247 research outputs found

    Combination of Evidence in Dempster-Shafer Theory

    Full text link

    Multi-source Information Fusion Technology and Its Engineering Application

    Get PDF
    With the continuous development of information technology in recent years, information fusion technology, which originated from military applications, plays an important role in various fields. In addition, the rapidly increasing amount of data and the changing lifestyles of people in the information age are affecting the development of information fusion technology. More experts and scholars have focused their attention on the research of image or audio and video fusion or distributed fusion technology. This article summarizes the origin and development of information fusion technology and typical algorithms, as well as the future development trends and challenges of information fusion technology

    READUP BUILDUP. Thync - instant α-readings

    Get PDF

    Towards a Unified Approach to Information Integration - A review paper on data/information fusion

    Full text link

    Voting as validation in robot programming

    Get PDF
    This paper investigates the use of voting as a conflict-resolution technique for data analysis in robot programming. Voting represents an information-abstraction technique. It is argued that in some cases a voting approach is inherent in the nature of the data being analyzed: where multiple, independent sources of information must be reconciled to give a group decision that reflects a single outcome rather than a consensus average. This study considers an example of target classification using sonar sensors. Physical models of reflections from target primitives that are typical of the indoor environment of a mobile robot are used. Dispersed sensors take decisions on target type, which must then be fused to give the single group classification of the presence or absence and type of a target. Dempster-Shafer evidential reasoning is used to assign a level of belief to each sensor decision. The decisions are then fused by two means. Using Dempster's rule of combination, conflicts are resolved through a group measure expressing dissonance in the sensor views. This evidential approach is contrasted with the resolution of sensor conflict through voting. It is demonstrated that abstraction of the level of belief through voting proves useful in resolving the straightforward conflicts that arise in the classification problem. Conflicts arise where the discriminant data value, an echo amplitude, is most sensitive to noise. Fusion helps to overcome this vulnerability: in Dempster-Shafer reasoning, through the modeling of nonparametric uncertainty and combination of belief values; and in voting, by emphasizing the majority view. The paper gives theoretical and experimental evidence for the use of voting for data abstraction and conflict resolution in areas such as classification, where a strong argument can be made for techniques that emphasize a single outcome rather than an estimated value. Methods for making the vote more strategic are also investigated. The paper addresses the reduction of dimension of sets of decision points or decision makers. Through a consideration of combination/order, queuing criteria for more strategic fusion are identified

    Communications management in decentralised data fusion systems

    Get PDF

    Fusing actigraphy signals for outpatient monitoring

    Full text link
    [EN] Actigraphy devices have been successfully used as effective tools in the treatment of diseases such as sleep disorders or major depression. Although several efforts have been made in recent years to develop smaller and more portable devices, the features necessary for the continuous monitoring of outpatients require a less intrusive, obstructive and stigmatizing acquisition system. A useful strategy to overcome these limitations is based on adapting the monitoring system to the patient lifestyle and behavior by providing sets of different sensors that can be worn simultaneously or alternatively. This strategy offers to the patient the option of using one device or other according to his/her particular preferences. However this strategy requires a robust multi-sensor fusion methodology capable of taking maximum profit from all of the recorded information. With this aim, this study proposes two actigraphy fusion models including centralized and distributed architectures based on artificial neural networks. These novel fusion methods were tested both on synthetic datasets and real datasets, providing a parametric characterization of the models' behavior, and yielding results based on real case applications. The results obtained using both proposed fusion models exhibit good performance in terms of robustness to signal degradation, as well as a good behavior in terms of the dependence of signal quality on the number of signals fused. The distributed and centralized fusion methods reduce the mean averaged error of the original signals to 44% and 46% respectively when using simulated datasets. The proposed methods may therefore facilitate a less intrusive and more dependable way of acquiring valuable monitoring information from outpatients.This work was partially funded by the European Commission: Help4Mood (Contract No. FP7-ICT-2009-4: 248765). E. FusterGarcia acknowledges Programa Torres Quevedo from Ministerio de Educacion y Ciencia, co-founded by the European Social Fund (PTQ-12-05693).Fuster García, E.; Bresó Guardado, A.; Martínez Miranda, JC.; Rosell-Ferrer, J.; Matheson, C.; García Gómez, JM. (2015). Fusing actigraphy signals for outpatient monitoring. Information Fusion. 23:69-80. https://doi.org/10.1016/j.inffus.2014.08.003S69802

    Automatic goal allocation for a planetary rover with DSmT

    Get PDF
    In this chapter, we propose an approach for assigning aninterest level to the goals of a planetary rover. Assigning an interest level to goals, allows the rover to autonomously transform and reallocate the goals. The interest level is defined by data-fusing payload and navigation information. The fusion yields an 'interest map',that quantifies the level of interest of each area around the rover. In this way the planner can choose the most interesting scientific objectives to be analysed, with limited human intervention, and reallocates its goals autonomously. The Dezert-Smarandache Theory of Plausible and Paradoxical Reasoning was used for information fusion: this theory allows dealing with vague and conflicting data. In particular, it allows us to directly model the behaviour of the scientists that have to evaluate the relevance of a particular set of goals. This chaptershows an application of the proposed approach to the generation of a reliable interest map
    corecore