
ERTS 2006 – 25-27 January 2006 – Toulouse Page 1/8

Using Network Calculus to optimize the AFDX network
F. Frances1,2, C. Fraboul2,3, J. Grieu3

1: ENSICA, 1 place Emile Blouin, 31056 Toulouse
2: TéSA, 14-16 port St-Etienne, 31000 Toulouse

3: ENSEEIHT/IRIT, 2 rue Charles Camichel, 31071 Toulouse Cedex 7

Abstract: This paper presents quantitative results
we obtained when optimizing the setting of priorities
of the AFDX traffic flows, with the objective to obtain
tighter latency and queue-size deterministic bounds
(those bounds are calculated by our Network
Calculus tool). We first point out the fact that setting
randomly the priorities gives worse bounds than
using no priorities, and we then show experiments
on the basis of classic optimization techniques such
as a descent method and a tentative AlphaBeta-
assisted brute-force approach: both of them haven’t
brought significantly better results. We finally present
experiments based on genetic algorithms, and we
show how driving these algorithms in an adequate
way has allowed us to deliver a full range of priority
configurations that bring tighter bounds and allow the
network traffic designer to trade off average gains of
40% on all the latency bounds against focused
improvement on the largest queue-size bound (up to
a 30% reduction).
Keywords: AFDX, Network Calculus, optimization,
genetic algorithms.

1. Overview of this paper

This paper sums up our work on the optimization of
the latency and queue-size bounds of Airbus’ A380’s
AFDX network, through the use of priorities. More
precisely, it deals with the optimization problem of
assigning priorities to the thousand traffic flows that
are carried by this network, so that the queue-size
bounds and the latency bounds calculated by our
Network Calculus tool are the smallest possible.
Thus, Network Calculus gives the metric that allows
to compare two different priority assignments, and
we present different techniques we have
experimented in order to optimize the setting of
priorities to the traffic flows: a variation on a Descent
method, a tentative “brute-force” approach helped by
Alpha-Beta reduction, and genetic algorithms.
Trying to optimize a multi-dimensional problem with
a single metric can be misleading, so we have also
taken benefit of the multi-criterion capabilities of
genetic algorithms to demonstrate how the network
traffic designer can trade-off one criterion against
another.
In section 2, we present the ARINC 664’s
deterministic networks and the Virtual Link notion
that is at the heart of the AFDX.

In section 3, we give a taste of the deterministic
proof methodology we applied to the AFDX, using
Network Calculus. We also mention in section 4 how
we have improved the bounds calculated by our
Network Calculus tool through the notion of “groups”
of Virtual Links.
Then, section 5 presents the optimization problem
and first attempts to address it with classic
techniques. Finally, section 6 presents the results we
obtained when applying genetic algorithms to this
very large optimization problem.

2. The AFDX network

If Airbus hadn’t chosen to have a network technology
leap on the A380, the growth of communication
needs between the avionics systems would have led
to a tremendous amount of ARINC 429 buses [1]. By
using a Full-Duplex Switched Ethernet technology
for the interconnection of the essential systems (not
for the truly critical systems yet, as every new
technology has to prove itself first), Airbus knew that
they could benefit from a huge decrease of cabling
and a much more flexible connection. However,
multiplexing all avionics communication flows on
standard COTS Switched Ethernet would not have
kept the guarantees brought by ARINC 429 buses
(in terms of guaranteed bandwidth, segregation,
determinism). Actually, traffic confluence inside
Ethernet switches lead to variable latency, which we
describe by the term of indeterminism. Moreover,
without any further assumption on a limitation of the
communication flows, the congestions in the switch
output ports might lead to an overflow of queues,
and thus to frame loss.

This is why Airbus, by committing to the process of
standardizing Ethernet for aeronautical needs
(namely the ARINC 664 standard), proposed
“profiled networks”, which are entitled to adapt the
IEEE 802.3, 802.1D and “IP” (RFC 1122) standards
in order to fulfil specific performance or safety needs.
For instance, a subset of profiled networks, called
“deterministic networks”, is defined for those aircraft
network domains where quality of service (including
timely delivery) is paramount, and AFDX (Avionics
Full-Duplex Switched Ethernet [2]) is the reference
example of such networks.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12040543?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ERTS 2006 – 25-27 January 2006 – Toulouse Page 2/8

ARINC 664 requires that the guaranteed service is
proven; in the case of AFDX, this implies a
mathematical proof firmly establishes that:
- no frame will be lost (i.e. no switch queue will

overflow)
- the end-to-end delay of any frame is bounded

and acceptable
As we can see, these assertions don’t guarantee
absolute behaviour determinism, but only a weaker
form of determinism which is sufficient to bring the
guaranteed service required by essential avionics
systems.

Thanks to the exact bandwidth regulated traffic
control of AFDX, expressed by Airbus through the
notion of “Virtual Link”, we have been able to
develop a method for the computation of the
required queue size of the switches, and of the
maximum latencies suffered by the virtual links at
any node of the network [3]. This VL concept is
described as an example of traffic control in part #7
of the ARINC 664 [2]: actually, it can be seen as an
analogy of the ARINC 429 bus, virtualized as a
multicast traffic flowing through the Ethernet
network. A Virtual Link is characterized by a unique
identifier, one or more destination addresses, a
minimal size of frames (Smin), a maximal size of
frames (Smax), and a BAG (Bandwidth Allocation
Gap) which defines the minimal time between
transmission of two consecutive frames.

3. Determinism proof methodology

We have modelled the network switches and end-
systems into elementary network entities (shapers,
multiplexers, de-multiplexers, bounded-latency
elements, etc.). For example, the End-System output
capability is modelled this way:

source 1

MUX
source 2

source 3

source n

BAG 2

BAG 1

BAG n

BAG 3

Figure 1 : End-System output model

We then use Network Calculus results [4] [5] to
describe VLs by arrival curves, and further Network
Calculus studies to describe the minimal service
offered by network elements [6] [7] [8] [9] [10] [11].
The Calculus gives the latency bound of any

elementary network entity and for those elements
that have a queuing capability, a queue-size bound
expressed either in a number of bits or in a number
of frames (with a simple majorization using Smin).
Given an elementary entity that offers a service
curve β to an input flow constrained by an arrival
curve α , the calculus also brings the arrival curve
α* of the output flow: α* = α ∅ β where α ∅ β is
defined by:

() { })()(sup
0

uutt
u

βαβα −+=∅
≥

 [1]

We developed a Network Calculus tool that
propagates these results on a complete network in a
dataflow way, and were thus able to compute the
latency and queue-size bounds in every element of
the network.

4. A Calculus optimization: the “Group” concept

In [12], we improved the Calculus of the AFDX
bounds, defining “groups” of VLs that exit from the
same multiplexer and enter another multiplexer
together, i.e. Virtual Links that share two segments
of path at least. The key issue is that the frames of
those VLs are serialized once exiting the first
multiplexer and thus they don’t have to be serialized
again in the following multiplexers. This Calculus
optimization has been implemented in our tool, and it
always gives tighter bounds (up to 40% better), so
we never consider the simple Calculus without
“groups” in this paper, and all quantitative results are
rated against the bounds obtained on a network
configuration with no priority assigned to the Virtual
Links, but still calculated using this “group”
optimization.

5. Priority Optimizations

In this paragraph, we present how we obtained
better (tighter) bounds by studying different
optimization techniques applied to the setting of
either a low or high priority to each Virtual Link. A
first important fact is that giving a priority to a Virtual
Link is not supported by real-world arguments:
Airbus is not willing to say some types of data are
more critical than some others; all Virtual Links
should provide the same guarantees. Thus, setting
priorities shall only be seen as a mean to balance
the load on the network: Virtual Links of “low” priority
will still have to satisfy the same jitter and latency
constraints. A second point to note is that splitting
VLs in two low- and high-priority sets doesn’t
necessarily bring better bounds than having all VLs
in the same high (or low) priority set (the bounds
associated to this set will be used as a reference for
all comparisons). With random settings of priority, we

ERTS 2006 – 25-27 January 2006 – Toulouse Page 3/8

observed that some switch ports gained a better
average bound (i.e. the mean of the two bounds,
one for the low-priority VLs and the other for the
high-priority VLs), but other ports suffered of a
degraded average bound. Moreover, trying to locally
optimize the bounds in some part of the network led
to overall degradation in other parts of the network.

5.1 Network model update

We changed the switch model in order to take into
account two priorities. Each switch output port first
transmits high-priority frames in FCFS order, and
then transmits low-priority frames when all high-
priority frames have been transmitted. Two queues
in each output port allow implementing this static
priority policy, we thus modelled output ports by
multiplexers offering different service curves to the
high and low priority flows. These service curves
have been extensively studied, e.g. in [11]: when

)(* tRH and)(* tRL are the arrival curves of the high
and low priority flows (respectively), then the service
curves offered by such a multiplexer to the high-
priority flow is a β curve:)(, tTRβ parameterized by

CR = and CST L
max= (with LSmax the maximum

size of the low-priority frames, and C the output
rate). And the low-priority flow is offered a service
curve SL:

()+−=)(.)(* tRtCtS LL [2]

From the Network Calculus tool implementation
view, we had to change how groups are defined and
handled: since flows of different priority are
separately queued, a group can only contain flows of
the same priority.

5.2 The optimization problem

Airbus’ AFDX network allows assigning either a high
or low priority to each VL in every switch output port.
I.e. the switch configuration tables allow different
priorities for a single VL in different output ports.
However, it is more than likely that the same priority
will be associated to a VL in every port of a given
switch.
We have studied a network consisting of 1008 VLs,
and restricted our study to the case a single priority
is associated to a Virtual Link, i.e. a given VL always
has the same priority everywhere in the network.
Thus, this leaves us with “only” 1008 priorities to set;
this number would approximately triple is we allowed
one priority per switch for each VL. Yet, with a binary
choice of low or high priority, this means a discrete
optimization problem of size 21008. Of course,
computing these 21008 ≈ 2.10303 configurations is not

possible in the span of a single human life: if the
bounds for each switch port of a given configuration
can be calculated in one second, about 10295 years
would be necessary for a brute-force approach. Last
but not least, fixing priorities is a highly non-linear
problem: changing a single VL’s priority might have
little or tremendous effect, and the level of this effect
doesn’t only depend on the considered VL. For
example, the Network Calculus improvement we use
(the “Group” concept [12]) is largely affected when
the VL priority modification makes it exit a group of
VLs and rejoin another group.

5.3 Variation on a Descent method
This classic method loops on searching a better
configuration than the current one, changing only
one priority setting at a time. The algorithm stops
when no single-modification leads to a better
configuration. The method requires a way to
compare the “value” of two configurations: here we
use the scalar “maximum queue-size bound” value,
i.e. we take the maximum of all queue size bounds.
The descent method is known for its ability to find
local optima’s, but with a single priority modification
at each step, it cannot exit these local optima’s. We
run the method a large number of times from random
configurations but since we decided to reduce the
time spent at each step (i.e. not to compare the 1007
single-priority modifications, which would imply
spending a quarter of an hour in each step), the
number of steps required to reach a local optimum
was too high, because at each iterative step of the
algorithm, the neighbour configuration chosen was
only slightly better than the previous one, and thus
we had to stop the iterative process before it
reached a local optimum.
However, when starting from known “good”
configurations, the method quickly converged and
gave us slightly better configurations, with few
priority changes from the starting configuration. Thus
this method is still interesting as a “polishing” final
step, when a good configuration has been obtained
by another method. We think that using a true
steepest descent method instead of our variation
would not have brought better results; it would only
have changed the time spent to reach the local
optimum (i.e. more time required in each step, but
less steps required).

5.4 Sorting configurations in a binary-tree and using
Alpha-Beta reduction

Here we assign a sequential number to each VL
(how to assign these numbers is an important issue,
more on this later), so that every choice of priority
leads to two branches in a tree. A full setting of
priorities is now represented by a full path from the

ERTS 2006 – 25-27 January 2006 – Toulouse Page 4/8

tree root to one of the 21008 leaves. A “brute force”
algorithm would require comparing all these leaves:
as with the previous descent method, we again use
the scalar “maximum queue-size bound” metric.
However, the Alpha-Beta algorithm also requires a
way to give a “value” to each non-leaf node in the
tree. Thus, for non-leaf nodes, we compute the
queue-size bounds of a partially loaded network, i.e.
a network that only carries those VLs whose
priorities have been set along the incomplete path
leading from the tree root to the considered node.
We then build upon the fact that any node below it
will have a higher value (a larger max bound), simply
because the corresponding network will carry
additional traffic (more VLs have their priorities set).
This allows Alpha-Beta to cut large branches of the
tree. However, we knew that Alpha-Beta doesn’t cut
enough branches to allow a complete exploration of
the tree in an acceptable time. So, we used Alpha-
Beta as an algorithm to explore “small” modifications
of priorities, starting from an already “good”
configuration (this starting configuration was
heuristically build, see paragraph 6.3).
As stated earlier, the order of VLs down the tree is of
primary importance: if the last VLs (those near the
leaves) are such that changing their priorities has
little impact, then the algorithm searches better
configuration by trying priority changes of these VLs,
and the gain is small. On the contrary, if the last VLs
are such that their priorities greatly impact the
calculated bounds, then the algorithm cut large
branches (changing the priority of one of these VLs
is quickly identified as giving worse bounds), so that
it can quickly state that the setting of these last VLs
is optimal, but it is likely it will not bring a better
configuration.

Figure 2: Alpha-Beta cuts many branches

(example figure shows cuts with diamonds)

However, it is difficult to guess if a VL’s priority will
largely impact the bounds (its impact also depends
on the priorities of the other VLs) and thus it is
difficult to sort them in “ascending” or “descending”
order of influence.
In practice, we tried both cases: in a first run, we
sorted the VLs in ascending Smin order (Smin is an
important factor in the calculus of bounds on the
number of frames). The algorithm found a better
configuration than the starting one, by changing the
45 last priorities, but then it didn’t find any further
improvement (we stopped it after the evaluation of 5
millions of configurations). In a second run, we
sorted the VLs in descending Smin order, and the
algorithm didn’t find a better configuration despite
evaluating the priority change of the 104 last VLs
(thanks to large branch-cuts).
In conclusion, we found that Alpha-Beta is an easily
implementable variation of brute-force, but reduction
is not enough to explore the full 21008–size tree.
However, it allows gaining confidence that a good
priority configuration is a local optimum, at least for a
subset (a hundred at most) of chosen VLs: contrary
to the previous method, this exhaustive exploration
of a subset of priorities allows to exit from a local
optimum to reach a better configuration.

6. Optimizing with Genetic Algorithms

Evolutionary algorithms [14][15][16][17] are
renowned for their ability to handle very large
optimization problems. Among them are Genetic
Algorithms ([18][19][20]): these algorithms represent
points in the optimization space by individuals,
themselves represented by genes, and iterate
generations of a population with reproduction and
“natural” selection.
Many evolution algorithms are available, but most of
them are dedicated to a specific application. This is
why we chose the PISA architecture [21][22][23],
which defines a simple interface that allows coupling
an application field with an evolution algorithm.

Figure 3: PISA architure

We were thus able to interface our specific Network
Calculus tool to SPEA2 [24], which is one of the best
multi-criterion algorithms according to [25]. SPEA2

ERTS 2006 – 25-27 January 2006 – Toulouse Page 5/8

evaluates the quality of an individual j by Sumi{S(i)}
for all i in D(j), where D(j) is the set of individuals
who dominate j (i.e. who are better than j on all
criterions), and S(i) is the number of individuals in
the whole population who are dominated by i.
The overall algorithm of SPEA2 is given by the
following six steps:

Step #1: Initialization, setting of the initial population

(P0) and archive initially empty (A0).
Step #2: Evaluation of the quality of each individual

in Pt and At
Step #3: Selection: all those individuals from Pt and

At who are not dominated are copied into
At+1. The archive is either completed with
dominated individuals or reduced, in order
to always be of size N (nearly identical
individuals are removed first if reduction is
needed).

Step #4: Ending: if an end-condition is met or if the
maximum number of generation (T) is
reached, the algorithm ends. The result is
given by the non-dominated individuals of
At+1.

Step #5: Selection for reproduction. A set of parents
is elected by successive tournaments in
At+1.

Step #6: Variation: recombination and mutation
operators are applied on the chosen set of
parents. The resulting individuals make
Pt+1. Then t is incremented and the
algorithm loops back to step #2.

Of course we had to define how genetics rule our
network priority world:
- An individual represents a priority configuration,
i.e. a setting of priorities for all Virtual Links. The
DNA sequence of an individual is a 1008-characters
long string. The character located at position i
reflects the priority of VLi and is either ‘1’ for high-
priority or ‘2’ for low-priority.
- Each individual requires a full execution of our
Network Calculus tool, in order to compute the
queue size bounds and the delay bounds of all
network multiplexers. Two criterions are used to
identify dominated individuals: the largest queue-size
bound and the average delay bound.
- The mutation operator modifies 2% of an
individual’s DNA, randomly chosen.
- Reproduction consists in concatenating the right
part of a parent’s DNA to the left part of the other
parent’s DNA: the cut point is also randomly chosen.

Finally, there are a number of global parameters for
the algorithm that have been set as follows:

- Size of the initial population and of the archive:
α=1000
- Number of individuals selected for reproduction:
μ=100
- Number of children at each generation: λ=10
- Number of individuals in each tournament: P=3

6.1 Results obtained with a single evaluation
criterion
We first tried the algorithm with a single evaluation
criterion, the largest queue-size bound (i.e. the
largest of all the queue-size bounds computed by the
Network Calculus tool, expressed in number of
frames). Figure 4 shows that at generation #10000,
the population had converged to individuals having a
largest queue-size bound of 727, thus bringing a 6%
optimization over the reference configuration (the
one with all priorities set at the same level).

Figure 4: Generation convergence with a single

evaluation criterion

However, as we didn’t want that this optimization
could be done at the expense of many latency
bounds, we decided to exploit the multi-criterion
capability of SPEA2 and had it search configurations
that minimize both the largest queue-size bound and
an average of the latency bounds (each latency
bound being weighted by the number of VLs that
suffer of this latency bound).

6.2 Bi-criterion optimization with a random initial
population

Figure 5 shows how the initial random population,
the 1000th generation and the 7000th generation
performed on the two selected criterions: average
delay bound (horizontally) and largest queue-size
bound (in number of frames, vertically). One can see
that the algorithm converges to a better population,
both horizontally and vertically. The figure gives a
good understanding of the Pareto front: points that

700

750

800

850

900

950

0 500 1000 1500 2000
individuals

La
rg

es
t q

ue
ue

-s
iz

e
bo

un
d

(in
 fr

am
es

)

gen4000 gen7000 gen10000

ERTS 2006 – 25-27 January 2006 – Toulouse Page 6/8

are not dominated on both criterions. Thus it gives
an idea of the trade-off between the two criterions.

Figure 5: Bi-criterion convergence using a random

initial population

However, one can notice that despite a large
optimization over the initial random population, the
optimization is at most only 5% over the reference
configuration. We concluded that the optimization
problem is of such a big size that neither the random
initial population nor the random mutations can cover
enough diversity, and that the whole population
converges towards “attraction zones”, despite the
diversity of the individuals inside a single generation.
We thus increased the mutation probability and the
impact of these mutations, along with a larger
number of children per generation. Figure 6 shows
the results obtained with these larger parameters.
Unfortunately, the results are not better: it appears
that these parameters “boost” the algorithm, in the
sense it converges faster, but the individuals of the
last generations are not better than those obtained
with the first parameters.

Figure 6: Evolution with bigger diversity

6.3 Results with a “heuristically-good” initial
population

Our intuition is that small frames are better assigned
a high priority, so that large frames do not delay
small frames, which would result in a bigger number
of delayed frames and thus a larger queue-size (in
terms of number of queued frames). The
deterministic calculus of the queue-size bounds
indeed shows the influence of the Smin parameter
(minimum size of frames for a given VL): the bound
is reciprocally proportional to the minimum of all Smin
of a given priority. Thus we ordered the VLs in
ascending Smin order and populated the initial set of
individuals with 1008 configurations ranging from the
reference one (all VLs set to low-priority) to the
equivalent final one (all VLs set to high-priority),
each configuration having the next VL in this order
set to high-priority. The 2000-sized population was
completed with random configurations.
Figure 7 shows the evolution of the generations
obtained with this partially-chosen initial population.
Clearly, the good properties of a few good initial
individuals are propagated to the whole population.
The largest queue-size bound is 25% more
optimized than the no-priority setting.

Figure 7: Evolution with a heuristically-good initial

population

However, in order to better evaluate the added-value
of the genetic algorithm, we show the following figure
(Figure 8), where only the best individuals of the
initial population are depicted, along with the
complete last generation.

700
750
800
850
900
950

1000
1050
1100

0.001 0.0012 0.0014 0.0016 0.0018 0.002 0.0022
Average delay bound

La
rg

es
t q

ue
ue

-s
iz

e
bo

un
d

(in
 fr

am
es

) Initial gen. gen1000 gen7000

700
750
800
850
900
950

1000
1050
1100

0.001 0.0011 0.0012 0.0013 0.0014 0.0015 0.0016 0.0017
Average delay bound

La
rg

es
t q

ue
ue

-s
iz

e
bo

un
d

(in
 fr

am
es

) init gen1000 gen3000

400

500

600

700

800

900

1000

1100

1200

0.0012 0.0013 0.0014 0.0015 0.0016 0.0017
Average delay bound

La
rg

es
t q

ue
ue

-s
iz

e
bo

un
d

(in
 fr

am
es

) initial gen. gen100 gen2000

ERTS 2006 – 25-27 January 2006 – Toulouse Page 7/8

500

550

600

650

700

750

800

850

0.0012 0.00125 0.0013 0.00135 0.0014 0.00145 0.0015
espérance du délai

m
ax

 d
es

 b
or

ne
s

(tr
am

es
)

initialisation gen2000

Figure 8: Added-value of genetic algorithm

 This exhibits two groups of configurations: the first
group consists of configurations whose average
delay bound is less than 0.00135, and a largest
queue-size bound ranging from 780 to 800 frames.
At one end of this group, the network integrator can
easily gain 41% on the average delay bound
(compared to the no-priority configuration) without
sacrificing much to the largest queue-size bound
(only 4%). One can see that this group contains
many of the initial heuristic configurations: this
shows that the algorithm didn’t found really better
configurations.
The second group of configurations contains those
configurations that are better for the largest queue-
size bound criterion (here we can see configurations
that have a 31% gain on the largest queue-size
bound compared to the reference configuration, and
still also optimize the average delay bound by
another 30%). Although the algorithm didn’t find a
really better configuration for the largest queue-size
bound criterion, it found configurations with equal
value on this criterion and better value on the
average delay bound.

7. Conclusion

Optimizing the deterministic bounds calculated on
the AFDX network is a very large optimization
problem, offering the opportunity to several research
directions.
One could try to bring tighter Network Calculus
results, but many of the theoretical results we used
have already been proved as being optimal, i.e. the
bounds can be reached. So, we think there is very
little gain to hope from the Network Calculus theory
itself. However, there surely are several ways to
apply Network Calculus to calculate the bounds of
the AFDX network. In [12], we have gained up to
40% on the bounds, by aggregating segments of
flows into groups.
In this paper, we have presented another research
direction that aims to get benefit from the static

priority capability of the AFDX switches. This has
turned to a priority setting optimization problem: how
to choose either a high or low priority for each of the
traffic flows. We have shown that this discrete
optimization problem is so large that brute-force
cannot handle it (solving it would require about 10295
years). We have tried classic optimization
techniques such as a variation on a descent method
and an AlphaBeta search, but this has brought little
gain, so we consider these methods can only slightly
improve an already good priority configuration.
We have also extensively used a Genetic Algorithm
to search priority configurations for which our
Network Calculus tool calculates tighter bounds,
both from a global perspective (all the bounds are
reduced in average) and from a focused perspective
(the largest bound decreases too). Moreover, the
multi-criterion capability of SPEA2 shows the Pareto
front of our problem, and thus provides a full range
of good priority configurations that help the network
traffic designer to trade off one criterion against the
other. On our traffic case study, we have thus been
able to offer up to 41% gains on the average delay
bounds, and up to 31% on the largest queue-size
bound. Needless to say, these gains increase the
scalability of AFDX, as they raise the potential for
future additional traffic.

8. References

[1] Aeronautical Radio Inc., ARINC specification
429-ALL: Mark 33 Digital Information Transfer
System (DITS) Parts 1, 2, 3, 2001.

[2] Aeronautical Radio Inc., ARINC specification
664P7, Aircraft Data Network, Part 7, Avionics
Full Duplex Switched Ethernet (AFDX)
Network, 2005.

[3] C. Fraboul, F. Frances, “Applicability of
Network Calculus to the AFDX”, contract
report PBAR-JD-728.0821/2002.

[4] R. Cruz, "A calculus for network delay, Part I:
Network element in isolation," IEEE Trans.
Inform. Theory, vol. 37, no. 1, pp. 114-131,
Jan. 1991.

[5] R. Cruz, "A calculus for network delay, Part II:
Network analysis," IEEE Trans. Inform.
Theory, vol. 37, no. 1, pp. 132-141, Jan. 1991.

[6] R. L. Cruz, "Quality of Service Guarantees in
Virtual Circuit Switched Networks," IEEE
Journal of Selected Areas in Communication,
special issue on "Advances in the
Fundamentals of Networking" (vol. 13 no. 6),
August, 1995

[7] H. Sariowan, R. L. Cruz, and G. C. Polyzos,
"Scheduling for Quality of Service Guarantees
via Service Curves," Proceedings of the

ERTS 2006 – 25-27 January 2006 – Toulouse Page 8/8

International Conference on Computer
Communications and Networks (ICCCN)
1995, Las Vegas, September 20-23, 1995, pp.
512-520.

[8] C.S. Chang, "On deterministic traffic
regulation and service guarantee: A
systematic approach by filtering", IEEE TIT vol
44, May 98, pp 913--931.

[9] R. Agrawal, R. L. Cruz, C. Okino and R.
Rajan, " Performance Bounds for Flow Control
Protocols", IEEE ToN vol 7, No3, June 99, pp
310--323.

[10] J.-Y. Le Boudec, "Application of network
calculus to guaranteed service networks,"
IEEE Transactions on Information Theory, vol.
44, pp. 1087--1096, May 1998.

[11] J.-Y. Le Boudec and P. Thiran, “Network
Calculus”, Springer Verlag Lecture Notes in
Computer Science volume 2050.

[12] J. Grieu, F. Frances, C. Fraboul, “Preuve de
déterminisme d’un réseau embarqué
avionique”, CFIP (Colloque Francophone sur
l’Ingénierie des Protocoles), October 2003.

[14] R. M. Friedberg, B. Dunham, and J. H. North,
“A learning machine:Part II,” IBM J., vol. 3, no.
7, pp. 282–287, July 1959.

[15] G. E. P. Box, “Evolutionary operation: A
method for increasing industrial productivity,”
Appl. Statistics, vol. VI, no. 2, pp. 81–101,
1957.

[16] J. H. Holland, “Outline for a logical theory of
adaptive systems,” J.Assoc. Comput. Mach.,
vol. 3, pp. 297–314, 1962.

[17] J. H. Holland, “Adaptation in Natural and
Artificial Systems”. Ann Arbor, MI: Univ. of
Michigan Press, 1975.

[18] J. H. Holland and J. S. Reitman, “Cognitive
systems based on adaptive algorithms,” in
Pattern-Directed Inference Systems, D. A.
Waterman and F. Hayes-Roth, Eds. New
York: Academic, 1978.

[19] L. J. Fogel, “Autonomous automata,” Ind.
Res., vol. 4, pp. 14–19, 1962.

[20] L. J. Fogel, “On the organization of intellect,”
Ph.D. dissertation, University of California, Los
Angeles, 1964.

[21] S.H.Lu, P.R.Kumar, "Distributed Scheduling
Based on Due Dates and Buffer Priorities",
IEEE Transactions on Automatic Control, Vol.
36, n. 12, pp. 1406-1416, December 1991.

[22] Parekh, A. K., & Gallager, R. G., "A
Generalized Processor Sharing Approach to
flow control in Integrated Services Networks -
The Single Node Case," IEEE/ACM

Transactions on Networking, Volume 1 #3, pp
344-357, June 1993.

[23] H. Zhang, “Providing End-to-End Performance
Guarantees Using Non-Work-Conserving
Disciplines”, Computer Communications:
Special Issue on System Support for
Multimedia Computing, volume 18, 10 October
1995.

[24] H. Zhang, “Service Disciplines for Guaranteed
Performance Service in Packet-Switching
Networks”, Proc. IEEE, vol. 84, pp. 1374-
1396, Oct. 1996

[25] E. Zitzler, M. Laumanns, and L. Thiele.
SPEA2: “Improving the strength pareto
evolutionary algorithm for multiobjective
optimization”. In K. Giannakoglou, D. Tsahalis,
J. Periaux, K. Papailiou, and T. Fogarty,
editors, Evolutionary Methods for Design,
Optimisation, and Control, pages 19--26,
Barcelona, Spain, 2002. CIMNE.

8. Glossary

AFDX Avionics Full-Duplex Switched Ethernet
DNA Deoxyribonucleic Acid
FCFS First Come First Served
ERTS Embedded Real Time Software
PISA a Platform and programming language

independent Interface for Search Algorithms
SPEA Strength Pareto Evolutionary Algorithm
VL Virtual Link

