20,316 research outputs found

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    Mapping Technological Trajectories as Patent Citation Networks. An application to Data Communication Standards

    Get PDF
    Technical systems, Technological trajectories, Patents, Network analysis, Data communications

    Optical fibre local area networks

    Get PDF

    Software-Defined Networks Supporting Time-Sensitive In-Vehicular Communication

    Full text link
    Future in-vehicular networks will be based on Ethernet. The IEEE Time-Sensitive Networking (TSN) is a promising candidate to satisfy real-time requirements in future car communication. Software-Defined Networking (SDN) extends the Ethernet control plane with a programming option that can add much value to the resilience, security, and adaptivity of the automotive environment. In this work, we derive a first concept for combining Software-Defined Networking with Time-Sensitive Networking along with an initial evaluation. Our measurements are performed via a simulation that investigates whether an SDN architecture is suitable for time-critical applications in the car. Our findings indicate that the control overhead of SDN can be added without a delay penalty for the TSN traffic when protocols are mapped properly.Comment: To be published at IEEE VTC2019-Sprin

    Network strategies for the new economy

    Get PDF
    In this paper we argue that the pace and scale of development in the information and communication technology industries (ICT) has had and continues to have major effects on the industry economics and competitive dynamics generally. We maintain that the size of changes in demand and supply conditions is forcing companies to make significant changes in the way they conceive and implement their strategies. We decompose the ICT industries into four levels, technology standards, supply chains, physical platforms, and consumer networks. The nature of these technologies and their cost characteristics coupled with higher degrees of knowledge specialisation is impelling companies to radical revisions of their attitudes towards cooperation and co-evolution with suppliers and customers. Where interdependencies between customers are particularly strong, we anticipate the possibility of winner-takes-all strategies. In these circumstances industry risks become very high and there will be significant consequences for competitive markets

    Using network calculus to optimize the AFDX network

    Get PDF
    This paper presents quantitative results we obtained when optimizing the setting of priorities of the AFDX traffic flows, with the objective to obtain tighter latency and queue-size deterministic bounds (those bounds are calculated by our Network Calculus tool). We first point out the fact that setting randomly the priorities gives worse bounds than using no priorities, and we then show experiments on the basis of classic optimization techniques such as a descent method and a tentative AlphaBetaassisted brute-force approach: both of them haven’t brought significantly better results. We finally present experiments based on genetic algorithms, and we show how driving these algorithms in an adequate way has allowed us to deliver a full range of priority configurations that bring tighter bounds and allow the network traffic designer to trade off average gains of 40% on all the latency bounds against focused improvement on the largest queue-size bound (up to a 30% reduction)

    Alternative Multiple Spanning Tree Protocol (AMSTP) for Optical Ethernet Backbones

    Get PDF
    The availability and affordable cost of Gigabit and 10 Gigabit Ethernet switches has impacted the deployment of metropolitan area networks (MAN) and campus networks. This paper presents a new protocol, the alternative multiple spanning tree protocol (AMSTP), that uses multiple source based spanning trees for backbones using Ethernet switches. It provides minimum paths and more efficient usage of optical backbone infrastructure than currently proposed protocols such as resilient packet ring and rapid spanning tree. The protocol exhibits features similar to MAC routing protocols like Link State Over MAC (LSOM) such as optimum path and effective infrastructure usage, without requiring MAC routing due to the use of the spanning tree protocol paradigm. AMSTP is not restricted to specific topologies such as ring or tree, but performs efficiently in arbitrary topologies. Among the application areas are optical backbones of campus and MANs.Publicad

    Evaluation of Time-Critical Communications for IEC 61850-Substation Network Architecture

    Full text link
    Present-day developments, in electrical power transmission and distribution, require considerations of the status quo. In other meaning, international regulations enforce increasing of reliability and reducing of environment impact, correspondingly they motivate developing of dependable systems. Power grids especially intelligent (smart grids) ones become industrial solutions that follow standardized development. The International standardization, in the field of power transmission and distribution, improve technology influences. The rise of dedicated standards for SAS (Substation Automation Systems) communications, such as the leading International Electro-technical Commission standard IEC 61850, enforces modern technological trends in this field. Within this standard, a constraint of low ETE (End-to-End) latency should be respected, and time-critical status transmission must be achieved. This experimental study emphasis on IEC 61850 SAS communication standard, e.g. IEC 61850 GOOSE (Generic Object Oriented Substation Events), to implement an investigational method to determine the protection communication delay. This method observes GOOSE behaviour by adopting monitoring and analysis capabilities. It is observed by using network test equipment, i.e. SPAN (Switch Port Analyser) and TAP (Test Access Point) devices, with on-the-shelf available hardware and software solutions
    corecore