

continuous encouragement and valuable support during the period of my study. 

In preparing this thesis, I was in contact with many people, researchers, 

academicians, and practitioners. They have contributed to my understanding and 

thoughts. Without their continued support and interest, this thesis would not have been 

the same as presented here.  

I would also like to extend my gratitude to Universiti Teknologi Malaysia 

(UTM), Librarians at UTM, all lecturers, my laboratory mates, faculty and 

administrative staff of the School of Mechanical Engineering, my wonderful friends 

and colleagues, all suppliers and technicians who have assisted me directly and 

indirectly throughout the progress in completion of my project. I will not forget all 

opinions and supports given. I also acknowledge and appreciate the partial financial 

support from UTM through the International Doctoral Fellowship scholarship. 

I am also grateful to King Fahd University of Petroleum and Minerals 

(KFUPM), Saudi Arabia for providing an adequate environment for me to accomplish 

part of my research work. 

My sincere appreciation also extends to all my wonderful friends and 

colleagues who have provided assistance on various occasions. Their views and tips 

were very useful. I also would like to thank my fellow postgraduate students for their 

support. 

Last but not least, I humbly offer my sincere thanks to my parents, my brother 

and his family, and my parents-in-law and their daughters for their incessant 

inspiration, blessings, and prayers. Finally, my deepest appreciation and gratitude to 

my dearest wife, Rahma, and my daughters, Jannah and Yara. They stood by me in my 

most difficult times, and no words of appreciation can fully express my gratitude 

towards them. I always pray to Allah (SWT) to make them fine, bless our lives with 

happiness, and Al-Baraka, give us all Hidayah, and grant us Paradise. Ameen.  

Thank You 



 

v 

 

ABSTRACT 

Disturbances are considered major challenges faced in the deployment of 

rotorcraft unmanned aerial vehicle (UAV) systems. Among different types of 

rotorcraft systems, the twin-rotor helicopter and quadrotor models are considered the 

most versatile flying machines nowadays due to their range of applications in the 

civilian and military sectors. However, these systems are multivariate and highly non-

linear, making them difficult to be accurately controlled. Their performance could be 

further compromised when they are operated in the presence of disturbances or 

uncertainties. This dissertation presents an innovative hybrid control scheme for 

rotorcraft systems to improve disturbance rejection capability while maintaining 

system stability, based on a technique called active force control (AFC) via simulation 

and experimental works. A detailed dynamic model of each aerial system was derived 

based on the Euler–Lagrange and Newton-Euler methods, taking into account various 

assumptions and conditions. As a result of the derived models, a proportional-integral-

derivative (PID) controller was designed to achieve the required altitude and attitude 

motions. Due to the PID's inability to reject applied disturbances, the AFC strategy 

was incorporated with the designed PID controller, to be known as the PID-AFC 

scheme. To estimate control parameters automatically, a number of artificial 

intelligence algorithms were employed in this study, namely the iterative learning 

algorithm and fuzzy logic. Intelligent rules of these AI algorithms were designed and 

embedded into the AFC loop, identified as intelligent active force control (IAFC)-

based methods. This involved, PID-iterative learning active force control (PID-

ILAFC) and PID-fuzzy logic active force control (PID-FLAFC) schemes. To test the 

performance and robustness of these proposed hybrid control systems, several 

disturbance models were introduced, namely the sinusoidal wave, pulsating, and 

Dryden wind gust model disturbances. Integral square error was selected as the index 

performance to compare between the proposed control schemes. In this study, the 

effectiveness of the PID-ILAFC strategy in connection with the body jerk performance 

was investigated in the presence of applied disturbance. In terms of experimental work, 

hardware-in-the-loop (HIL) experimental tests were conducted for a fixed-base 

rotorcraft UAV system to investigate how effective are the proposed hybrid PID-

ILAFC schemes in disturbance rejection. Simulated results, in time domains, reveal 

the efficacy of the proposed hybrid IAFC-based control methods in the cancellation of 

different applied disturbances, while preserving the stability of the rotorcraft system, 

as compared to the conventional PID controller. In most of the cases, the simulated 

results show a reduction of more than 55% in settling time. In terms of body jerk 

performance, it was improved by around 65%, for twin-rotor helicopter system, and 

by a 45%, for quadrotor system. To achieve the best possible performance, results 

recommend using the full output signal produced by the AFC strategy according to the 

sensitivity analysis. The HIL experimental tests results demonstrate that the PID-

ILAFC method can improve the disturbance rejection capability when compared to 

other control systems and show good agreement with the simulated counterpart. 

However, the selection of the appropriate learning parameters and initial conditions is 

viewed as a crucial step toward this improved performance. 
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ABSTRAK 

Gangguan dianggap sebagai cabaran utama yang dihadapi dalam penggunaan 

sistem pesawat pemutar tanpa pemandu (UAV). Antara pelbagai jenis sistem pesawat 

pemutar, model helikopter pemutar berkembar dan empat-pemutar dianggap sebagai 

pesawat terbang paling serba boleh kerana kepelbagaian aplikasinya dalam sektor 

awam dan ketenteraan. Walau bagaimanapun, sistem ini adalah bersifat pelbagai-

varian dan tak-lelurus serta sukar untuk dikawal dengan tepat. Kehadiran gangguan 

dan ketidakpastian boleh menjejaskan prestasi kendaliannya. Disertasi ini 

membentangkan skim kawalan hibrid inovatif untuk sistem pesawat pemutar bagi 

meningkatkan keupayaan menghindar gangguan di samping mengekalkan kestabilan 

sistem menggunakan teknik kawalan daya aktif (AFC) melalui simulasi dan 

eksperimen. Model dinamik terperinci bagi setiap sistem diperolehi melalui kaedah 

Euler-Lagrange dan Newton-Euler. Pengawal berkadar-kamiran-terbitan (PID) telah 

direkabentuk untuk mencapai dan mengawal pergerakan pada ketinggian yang 

diperlukan. Disebabkan oleh ketidakupayaan PID untuk menghindar gangguan, 

strategi AFC telah digabungkan dengan pengawal PID, yang dikenali sebagai PID-

AFC. Untuk menganggar parameter secara automatik, beberapa algoritma kecerdasan 

buatan (AI) telah digunakan, iaitu algoritma pembelajaran berulang (IL) dan logik 

kabur (FL). Peraturan pintar algoritma AI ini telah direka bentuk dan dibenamkan ke 

dalam gelung AFC, yang dikenali sebagai kaedah kawalan daya aktif pintar (IAFC). 

Ini melibatkan kawalan daya aktif pembelajaran PID-ulangan (PID-ILAFC) dan 

kawalan daya aktif logik kabur PID (PID-FLAFC). Untuk menguji prestasi dan 

keteguhan sistem kawalan hibrid, model gangguan gelombang sinusoidal, berdenyut, 

dan tiupan angin Dryden telah dipilih. Ralat kamiran kuasa dua telah dipilih sebagai 

prestasi indeks untuk membandingkan di antara skim kawalan yang dicadangkan. 

Dalam kajian ini, keberkesanan strategi PID-ILAFC ke atas prestasi sentakan badan 

dengan kehadiran gangguan telah disiasat. Dari segi kajian ekperimen ujian 

perkakasan dalam gelung (HIL) telah dijalankan untuk sistem UAV pesawat pemutar 

asas bagi menyiasat keberkesanan skim PID-ILAFC hibrid. Simulasi domain masa  

mendapati kaedah kawalan IAFC hibrid sangat berkesan dalam membatalkan kesan 

pelbagai gangguan di samping berupaya mengekalkan kestabilan sistem pesawat 

pemutar, berbanding dengan pengawal PID konvensional. Hasil simulasi 

menunjukkan pengurangan lebih daripada 55% dalam masa penyelesaian. Prestasi 

sentakan badan meningkat sekitar 65%, bagi sistem helikopter pemutar berkembar, 

dan 45% untuk sistem empat-pemutar. Berdasarkan analisis sensitiviti, bagi 

memperolehi prestasi terbaik, hasil kajian mengesyorkan penggunaan isyarat keluaran 

penuh yang dihasilkan oleh strategi AFC. Keputusan ujian HIL menunjukkan kaedah 

PID-ILAFC boleh meningkatkan keupayaan penolakan gangguan berbanding sistem 

kawalan lain dan ia selari dengan keputusan simulasi. Walau bagaimanapun, pemilihan 

parameter pembelajaran yang sesuai dan keadaan awal dilihat sebagai langkah penting 

ke arah prestasi yang lebih baik ini.
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𝐽θ  - Total moment of inertia about the pitch axis 

𝐽ψ  - Total moment of inertia about the yaw axis 

𝑚h  - Total mass of the twin-rotor helicopter 

g - Gravitational acceleration 
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𝜏θ(𝑡)  - Torque acting on the pitch axis  

𝜏ψ(𝑡)  - Torque acting on the yaw axis 

uθ(𝑡)  - Control action applied as motor voltage to the pitch 

rotor of the twin-rotor helicopter 

uψ(𝑡)  - Control action applied as motor voltage to the yaw rotor 

of the twin-rotor helicopter 

𝐾θθ  - Torque thrust gain from the pitch rotor 

 

𝐾θψ  - Cross-torque thrust gain acting on the pitch from the 

yaw rotor 

𝐾ψθ  - Cross-torque thrust gain acting on the yaw from the 

pitch rotor 

𝐾ψψ  - Torque thrust gain from the yaw rotor 

𝐷θ  - Damping about the pitch axis 

𝐷ψ  - Damping about the yaw axis 

𝑞g  - Generalized coordinates where 𝑞g = [𝑞1 𝑞2 𝑞3 𝑞4] 

𝐿g  - Lagrange variable, which corresponds to the difference 

between the kinetic and potential energy of the system 

Qg  - Generalized forces vector where 𝑄g = [Q1, Q2] 

𝐹rE  - Earth (inertial) fixed frame 

𝐹rB  - Body fixed frame 

𝜃𝑑 and 𝜓𝑑 - Desired pitch and yaw angles 

𝑥𝑑, 𝑦𝑑, and 𝑧𝑑 - Desired forward, sideward, and upward motions of the 

quadrotor 

𝜙 , 𝜃 & 𝜓 - Angles of roll, pitch, and yaw that determine the 

rotation of the body frame with respect to the earth 

frame (Euler angles) 

𝑥E-𝑦E-𝑧E  - Earth (inertial) fixed frame axes 

𝑥B-𝑦B-𝑧B  - Body fixed frame axes 

𝝃  - Absolute distance between the centre of gravity of the 

quadrotor and the earth fixed frame 

𝑅E
f1  - Rotation from the earth fixed frame to the first 

intermediate frame  
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𝑅f1

f2  - Rotation from the first intermediate frame to the second 

intermediate frame 

𝑅f2
B   - Rotation from the second intermediate frame to the 

body fixed frame 

𝑅𝐸
𝐵  - Rotation matrix from the earth fixed frame to the body 

fixed frame 

𝑅 = 𝑅𝐵
𝐸 - Rotation matrix from the body fixed frame to the earth 

fixed frame 

B - Quadrotor body  

𝑟i  - Rotor number, where 𝑖 is from 1 to 4 

𝑂E  - Centre of gravity of the earth fixed frame 

𝑂B  - Centre of gravity of the body fixed frame 

𝑂𝑟𝑖
   - Centre of gravity of rotor frame, where 𝑖 is from 1 to 4 

𝑥, 𝑦, 𝑧 - The position of the quadrotor defined in the earth fixed 

frame 

𝑝, 𝑞, & 𝑟 - Angular rates defined in the body fixed frame 

𝐹𝐸 - Applied force described in the earth frame 

𝑚 - Mass of the quadrotor 

𝑉𝐸 - Linear velocity vector described in the earth frame 

𝐹𝐵 - Applied force described in the body frame 

𝜔𝐵 - Angular velocity vector described in the body frame 

vB - Linear velocity vector described in the body frame 

𝐽 - Inertia matrix, [𝐼xx 𝐼yy 𝐼zz]  

𝐼𝑥𝑥, 𝐼𝑦𝑦, and 𝐼𝑧𝑧 - Moments of inertia about the principal axes  

𝑀𝐸  - Torque vector described in the earth frame 

𝜔𝐸 - Angular velocity vector described in the earth frame 

𝑀B - Torque vector described in the body frame 

𝐹ng  - Non-gravitational forces acting on the quadrotor 

𝐹d  - Drag force due to air resistance 

𝐹i  - Thrust force of rotor 𝑖, where 𝑖 is from 1 to 4 

𝐾F  - Aerodynamic force coefficient 

𝜔𝑖  - Rotational speed of rotor 𝑖, where 𝑖 is from 1 to 4 
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𝑢1  - Control input for the total thrust force generated by the 

four rotors 

𝑘1, 𝑘2, & 𝑘3 - Aerodynamic translational coefficients 

𝑀  - Moments acting on the quadrotor in the body frame 

𝑀G   - Gyroscopic moments due to rotors’ inertia 

 𝐽𝑟  - Rotor inertia  

𝜔𝑟  - Rotor relative speed 

𝑀𝐴𝑟  - Air friction moment 

𝐾𝑀  - Aerodynamic moment coefficient 

𝑘4, 𝑘5, & 𝑘6 - Aerodynamic friction coefficients 

𝑀i  - Moment of rotor 𝑖, where 𝑖 is from 1 to 4 

𝑙  - Distance between the centre of the rotor and the centre 

of gravity of the body frame 

𝑢2  - Control input for the thrust difference between the left 

rotor and the right rotor 

𝑢3  - Control input for the thrust difference between the back 

rotor and the front rotor 

𝑢4  - Control input for the torque difference between 

clockwise rotating rotors and the counter-clockwise 

rotating rotors 

x - State vector of the Twin-rotor helicopter 

𝑝A - Effect of the additive perturbation on the twin-rotor 

helicopter system 

u - Control input vector of the twin-rotor helicopter 

X - State vector of the quadrotor 

U - Control input vector of the quadrotor 

𝑃A - Effect of the additive perturbation on the quadrotor 

system 

𝐾P  - Proportional gain of the PID controller 

𝐾I  - Integral gain of the PID controller 

𝐾D  - Derivative gain of the PID controller 

𝐺(𝑠) - The transfer function of the PID controller 

𝑚(𝑠) - The output of the PID controller 



 

xxv 

 

𝑒(𝑠) - The error of the closed loop system 

𝑢ff - The non-linear feed-forward term for the pitch angle of 
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𝑘ff  - Feed-forward control gain of the twin-rotor helicopter 

𝑄′  - Estimated/Measured disturbance on a system 

𝑇′  - Measured torque of a system 

𝐼′  - Estimated mass moment of inertia of a system 
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𝐼m  - Motor current 

𝐾t  - Motor torque constant 

𝑢k+1(𝑡)  - Next value of the output of the iterative learning 

algorithm 

𝑢k(𝑡)  - Current output value of the iterative learning algorithm 

𝑒k(𝑡)    - Current error value of the iterative learning algorithm 

𝜆  - Designed parameter of the iterative learning algorithm 

𝛾, 𝛽, and 𝜀 - learning parameters of the iterative learning algorithm 

𝐼𝑀k+1  - Next value of the estimated inertia matrix 

𝐼𝑀k  - Current value of the estimated inertia matrix 

K  - Actuator gain of the system 

PL - Rotorcraft model/process 

𝜔h𝑖
 - Hover angular speed of rotor 𝑖, where 𝑖 is from 1 to 4 

𝑁𝑠 - The sample size of the root mean square error formula 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background and Motivation 

There is no doubt that the field of unmanned aerial vehicle (UAV) systems is 

one of the main areas of research attracting researchers, industrialists, and hobbyists 

from various disciplines. Not surprisingly, more attention was given to UAVs due to 

their versatile uses in numerous applications such as surveillance, aerial photography 

and video, mapping and traffic monitoring, search and rescue, and meteorological 

reconnaissance. They are also used in risky missions with a high degree of mission 

success and safety compared to manned vehicles. For instance, measuring hazardous 

gases (Bashi et al., 2018), monitoring real-time forest fire (Berie & Burud, 2018), and 

searching for survivors in dangerous situations, leading to the continuous expansion 

of the UAVs industry for civilian and military sectors. Undoubtedly, this widespread 

in the UAVs is due to the rapidly-growing global technological prosperity in advanced 

materials, electronics, microcontrollers, sensors, 3D printers, etc., and their many 

desirable features such as light-weight, high manoeuvrability, and low cost which 

leads to better efficacy exceeding the human capabilities. All these factors have led to 

a high concentration in the UAVs industry. 

UAV systems are usually classified into three categories; fixed-wing, rotary-

wing (rotorcraft), and flapping-wing aircraft (Ghazbi et al., 2016). The rotorcraft or 

so-called vertical take-off and landing (VTOL) systems are heavier-than-air aircraft 

that use lift generated by rotors. They form a large and significant category of the 

UAVs, because they are characterized, among other sorts, by their ability to take off 

and land vertically, hover in one spot or limited zone, perform quick manoeuvring, and 

fly in a backward or sideways direction. They can be used in a variety of applications 

for instance mapping and surveying, inspection, payload transportation, modern 
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agriculture and crop spraying, etc. Rotorcraft systems can be classified as twin-rotor 

helicopters, quadrotors, hexacopters, octocopters, etc (Ferdaus et al., 2018). 

Among the different types of rotorcraft UAVs, helicopter and quadrotor 

systems are considered the most versatile flying machines nowadays. They are 

distinguished by their small size and weight, ease to control, high manoeuvrability, 

and ability to hover, which results in their use in a wide range of applications such as 

surveillance, emergency medical assistance, search and rescue, and aerial inspection. 

On the other hands, there are several obstacles and challenges in these aerial 

systems, such as the handling disturbances and uncertainties. This is dealt with by 

applying different control methods. The need for stable, safe, and efficient flight 

operations is encountered by these control techniques. Besides, the ability to reject 

different forms of known and unknown perturbations, i.e., robustness against various 

disturbances and uncertainties in normal or complex environments is also vital. This 

represents one of the current bottlenecks in UAV development, and is considered to 

be a major and basic requirement in flight industries (Lungu, 2020).  

Accordingly, this study will mainly concentrate on proposing an intelligent 

hybrid control technique for the twin-rotor helicopter and quadrotor systems to 

improve disturbance rejection capability and enhance systems performance. 

1.2 Problem Statement 

Although twin-rotor helicopter and quadrotor models are widespread in use in 

several applications, they are multivariate, highly non-linear, and strongly coupled 

systems that make them difficult to control (Noordin et al., 2021; Xin et al., 2019). 

They are also sensitive to disturbances and uncertainties during operation, which may 

degrade the flight performance and stability and this may cause failures in their motors, 

actuators, and sensors leading to unsafe flight and crashes (Abichandani et al., 2020; 

Khalili & Rezaei, 2016). Approach that tackles these challenges remains open and 

requires dedicated research to propose a sound control strategy to effectively reject the 

disturbances and uncertainties, i.e., robust against disturbances and uncertainties. 
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While preserving the stability of the flight system with responsive convergence with 

respect to time (Hua et al., 2019; Dorf & Bishop, 2017; Navabi & Mirzaei, 2017).  

Some control strategies used for rejecting disturbances and uncertainties are 

either complex, require a large number of control parameters to be tuned, are difficult 

to use in experimental work, must be adjusted in offline mode, or are not well suited 

for operations with large time delays (Ha & Park, 2020; Ma et al., 2016; Yang et al., 

2016). Thus, the need for an efficient and easy-to-implement controller, online and 

automatic tuning of control parameters, and efficacious performance in rejecting 

disturbances and uncertainties is a major matter in simulation and experimental works 

that need to be tackled (Wang et al., 2019). 

Among different control techniques, the active force control (AFC) strategy 

represents one of the robust controllers that is easy to be implemented in practice 

(Sabzehmeidani et al., 2021; Ali & Mailah, 2019; Tahmasebi et al., 2017). Estimated 

inertia/mass value is the only control parameter that needs to be determined or fine-

tuned (Tahmasebi et al., 2017). AFC is efficient in rejecting various forms of external 

or internal disturbances and uncertainties, and it could be readily integrated with most 

of the classical, modern, and intelligent control systems for various operating and 

loading conditions, making it the appropriate strategy to overcome robustness issues. 

1.3 Research Objectives 

The main objectives of this research are: 

(a) To design and to model hybrid PID-IAFC controller schemes for stability 

control and improvement of robustness of rotorcraft. 

(b) To benchmark the performance of the IAFC-based control scheme against the 

conventional PID controller through simulation and experiment testing. 
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(c) To evaluate and to compare the performance and robustness of the PID-ILAFC 

and PID-FLAFC in improving disturbance rejection capability. 

1.4 Research Scope 

The scope of work for this research is outlined as follows: 

(a) Non-linear models of twin-rotor helicopter and quadrotor systems are adopted 

in this study to investigate the effectiveness of PID-IAFC schemes in 

disturbance rejection. 

(b) Proposed intelligent hybrid AFC controllers are developed based on the 

combination of PID controller and IAFC schemes, involving PID-iterative 

learning AFC (PID-ILAFC) and PID-fuzzy logic AFC (PID-FLAFC). 

(c) Simulation work is performed on both twin-rotor helicopter and quadrotor 

systems through the computation platform provided by MATLAB/Simulink©.  

(d) Robustness is assessed by exposing both aerial Simulink models to different 

disturbances, like sinusoidal, pulsating, and Dryden wind gust models. These 

input disturbances are assumed to be added before the plant dynamics to 

simulate the exposure of aerial systems to wind gust disturbances. 

(e) Fixed-base rotorcraft UAV system by Quanser AERO apparatus, with one 

DOF, was chosen to be HIL experimentally tested owing to its simplicity to 

verify the effectiveness of intelligent hybrid AFC controller in suppressing the 

applied disturbances. Only PID-ILAFC was benchmarked because it is easy to 

be implemented, effective, and its control parameters could be automatically 

fine-tuned online. 
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1.5 Research Significance and Contributions 

The main research contributions of the research study are listed as follows: 

(a) The PID controller has been integrated with the IAFC technique to design hybrid 

control schemes to improve the robustness in the presence of uncertainties or 

disturbances for twin-rotor helicopter and quadrotor systems. The proposed 

hybrid control schemes feature ease of design, simplicity of implementation in 

practice, and estimated inertia/mass value is the only control parameter that needs 

to be determined or fine-tuned. 

(b) So far, PID-IAFC based controller has never been developed and studied for the 

improvement of twin-rotor helicopter and quadrotor systems robustness. From 

most of the works of literature found, they never use the practical IAFC-based 

control approach for rotorcraft models. The hybrid PID-ILAFC controller 

enhances the disturbance rejection capability of a fixed-base rotorcraft model, the 

Quanser AERO apparatus, via the HIL experiments. 

(c) The establishment of an optimization method for fine-tuning the nominal control 

parameters. Conventionally, control parameters of the AFC are often selected 

using the trial and error method (TEM) (Omar et al., 2017). Here, the IL algorithm 

and fuzzy rules are employed as key ideas to determine the optimal value of the 

AFC parameter. 

(d) Based on most of the works of literature found, various control techniques have 

never studied their effectiveness in relation to body jerk performance. The 

proposed hybrid PID-ILAFC controller is efficient in relation to body jerk 

performance and third-order dynamics in the rotorcraft systems in the presence of 

applied disturbances. 
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1.6 Research Methodology 

 This research begins with a thorough review of various control strategies of 

rotorcraft UAVs in general, and the twin-rotor helicopter and quadrotor systems in 

particular, to gain in-depth knowledge about that topic and determine which research 

gaps remain and need to be tackled. A detailed nonlinear detailed mathematical model 

is initially derived for each rotorcraft system, i.e., the twin-rotor helicopter and 

quadrotor, based on the Euler-Lagrange and Newton-Euler formulations, considering 

certain assumptions and conditions. To attain the required behaviour, a PID controller 

is designed as its gains are tuned heuristically. Due to the unsuccessful compensation 

of the PID controller for applied disturbances and uncertainties, it was proposed to be 

merged with an innovative control method known as the AFC technique to create a 

hybrid control scheme. Meanwhile, AI-based methods are introduced employing IL 

and FL methods and embedding them into the AFC loop to automatically tune (self-

tuning) the proposed AFC strategy to be later identified as IAFC-based hybrid 

controllers including PID-iterative learning active force control (PID-ILAFC) and 

PID-fuzzy logic active force control (PID-FLAFC) schemes. The effectiveness of the 

PID-ILAFC in fending off various disturbances is examined. These disturbances took 

the form of sinusoidal wave, pulsating, or Dryden wind gust model. To analyse the 

performance, the PID-ILAFC strategy is compared to the PID-FLAFC scheme. As a 

means of improving the body jerk performance of the rotorcraft system, the proposed 

hybrid PID-ILAFC system is investigated for its effectiveness. To obtain the best 

possible performance of the proposed AFC-based control strategy, a sensitivity 

analysis is also conducted based on three different cases, namely, the variation in the 

estimated inertia value, in the payload mass (parameter variation), and in the AFC 

output signal percentage.  

Regarding the experimental work, only PID-ILAFC method was chosen 

because it is easy to be implemented, effective, and its control parameters could be 

automatically fine-tuned online. The proposed hybrid PID-ILAFC strategy is designed 

and embedded into a laboratory module system of a fixed-base rotorcraft UAV system, 

the Quanser AERO apparatus, to evaluate its effectiveness, through HIL experimental 

tests. The system’s ability to improve the disturbance rejection capability in the 
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presence of two types of disturbances, in the form of impulsive force and payload 

mass, is investigated. It is noteworthy that the link between the twin-rotor helicopter 

and quadrotor models lies in that they all express different types of rotorcraft UAV 

systems but with different DOF, and also through the same proposed hybrid control 

system designed and implemented into them, the hybrid PID-ILAFC strategy, which 

expresses the IAFC-based control hybrid schemes, and its ability to enhance 

performance and disturbance rejection capability, as shown in the flowchart of this 

research in Figure 1.1.  

 

Figure 1.1 A flowchart of the research methodology. 
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1.7 Thesis Outline 

This thesis is arranged into seven chapters, as follows: 

Chapter 1 presents a brief background on the unmanned aircraft, the statement 

of the problem, objectives of the research, scope of the work, and the contribution of 

the study.  

Chapter 2 provides a review of the literature and previous work on topics 

related to this thesis. In this chapter, the definitions, configurations, components, 

advantages, disadvantages, and applications of the UAVs, in general, and of rotorcraft 

systems, in particular, are demonstrated. After that, a comprehensive investigation of 

various control strategies for rotorcraft UAVs is also presented, to provide solutions 

to the different possible difficulties.  

Chapter 3 exhibits the mathematical modelling for both rotorcraft systems. 

The twin-rotor helicopter model is derived based on the Euler-Lagrange formulation. 

Simultaneously, the quadrotor system is developed based on the Newton-Euler 

method, both of which take into account various forms of disturbances and certain 

considerations. Subsequently, a representation of both systems into the state space is 

also presented. 

Chapter 4 discusses the proposed controller design based on the derived 

models. An innovative hybrid control strategy called the intelligent active force 

control-based control strategy is proposed to improve disturbance rejection capability. 

Chapter 5 presents the findings of the system behaviours. Simulated results 

are shown based on several tests, including certain assumptions and considerations. 

After that, a detailed discussion depends on a comparative analysis is carried out to 

assess the model performance based on the proposed control strategies. 

Chapter 6 details how to evaluate model performance via HIL experiments. A 

laboratory module system of fixed-base rotorcraft UAV that employs a mechatronic 
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approach is used to verify the effectiveness of the proposed hybrid control strategy that 

is embedded into the system to improve disturbance rejection capability. Experimental 

results are shown based on several tests. 

Chapter 7 presents the conclusion, negative, and positive aspects of the 

research. This chapter also deals with recommendations for possible future directions. 
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