658 research outputs found

    Advances and Applications of Dezert-Smarandache Theory (DSmT) for Information Fusion (Collected Works), Vol. 4

    Get PDF
    The fourth volume on Advances and Applications of Dezert-Smarandache Theory (DSmT) for information fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics. The contributions (see List of Articles published in this book, at the end of the volume) have been published or presented after disseminating the third volume (2009, http://fs.unm.edu/DSmT-book3.pdf) in international conferences, seminars, workshops and journals. First Part of this book presents the theoretical advancement of DSmT, dealing with Belief functions, conditioning and deconditioning, Analytic Hierarchy Process, Decision Making, Multi-Criteria, evidence theory, combination rule, evidence distance, conflicting belief, sources of evidences with different importance and reliabilities, importance of sources, pignistic probability transformation, Qualitative reasoning under uncertainty, Imprecise belief structures, 2-Tuple linguistic label, Electre Tri Method, hierarchical proportional redistribution, basic belief assignment, subjective probability measure, Smarandache codification, neutrosophic logic, Evidence theory, outranking methods, Dempster-Shafer Theory, Bayes fusion rule, frequentist probability, mean square error, controlling factor, optimal assignment solution, data association, Transferable Belief Model, and others. More applications of DSmT have emerged in the past years since the apparition of the third book of DSmT 2009. Subsequently, the second part of this volume is about applications of DSmT in correlation with Electronic Support Measures, belief function, sensor networks, Ground Moving Target and Multiple target tracking, Vehicle-Born Improvised Explosive Device, Belief Interacting Multiple Model filter, seismic and acoustic sensor, Support Vector Machines, Alarm classification, ability of human visual system, Uncertainty Representation and Reasoning Evaluation Framework, Threat Assessment, Handwritten Signature Verification, Automatic Aircraft Recognition, Dynamic Data-Driven Application System, adjustment of secure communication trust analysis, and so on. Finally, the third part presents a List of References related with DSmT published or presented along the years since its inception in 2004, chronologically ordered

    Incorporating knowledge uncertainty into species distribution modelling

    Get PDF
    Monitoring progress towards global goals and biodiversity targets require reliable descriptions of species distributions over time and space. Current gaps in accessible information on species distributions urges the need for integrating all available data and knowledge sources, and intensifying cooperations to more effectively support global environmental governance. For many areas and species groups, experts can constitute a valuable source of information to fill the gaps by offering their knowledge on species-environment interactions. However, expert knowledge is always subject to uncertainty, and incorporating that into species distribution mapping poses a challenge. We propose the use of the dempster–shafer theory of evidence (DST) as a novel approach in this field to extract expert knowledge, to incorporate the associated uncertainty into the procedure, and to produce reliable species distribution maps. We applied DST to model the distribution of two species of eagle in Spain. We invited experts to fill in an online questionnaire and express their beliefs on the habitat of the species by assigning probability values for given environmental variables, along with their confidence in expressing the beliefs. We then calculated evidential functions, and combined them using Dempster’s rules of combination to map the species distribution based on the experts’ knowledge. We evaluated the performances of our proposed approach using the atlas of Spanish breeding birds as an independent test dataset, and further compared the results with the outcome of an ensemble of conventional SDMs. Purely based on expert knowledge, the DST approach yielded similar results as the data driven SDMs ensemble. Our proposed approach offers a strong and practical alternative for species distribution modelling when species occurrence data are not accessible, or reliable, or both. The particular strengths of the proposed approach are that it explicitly accounts for and aggregates knowledge uncertainty, and it capitalizes on the range of data sources usually considered by an expert

    Surface motion prediction and mapping for road infrastructures management by PS-InSAR measurements and machine learning algorithms

    Get PDF
    This paper introduces a methodology for predicting and mapping surface motion beneath road pavement structures caused by environmental factors. Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) measurements, geospatial analyses, and Machine Learning Algorithms (MLAs) are employed for achieving the purpose. Two single learners, i.e., Regression Tree (RT) and Support Vector Machine (SVM), and two ensemble learners, i.e., Boosted Regression Trees (BRT) and Random Forest (RF) are utilized for estimating the surface motion ratio in terms of mm/year over the Province of Pistoia (Tuscany Region, central Italy, 964 km2), in which strong subsidence phenomena have occurred. The interferometric process of 210 Sentinel-1 images from 2014 to 2019 allows exploiting the average displacements of 52,257 Persistent Scatterers as output targets to predict. A set of 29 environmental-related factors are preprocessed by SAGA-GIS, version 2.3.2, and ESRI ArcGIS, version 10.5, and employed as input features. Once the dataset has been prepared, three wrapper feature selection approaches (backward, forward, and bi-directional) are used for recognizing the set of most relevant features to be used in the modeling. A random splitting of the dataset in 70% and 30% is implemented to identify the training and test set. Through a Bayesian Optimization Algorithm (BOA) and a 10-Fold Cross-Validation (CV), the algorithms are trained and validated. Therefore, the Predictive Performance of MLAs is evaluated and compared by plotting the Taylor Diagram. Outcomes show that SVM and BRT are the most suitable algorithms; in the test phase, BRT has the highest Correlation Coefficient (0.96) and the lowest Root Mean Square Error (0.44 mm/year), while the SVM has the lowest difference between the standard deviation of its predictions (2.05 mm/year) and that of the reference samples (2.09 mm/year). Finally, algorithms are used for mapping surface motion over the study area. We propose three case studies on critical stretches of two-lane rural roads for evaluating the reliability of the procedure. Road authorities could consider the proposed methodology for their monitoring, management, and planning activities

    Classification-Aided Robust Multiple Target Tracking Using Neural Enhanced Message Passing

    Full text link
    We address the challenge of tracking an unknown number of targets in strong clutter environments using measurements from a radar sensor. Leveraging the range-Doppler spectra information, we identify the measurement classes, which serve as additional information to enhance clutter rejection and data association, thus bolstering the robustness of target tracking. We first introduce a novel neural enhanced message passing approach, where the beliefs obtained by the unified message passing are fed into the neural network as additional information. The output beliefs are then utilized to refine the original beliefs. Then, we propose a classification-aided robust multiple target tracking algorithm, employing the neural enhanced message passing technique. This algorithm is comprised of three modules: a message-passing module, a neural network module, and a Dempster-Shafer module. The message-passing module is used to represent the statistical model by the factor graph and infers target kinematic states, visibility states, and data associations based on the spatial measurement information. The neural network module is employed to extract features from range-Doppler spectra and derive beliefs on whether a measurement is target-generated or clutter-generated. The Dempster-Shafer module is used to fuse the beliefs obtained from both the factor graph and the neural network. As a result, our proposed algorithm adopts a model-and-data-driven framework, effectively enhancing clutter suppression and data association, leading to significant improvements in multiple target tracking performance. We validate the effectiveness of our approach using both simulated and real data scenarios, demonstrating its capability to handle challenging tracking scenarios in practical radar applications.Comment: 15 page

    A comparison of different approaches to target differentiation with sonar

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Institute of Engineering and Science of Bilkent University, 2001.Thesis (Ph.D.) -- Bilkent University, 2001.Includes bibliographical references leaves 180-197This study compares the performances of di erent classication schemes and fusion techniques for target di erentiation and localization of commonly encountered features in indoor robot environments using sonar sensing Di erentiation of such features is of interest for intelligent systems in a variety of applications such as system control based on acoustic signal detection and identication map building navigation obstacle avoidance and target tracking The classication schemes employed include the target di erentiation algorithm developed by Ayrulu and Barshan statistical pattern recognition techniques fuzzy c means clustering algorithm and articial neural networks The fusion techniques used are Dempster Shafer evidential reasoning and di erent voting schemes To solve the consistency problem arising in simple ma jority voting di erent voting schemes including preference ordering and reliability measures are proposed and veried experimentally To improve the performance of neural network classiers di erent input signal representations two di erent training algorithms and both modular and non modular network structures are considered The best classication and localization scheme is found to be the neural network classier trained with the wavelet transform of the sonar signals This method is applied to map building in mobile robot environments Physically di erent sensors such as infrared sensors and structured light systems besides sonar sensors are also considered to improve the performance in target classication and localization.Ayrulu (Erdem), BirselPh.D

    Advances and Applications of Dezert-Smarandache Theory (DSmT) for Information Fusion (Collected works), Vol. 2

    Get PDF
    This second volume dedicated to Dezert-Smarandache Theory (DSmT) in Information Fusion brings in new fusion quantitative rules (such as the PCR1-6, where PCR5 for two sources does the most mathematically exact redistribution of conflicting masses to the non-empty sets in the fusion literature), qualitative fusion rules, and the Belief Conditioning Rule (BCR) which is different from the classical conditioning rule used by the fusion community working with the Mathematical Theory of Evidence. Other fusion rules are constructed based on T-norm and T-conorm (hence using fuzzy logic and fuzzy set in information fusion), or more general fusion rules based on N-norm and N-conorm (hence using neutrosophic logic and neutrosophic set in information fusion), and an attempt to unify the fusion rules and fusion theories. The known fusion rules are extended from the power set to the hyper-power set and comparison between rules are made on many examples. One defines the degree of intersection of two sets, degree of union of two sets, and degree of inclusion of two sets which all help in improving the all existing fusion rules as well as the credibility, plausibility, and communality functions. The book chapters are written by Frederic Dambreville, Milan Daniel, Jean Dezert, Pascal Djiknavorian, Dominic Grenier, Xinhan Huang, Pavlina Dimitrova Konstantinova, Xinde Li, Arnaud Martin, Christophe Osswald, Andrew Schumann, Tzvetan Atanasov Semerdjiev, Florentin Smarandache, Albena Tchamova, and Min Wang

    Ontological Considerations for Uncertainty Propagation in High Level Information Fusion

    Full text link
    corecore