14,246 research outputs found

    Evolution of Symbolisation in Chimpanzees and Neural Nets

    Get PDF
    from Introduction: Animal communication systems and human languages can be characterised by the type of cognitive abilities that are required. If we consider the main semiotic distinction between communication using icons, signals, or symbols (Peirce, 1955; Harnad, 1990; Deacon, 1997) we can identify different cognitive loads for each type of reference. The use and understanding of icons require instinctive behaviour (e.g. emotions) or simple perceptual processes (e.g. visual similarities between an icon and its meaning). Communication systems that use signals are characterised by referential associations between objects and visual or auditory signals. They require the cognitive ability to learn stimulus associations, such as in conditional learning. Symbols have double associations. Initially, symbolic systems require the establishment of associations between signals and objects. Secondly, other types of relationships are learned between the signals themselves. The use of rule for the logical combination of symbols is an example of symbolic relationship. Symbolisation is the ability to acquire and handle symbols and symbolic relationships

    Cultural Learning in a Dynamic Environment: an Analysis of Both Fitness and Diversity in Populations of Neural Network Agents

    Get PDF
    Evolutionary learning is a learning model that can be described as the iterative Darwinian process of fitness-based selection and genetic transfer of information leading to populations of higher fitness. Cultural learning describes the process of information transfer between individuals in a population through non-genetic means. Cultural learning has been simulated by combining genetic algorithms and neural networks using a teacher/pupil scenario where highly fit individuals are selected as teachers and instruct the next generation. This paper examines the effects of cultural learning on the evolutionary process of a population of neural networks. In particular, the paper examines the genotypic and phenotypic diversity of a population as well as its fitness. Using these measurements, it is possible to examine the effects of cultural learning on the population's genetic makeup. Furthermore, the paper examines whether cultural learning provides a more robust learning mechanism in the face of environmental changes. Three benchmark tasks have been chosen as the evolutionary task for the population: the bit-parity problem, the game of tic-tac-toe and the game of connect-four. Experiments are conducted with populations employing evolutionary learning alone and populations combining evolutionary and cultural learning in an environment that changes dramatically.Cultural Learning, Dynamic Environments, Diversity, Multi-Agent Systems, Artificial Life

    VIOLA - A multi-purpose and web-based visualization tool for neuronal-network simulation output

    Full text link
    Neuronal network models and corresponding computer simulations are invaluable tools to aid the interpretation of the relationship between neuron properties, connectivity and measured activity in cortical tissue. Spatiotemporal patterns of activity propagating across the cortical surface as observed experimentally can for example be described by neuronal network models with layered geometry and distance-dependent connectivity. The interpretation of the resulting stream of multi-modal and multi-dimensional simulation data calls for integrating interactive visualization steps into existing simulation-analysis workflows. Here, we present a set of interactive visualization concepts called views for the visual analysis of activity data in topological network models, and a corresponding reference implementation VIOLA (VIsualization Of Layer Activity). The software is a lightweight, open-source, web-based and platform-independent application combining and adapting modern interactive visualization paradigms, such as coordinated multiple views, for massively parallel neurophysiological data. For a use-case demonstration we consider spiking activity data of a two-population, layered point-neuron network model subject to a spatially confined excitation originating from an external population. With the multiple coordinated views, an explorative and qualitative assessment of the spatiotemporal features of neuronal activity can be performed upfront of a detailed quantitative data analysis of specific aspects of the data. Furthermore, ongoing efforts including the European Human Brain Project aim at providing online user portals for integrated model development, simulation, analysis and provenance tracking, wherein interactive visual analysis tools are one component. Browser-compatible, web-technology based solutions are therefore required. Within this scope, with VIOLA we provide a first prototype.Comment: 38 pages, 10 figures, 3 table

    Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog

    Full text link
    A number of recent works have proposed techniques for end-to-end learning of communication protocols among cooperative multi-agent populations, and have simultaneously found the emergence of grounded human-interpretable language in the protocols developed by the agents, all learned without any human supervision! In this paper, using a Task and Tell reference game between two agents as a testbed, we present a sequence of 'negative' results culminating in a 'positive' one -- showing that while most agent-invented languages are effective (i.e. achieve near-perfect task rewards), they are decidedly not interpretable or compositional. In essence, we find that natural language does not emerge 'naturally', despite the semblance of ease of natural-language-emergence that one may gather from recent literature. We discuss how it is possible to coax the invented languages to become more and more human-like and compositional by increasing restrictions on how two agents may communicate.Comment: 9 pages, 7 figures, 2 tables, accepted at EMNLP 2017 as short pape

    A mean-field model for conductance-based networks of adaptive exponential integrate-and-fire neurons

    Full text link
    Voltage-sensitive dye imaging (VSDi) has revealed fundamental properties of neocortical processing at mesoscopic scales. Since VSDi signals report the average membrane potential, it seems natural to use a mean-field formalism to model such signals. Here, we investigate a mean-field model of networks of Adaptive Exponential (AdEx) integrate-and-fire neurons, with conductance-based synaptic interactions. The AdEx model can capture the spiking response of different cell types, such as regular-spiking (RS) excitatory neurons and fast-spiking (FS) inhibitory neurons. We use a Master Equation formalism, together with a semi-analytic approach to the transfer function of AdEx neurons. We compare the predictions of this mean-field model to simulated networks of RS-FS cells, first at the level of the spontaneous activity of the network, which is well predicted by the mean-field model. Second, we investigate the response of the network to time-varying external input, and show that the mean-field model accurately predicts the response time course of the population. One notable exception was that the "tail" of the response at long times was not well predicted, because the mean-field does not include adaptation mechanisms. We conclude that the Master Equation formalism can yield mean-field models that predict well the behavior of nonlinear networks with conductance-based interactions and various electrophysiolgical properties, and should be a good candidate to model VSDi signals where both excitatory and inhibitory neurons contribute.Comment: 21 pages, 7 figure

    Computing with cells: membrane systems - some complexity issues.

    Full text link
    Membrane computing is a branch of natural computing which abstracts computing models from the structure and the functioning of the living cell. The main ingredients of membrane systems, called P systems, are (i) the membrane structure, which consists of a hierarchical arrangements of membranes which delimit compartments where (ii) multisets of symbols, called objects, evolve according to (iii) sets of rules which are localised and associated with compartments. By using the rules in a nondeterministic/deterministic maximally parallel manner, transitions between the system configurations can be obtained. A sequence of transitions is a computation of how the system is evolving. Various ways of controlling the transfer of objects from one membrane to another and applying the rules, as well as possibilities to dissolve, divide or create membranes have been studied. Membrane systems have a great potential for implementing massively concurrent systems in an efficient way that would allow us to solve currently intractable problems once future biotechnology gives way to a practical bio-realization. In this paper we survey some interesting and fundamental complexity issues such as universality vs. nonuniversality, determinism vs. nondeterminism, membrane and alphabet size hierarchies, characterizations of context-sensitive languages and other language classes and various notions of parallelism

    Active causation and the origin of meaning

    Get PDF
    Purpose and meaning are necessary concepts for understanding mind and culture, but appear to be absent from the physical world and are not part of the explanatory framework of the natural sciences. Understanding how meaning (in the broad sense of the term) could arise from a physical world has proven to be a tough problem. The basic scheme of Darwinian evolution produces adaptations that only represent apparent ("as if") goals and meaning. Here I use evolutionary models to show that a slight, evolvable extension of the basic scheme is sufficient to produce genuine goals. The extension, targeted modulation of mutation rate, is known to be generally present in biological cells, and gives rise to two phenomena that are absent from the non-living world: intrinsic meaning and the ability to initiate goal-directed chains of causation (active causation). The extended scheme accomplishes this by utilizing randomness modulated by a feedback loop that is itself regulated by evolutionary pressure. The mechanism can be extended to behavioural variability as well, and thus shows how freedom of behaviour is possible. A further extension to communication suggests that the active exchange of intrinsic meaning between organisms may be the origin of consciousness, which in combination with active causation can provide a physical basis for the phenomenon of free will.Comment: revised and extende
    corecore