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Abstract: This paper presents quantitative results 
we obtained when optimizing the setting of priorities 
of the AFDX traffic flows, with the objective to obtain 
tighter latency and queue-size deterministic bounds 
(those bounds are calculated by our Network 
Calculus tool). We first point out the fact that setting 
randomly the priorities gives worse bounds than 
using no priorities, and we then show experiments 
on the basis of classic optimization techniques such 
as a descent method and a tentative AlphaBeta-
assisted brute-force approach: both of them haven’t 
brought significantly better results. We finally present 
experiments based on genetic algorithms, and we 
show how driving these algorithms in an adequate 
way has allowed us to deliver a full range of priority 
configurations that bring tighter bounds and allow the 
network traffic designer to trade off average gains of 
40% on all the latency bounds against focused 
improvement on the largest queue-size bound (up to 
a 30% reduction). 
Keywords: AFDX, Network Calculus, optimization, 
genetic algorithms. 

1. Overview of this paper 

This paper sums up our work on the optimization of 
the latency and queue-size bounds of Airbus’ A380’s 
AFDX network, through the use of priorities. More 
precisely, it deals with the optimization problem of 
assigning priorities to the thousand traffic flows that 
are carried by this network, so that the queue-size 
bounds and the latency bounds calculated by our 
Network Calculus tool are the smallest possible. 
Thus, Network Calculus gives the metric that allows 
to compare two different priority assignments, and 
we present different techniques we have 
experimented in order to optimize the setting of 
priorities to the traffic flows: a variation on a Descent 
method, a tentative “brute-force” approach helped by 
Alpha-Beta reduction, and genetic algorithms. 
Trying to optimize a multi-dimensional problem with 
a single metric can be misleading, so we have also 
taken benefit of the multi-criterion capabilities of 
genetic algorithms to demonstrate how the network 
traffic designer can trade-off one criterion against 
another. 
In section 2, we present the ARINC 664’s 
deterministic networks and the Virtual Link notion 
that is at the heart of the AFDX. 

In section 3, we give a taste of the deterministic 
proof methodology we applied to the AFDX, using 
Network Calculus. We also mention in section 4 how 
we have improved the bounds calculated by our 
Network Calculus tool through the notion of “groups” 
of Virtual Links. 
Then, section 5 presents the optimization problem 
and first attempts to address it with classic 
techniques. Finally, section 6 presents the results we 
obtained when applying genetic algorithms to this 
very large optimization problem. 

2. The AFDX network 

If Airbus hadn’t chosen to have a network technology 
leap on the A380, the growth of communication 
needs between the avionics systems would have led 
to a tremendous amount of ARINC 429 buses [1]. By 
using a Full-Duplex Switched Ethernet technology 
for the interconnection of the essential systems (not 
for the truly critical systems yet, as every new 
technology has to prove itself first), Airbus knew that 
they could benefit from a huge decrease of cabling 
and a much more flexible connection. However, 
multiplexing all avionics communication flows on 
standard COTS Switched Ethernet would not have 
kept the guarantees brought by ARINC 429 buses 
(in terms of guaranteed bandwidth, segregation, 
determinism). Actually, traffic confluence inside 
Ethernet switches lead to variable latency, which we 
describe by the term of indeterminism. Moreover, 
without any further assumption on a limitation of the 
communication flows, the congestions in the switch 
output ports might lead to an overflow of queues, 
and thus to frame loss. 
 
This is why Airbus, by committing to the process of 
standardizing Ethernet for aeronautical needs 
(namely the ARINC 664 standard), proposed 
“profiled networks”, which are entitled to adapt the 
IEEE 802.3, 802.1D and “IP” (RFC 1122) standards 
in order to fulfil specific performance or safety needs. 
For instance, a subset of profiled networks, called 
“deterministic networks”, is defined for those aircraft 
network domains where quality of service (including 
timely delivery) is paramount, and AFDX (Avionics 
Full-Duplex Switched Ethernet [2]) is the reference 
example of such networks. 
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ARINC 664 requires that the guaranteed service is 
proven; in the case of AFDX, this implies a 
mathematical proof firmly establishes that: 
- no frame will be lost (i.e. no switch queue will 

overflow) 
- the end-to-end delay of any frame is bounded 

and acceptable 
As we can see, these assertions don’t guarantee 
absolute behaviour determinism, but only a weaker 
form of determinism which is sufficient to bring the 
guaranteed service required by essential avionics 
systems. 
 
Thanks to the exact bandwidth regulated traffic 
control of AFDX, expressed by Airbus through the 
notion of “Virtual Link”, we have been able to 
develop a method for the computation of the 
required queue size of the switches, and of the 
maximum latencies suffered by the virtual links at 
any node of the network [3]. This VL concept is 
described as an example of traffic control in part #7 
of the ARINC 664 [2]: actually, it can be seen as an 
analogy of the ARINC 429 bus, virtualized as a 
multicast traffic flowing through the Ethernet 
network. A Virtual Link is characterized by a unique 
identifier, one or more destination addresses, a 
minimal size of frames (Smin), a maximal size of 
frames (Smax), and a BAG (Bandwidth Allocation 
Gap) which defines the minimal time between 
transmission of two consecutive frames. 
 

3. Determinism proof methodology 

We have modelled the network switches and end-
systems into elementary network entities (shapers, 
multiplexers, de-multiplexers, bounded-latency 
elements, etc.). For example, the End-System output 
capability is modelled this way: 

source 1 

MUX 
source 2 

source 3 

source n 

BAG 2 

BAG 1 

BAG n 

BAG 3 

 
Figure 1 : End-System output model 

 
We then use Network Calculus results [4] [5] to 
describe VLs by arrival curves, and further Network 
Calculus studies to describe the minimal service 
offered by network elements [6] [7] [8] [9] [10] [11]. 
The Calculus gives the latency bound of any 

elementary network entity and for those elements 
that have a queuing capability, a queue-size bound 
expressed either in a number of bits or in a number 
of frames (with a simple majorization using Smin). 
Given an elementary entity that offers a service 
curve β to an input flow constrained by an arrival 
curve  α , the calculus also brings the arrival curve 
α* of the output flow: α* = α ∅ β  where α ∅ β is 
defined by: 
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      [1] 

We developed a Network Calculus tool that 
propagates these results on a complete network in a 
dataflow way, and were thus able to compute the 
latency and queue-size bounds in every element of 
the network. 
 

4. A Calculus optimization: the “Group” concept 

In [12], we improved the Calculus of the AFDX 
bounds, defining “groups” of VLs that exit from the 
same multiplexer and enter another multiplexer 
together, i.e. Virtual Links that share two segments 
of path at least. The key issue is that the frames of 
those VLs are serialized once exiting the first 
multiplexer and thus they don’t have to be serialized 
again in the following multiplexers. This Calculus 
optimization has been implemented in our tool, and it 
always gives tighter bounds (up to 40% better), so 
we never consider the simple Calculus without 
“groups” in this paper, and all quantitative results are 
rated against the bounds obtained on a network 
configuration with no priority assigned to the Virtual 
Links, but still calculated using this “group” 
optimization. 
 

5. Priority Optimizations 

In this paragraph, we present how we obtained 
better (tighter) bounds by studying different 
optimization techniques applied to the setting of 
either a low or high priority to each Virtual Link. A 
first important fact is that giving a priority to a Virtual 
Link is not supported by real-world arguments: 
Airbus is not willing to say some types of data are 
more critical than some others; all Virtual Links 
should provide the same guarantees. Thus, setting 
priorities shall only be seen as a mean to balance 
the load on the network: Virtual Links of “low” priority 
will still have to satisfy the same jitter and latency 
constraints. A second point to note is that splitting 
VLs in two low- and high-priority sets doesn’t 
necessarily bring better bounds than having all VLs 
in the same high (or low) priority set (the bounds 
associated to this set will be used as a reference for 
all comparisons). With random settings of priority, we 
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observed that some switch ports gained a better 
average bound (i.e. the mean of the two bounds, 
one for the low-priority VLs and the other for the 
high-priority VLs), but other ports suffered of a 
degraded average bound. Moreover, trying to locally 
optimize the bounds in some part of the network led 
to overall degradation in other parts of the network. 
 

5.1 Network model update 

We changed the switch model in order to take into 
account two priorities. Each switch output port first 
transmits high-priority frames in FCFS order, and 
then transmits low-priority frames when all high-
priority frames have been transmitted. Two queues 
in each output port allow implementing this static 
priority policy, we thus modelled output ports by 
multiplexers offering different service curves to the 
high and low priority flows. These service curves 
have been extensively studied, e.g. in [11]: when 

)(* tRH and )(* tRL are the arrival curves of the high 
and low priority flows (respectively), then the service 
curves offered by such a multiplexer to the high-
priority flow is a β curve: )(, tTRβ  parameterized by 

CR = and CST L
max=  (with LSmax  the maximum 

size of the low-priority frames, and C the output 
rate). And the low-priority flow is offered a service 
curve SL: 

( )+−= )(.)( * tRtCtS LL    [2] 

From the Network Calculus tool implementation 
view, we had to change how groups are defined and 
handled: since flows of different priority are 
separately queued, a group can only contain flows of 
the same priority. 

 

5.2 The optimization problem 

Airbus’ AFDX network allows assigning either a high 
or low priority to each VL in every switch output port. 
I.e. the switch configuration tables allow different 
priorities for a single VL in different output ports. 
However, it is more than likely that the same priority 
will be associated to a VL in every port of a given 
switch. 
We have studied a network consisting of 1008 VLs, 
and restricted our study to the case a single priority 
is associated to a Virtual Link, i.e. a given VL always 
has the same priority everywhere in the network. 
Thus, this leaves us with “only” 1008 priorities to set; 
this number would approximately triple is we allowed 
one priority per switch for each VL. Yet, with a binary 
choice of low or high priority, this means a discrete 
optimization problem of size 21008. Of course, 
computing these 21008 ≈ 2.10303 configurations is not 

possible in the span of a single human life: if the 
bounds for each switch port of a given configuration 
can be calculated in one second, about 10295 years 
would be necessary for a brute-force approach. Last 
but not least, fixing priorities is a highly non-linear 
problem: changing a single VL’s priority might have 
little or tremendous effect, and the level of this effect 
doesn’t only depend on the considered VL. For 
example, the Network Calculus improvement we use 
(the “Group” concept [12]) is largely affected when 
the VL priority modification makes it exit a group of 
VLs and rejoin another group. 
 
5.3 Variation on a Descent method 
This classic method loops on searching a better 
configuration than the current one, changing only 
one priority setting at a time. The algorithm stops 
when no single-modification leads to a better 
configuration. The method requires a way to 
compare the “value” of two configurations: here we 
use the scalar “maximum queue-size bound” value, 
i.e. we take the maximum of all queue size bounds. 
The descent method is known for its ability to find 
local optima’s, but with a single priority modification 
at each step, it cannot exit these local optima’s. We 
run the method a large number of times from random 
configurations but since we decided to reduce the 
time spent at each step (i.e. not to compare the 1007 
single-priority modifications, which would imply 
spending a quarter of an hour in each step), the 
number of steps required to reach a local optimum 
was too high, because at each iterative step of the 
algorithm, the neighbour configuration chosen was 
only slightly better than the previous one, and thus 
we had to stop the iterative process before it 
reached a local optimum. 
However, when starting from known “good” 
configurations, the method quickly converged and 
gave us slightly better configurations, with few 
priority changes from the starting configuration. Thus 
this method is still interesting as a “polishing” final 
step, when a good configuration has been obtained 
by another method. We think that using a true 
steepest descent method instead of our variation 
would not have brought better results; it would only 
have changed the time spent to reach the local 
optimum (i.e. more time required in each step, but 
less steps required). 
 
5.4 Sorting configurations in a binary-tree and using 
Alpha-Beta reduction 
 
Here we assign a sequential number to each VL 
(how to assign these numbers is an important issue, 
more on this later), so that every choice of priority 
leads to two branches in a tree. A full setting of 
priorities is now represented by a full path from the 
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tree root to one of the 21008 leaves. A “brute force” 
algorithm would require comparing all these leaves: 
as with the previous descent method, we again use 
the scalar “maximum queue-size bound” metric. 
However, the Alpha-Beta algorithm also requires a 
way to give a “value” to each non-leaf node in the 
tree. Thus, for non-leaf nodes, we compute the 
queue-size bounds of a partially loaded network, i.e. 
a network that only carries those VLs whose 
priorities have been set along the incomplete path 
leading from the tree root to the considered node. 
We then build upon the fact that any node below it 
will have a higher value (a larger max bound), simply 
because the corresponding network will carry 
additional traffic (more VLs have their priorities set). 
This allows Alpha-Beta to cut large branches of the 
tree. However, we knew that Alpha-Beta doesn’t cut 
enough branches to allow a complete exploration of 
the tree in an acceptable time. So, we used Alpha-
Beta as an algorithm to explore “small” modifications 
of priorities, starting from an already “good” 
configuration (this starting configuration was 
heuristically build, see paragraph 6.3). 
As stated earlier, the order of VLs down the tree is of 
primary importance: if the last VLs (those near the 
leaves) are such that changing their priorities has 
little impact, then the algorithm searches better 
configuration by trying priority changes of these VLs, 
and the gain is small. On the contrary, if the last VLs 
are such that their priorities greatly impact the 
calculated bounds, then the algorithm cut large 
branches (changing the priority of one of these VLs 
is quickly identified as giving worse bounds), so that 
it can quickly state that the setting of these last VLs 
is optimal, but it is likely it will not bring a better 
configuration. 

 
Figure 2: Alpha-Beta cuts many branches 

(example figure shows cuts with diamonds) 
 

However, it is difficult to guess if a VL’s priority will 
largely impact the bounds (its impact also depends 
on the priorities of the other VLs) and thus it is 
difficult to sort them in “ascending” or “descending” 
order of influence. 
In practice, we tried both cases: in a first run, we 
sorted the VLs in ascending Smin order (Smin is an 
important factor in the calculus of bounds on the 
number of frames). The algorithm found a better 
configuration than the starting one, by changing the 
45 last priorities, but then it didn’t find any further 
improvement (we stopped it after the evaluation of 5 
millions of configurations). In a second run, we 
sorted the VLs in descending Smin order, and the 
algorithm didn’t find a better configuration despite 
evaluating the priority change of the 104 last VLs 
(thanks to large branch-cuts). 
In conclusion, we found that Alpha-Beta is an easily 
implementable variation of brute-force, but reduction 
is not enough to explore the full 21008–size tree. 
However, it allows gaining confidence that a good 
priority configuration is a local optimum, at least for a 
subset (a hundred at most) of chosen VLs: contrary 
to the previous method, this exhaustive exploration 
of a subset of priorities allows to exit from a local 
optimum to reach a better configuration. 

6. Optimizing with Genetic Algorithms 

Evolutionary algorithms [14][15][16][17] are 
renowned for their ability to handle very large 
optimization problems. Among them are Genetic 
Algorithms ([18][19][20]): these algorithms represent 
points in the optimization space by individuals, 
themselves represented by genes, and iterate 
generations of a population with reproduction and 
“natural” selection. 
Many evolution algorithms are available, but most of 
them are dedicated to a specific application. This is 
why we chose the PISA architecture [21][22][23], 
which defines a simple interface that allows coupling 
an application field with an evolution algorithm. 
 

 
Figure 3: PISA architure 

 
We were thus able to interface our specific Network 
Calculus tool to SPEA2 [24], which is one of the best 
multi-criterion algorithms according to [25]. SPEA2 
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evaluates the quality of an individual j by Sumi{S(i)} 
for all i in D(j), where D(j) is the set of individuals 
who dominate j (i.e. who are better than j on all 
criterions), and S(i) is the number of individuals in 
the whole population who are dominated by i. 
The overall algorithm of SPEA2 is given by the 
following six steps: 
 
Step #1: Initialization, setting of the initial population 

(P0) and archive initially empty (A0). 
Step #2: Evaluation of the quality of each individual 

in Pt and At 
Step #3: Selection: all those individuals from Pt and 

At who are not dominated are copied into 
At+1. The archive is either completed with 
dominated individuals or reduced, in order 
to always be of size N (nearly identical 
individuals are removed first if reduction is 
needed). 

Step #4: Ending: if an end-condition is met or if the 
maximum number of generation (T) is 
reached, the algorithm ends. The result is 
given by the non-dominated individuals of 
At+1. 

Step #5: Selection for reproduction. A set of parents 
is elected by successive tournaments in 
At+1. 

Step #6: Variation: recombination and mutation 
operators are applied on the chosen set of 
parents. The resulting individuals make 
Pt+1. Then t is incremented and the 
algorithm loops back to step #2. 

 
Of course we had to define how genetics rule our 
network priority world: 
- An individual represents a priority configuration, 
i.e. a setting of priorities for all Virtual Links. The 
DNA sequence of an individual is a 1008-characters 
long string. The character located at position i 
reflects the priority of VLi and is either ‘1’ for high-
priority or ‘2’ for low-priority. 
- Each individual requires a full execution of our 
Network Calculus tool, in order to compute the 
queue size bounds and the delay bounds of all 
network multiplexers. Two criterions are used to 
identify dominated individuals: the largest queue-size 
bound and the average delay bound. 
- The mutation operator modifies 2% of an 
individual’s DNA, randomly chosen. 
- Reproduction consists in concatenating the right 
part of a parent’s DNA to the left part of the other 
parent’s DNA: the cut point is also randomly chosen. 
 
Finally, there are a number of global parameters for 
the algorithm that have been set as follows: 

- Size of the initial population and of the archive: 
α=1000 
- Number of individuals selected for reproduction: 
μ=100 
- Number of children at each generation: λ=10 
- Number of individuals in each tournament: P=3 
 
6.1 Results obtained with a single evaluation 
criterion 
We first tried the algorithm with a single evaluation 
criterion, the largest queue-size bound (i.e. the 
largest of all the queue-size bounds computed by the 
Network Calculus tool, expressed in number of 
frames). Figure 4 shows that at generation #10000, 
the population had converged to individuals having a 
largest queue-size bound of 727, thus bringing a 6% 
optimization over the reference configuration (the 
one with all priorities set at the same level). 

 
Figure 4: Generation convergence with a single 

evaluation criterion 
 
However, as we didn’t want that this optimization 
could be done at the expense of many latency 
bounds, we decided to exploit the multi-criterion 
capability of SPEA2 and had it search configurations 
that minimize both the largest queue-size bound and 
an average of the latency bounds (each latency 
bound being weighted by the number of VLs that 
suffer of this latency bound). 
 
6.2 Bi-criterion optimization with a random initial 
population 
 
Figure 5 shows how the initial random population, 
the 1000th generation and the 7000th generation 
performed on the two selected criterions: average 
delay bound (horizontally) and largest queue-size 
bound (in number of frames, vertically). One can see 
that the algorithm converges to a better population, 
both horizontally and vertically. The figure gives a 
good understanding of the Pareto front: points that 
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are not dominated on both criterions. Thus it gives 
an idea of the trade-off between the two criterions. 
 

 
Figure 5: Bi-criterion convergence using a random 

initial population 
 
However, one can notice that despite a large 
optimization over the initial random population, the 
optimization is at most only 5% over the reference 
configuration. We concluded that the optimization 
problem is of such a big size that neither the random 
initial population nor the random mutations can cover 
enough diversity, and that the whole population 
converges towards “attraction zones”, despite the 
diversity of the individuals inside a single generation. 
We thus increased the mutation probability and the 
impact of these mutations, along with a larger 
number of children per generation. Figure 6 shows 
the results obtained with these larger parameters. 
Unfortunately, the results are not better: it appears 
that these parameters “boost” the algorithm, in the 
sense it converges faster, but the individuals of the 
last generations are not better than those obtained 
with the first parameters. 
 

 
Figure 6: Evolution with bigger diversity 

 
6.3 Results with a “heuristically-good” initial 
population 
 

Our intuition is that small frames are better assigned 
a high priority, so that large frames do not delay 
small frames, which would result in a bigger number 
of delayed frames and thus a larger queue-size (in 
terms of number of queued frames). The 
deterministic calculus of the queue-size bounds 
indeed shows the influence of the Smin parameter 
(minimum size of frames for a given VL): the bound 
is reciprocally proportional to the minimum of all Smin 
of a given priority. Thus we ordered the VLs in 
ascending Smin order and populated the initial set of 
individuals with 1008 configurations ranging from the 
reference one (all VLs set to low-priority) to the 
equivalent final one (all VLs set to high-priority), 
each configuration having the next VL in this order 
set to high-priority. The 2000-sized population was 
completed with random configurations. 
Figure 7 shows the evolution of the generations 
obtained with this partially-chosen initial population. 
Clearly, the good properties of a few good initial 
individuals are propagated to the whole population. 
The largest queue-size bound is 25% more 
optimized than the no-priority setting. 
 

 
Figure 7: Evolution with a heuristically-good initial 

population 
 
However, in order to better evaluate the added-value 
of the genetic algorithm, we show the following figure 
(Figure 8), where only the best individuals of the 
initial population are depicted, along with the 
complete last generation. 
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Figure 8: Added-value of genetic algorithm 

 
 This exhibits two groups of configurations: the first 
group consists of configurations whose average 
delay bound is less than 0.00135, and a largest 
queue-size bound ranging from 780 to 800 frames. 
At one end of this group, the network integrator can 
easily gain 41% on the average delay bound 
(compared to the no-priority configuration) without 
sacrificing much to the largest queue-size bound 
(only 4%). One can see that this group contains 
many of the initial heuristic configurations: this 
shows that the algorithm didn’t found really better 
configurations. 
The second group of configurations contains those 
configurations that are better for the largest queue-
size bound criterion (here we can see configurations 
that have a 31% gain on the largest queue-size 
bound compared to the reference configuration, and 
still also optimize the average delay bound by 
another 30%). Although the algorithm didn’t find a 
really better configuration for the largest queue-size 
bound criterion, it found configurations with equal 
value on this criterion and better value on the 
average delay bound. 
  

7. Conclusion 

Optimizing the deterministic bounds calculated on 
the AFDX network is a very large optimization 
problem, offering the opportunity to several research 
directions. 
One could try to bring tighter Network Calculus 
results, but many of the theoretical results we used 
have already been proved as being optimal, i.e. the 
bounds can be reached. So, we think there is very 
little gain to hope from the Network Calculus theory 
itself. However, there surely are several ways to 
apply Network Calculus to calculate the bounds of 
the AFDX network. In [12], we have gained up to 
40% on the bounds, by aggregating segments of 
flows into groups. 
In this paper, we have presented another research 
direction that aims to get benefit from the static 

priority capability of the AFDX switches. This has 
turned to a priority setting optimization problem: how 
to choose either a high or low priority for each of the 
traffic flows. We have shown that this discrete 
optimization problem is so large that brute-force 
cannot handle it (solving it would require about 10295 
years). We have tried classic optimization 
techniques such as a variation on a descent method 
and an AlphaBeta search, but this has brought little 
gain, so we consider these methods can only slightly 
improve an already good priority configuration. 
We have also extensively used a Genetic Algorithm 
to search priority configurations for which our 
Network Calculus tool calculates tighter bounds, 
both from a global perspective (all the bounds are 
reduced in average) and from a focused perspective 
(the largest bound decreases too). Moreover, the 
multi-criterion capability of SPEA2 shows the Pareto 
front of our problem, and thus provides a full range 
of good priority configurations that help the network 
traffic designer to trade off one criterion against the 
other. On our traffic case study, we have thus been 
able to offer up to 41% gains on the average delay 
bounds, and up to 31% on the largest queue-size 
bound. Needless to say, these gains increase the 
scalability of AFDX, as they raise the potential for 
future additional traffic. 
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8. Glossary 

AFDX Avionics Full-Duplex Switched Ethernet 
DNA Deoxyribonucleic Acid 
FCFS First Come First Served 
ERTS Embedded Real Time Software 
PISA a Platform and programming language 

independent Interface for Search Algorithms 
SPEA Strength Pareto Evolutionary Algorithm 
VL Virtual Link 
 
 
 


