18 research outputs found

    Evidence of Influence of Genomic DNA Sequence on Human X Chromosome Inactivation

    Get PDF
    A significant number of human X-linked genes escape X chromosome inactivation and are thus expressed from both the active and inactive X chromosomes. The basis for escape from inactivation and the potential role of the X chromosome primary DNA sequence in determining a gene's X inactivation status is unclear. Using a combination of the X chromosome sequence and a comprehensive X inactivation profile of more than 600 genes, two independent yet complementary approaches were used to systematically investigate the relationship between X inactivation and DNA sequence features. First, statistical analyses revealed that a number of repeat features, including long interspersed nuclear element (LINE) and mammalian-wide interspersed repeat repetitive elements, are significantly enriched in regions surrounding transcription start sites of genes that are subject to inactivation, while Alu repetitive elements and short motifs containing ACG/CGT are significantly enriched in those that escape inactivation. Second, linear support vector machine classifiers constructed using primary DNA sequence features were used to correctly predict the X inactivation status for >80% of all X-linked genes. We further identified a small set of features that are important for accurate classification, among which LINE-1 and LINE-2 content show the greatest individual discriminatory power. Finally, as few as 12 features can be used for accurate support vector machine classification. Taken together, these results suggest that features of the underlying primary DNA sequence of the human X chromosome may influence the spreading and/or maintenance of X inactivation

    The role of LINEs and CpG islands in dosage compensation on the chicken Z chromosome

    Get PDF
    Most avian Z genes are expressed more highly in ZZ males than ZW females, suggesting that chromosome-wide mechanisms of dosage compensation have not evolved. Nevertheless, a small percentage of Z genes are expressed at similar levels in males and females, an indication that a yet unidentified mechanism compensates for the sex difference in copy number. Primary DNA sequences are thought to have a role in determining chromosome gene inactivation status on the mammalian X chromosome. However, it is currently unknown whether primary DNA sequences also mediate chicken Z gene compensation status. Using a combination of chicken DNA sequences and Z gene compensation profiles of 310 genes, we explored the relationship between Z gene compensation status and primary DNA sequence features. Statistical analysis of different Z chromosomal features revealed that long interspersed nuclear elements (LINEs) and CpG islands are enriched on the Z chromosome compared with 329 other DNA features. Linear support vector machine (SVM) classifiers, using primary DNA sequences, correctly predict the Z compensation status for >60% of all Z-linked genes. CpG islands appear to be the most accurate classifier and alone can correctly predict compensation of 63% of Z genes. We also show that LINE CR1 elements are enriched 2.7-fold on the chicken Z chromosome compared with autosomes and that chicken chromosomal length is highly correlated with percentage LINE content. However, the position of LINE elements is not significantly associated with dosage compensation status of Z genes. We also find a trend for a higher proportion of CpG islands in the region of the Z chromosome with the fewest dosage-compensated genes compared with the region containing the greatest concentration of compensated genes. Comparison between chicken and platypus genomes shows that LINE elements are not enriched on sex chromosomes in platypus, indicating that LINE accumulation is not a feature of all sex chromosomes. Our results suggest that CpG islands are not randomly distributed on the Z chromosome and may influence Z gene dosage compensation status

    Characterisation of Inactivation Domains and Evolutionary Strata in Human X Chromosome through Markov Segmentation

    Get PDF
    Markov segmentation is a method of identifying compositionally different subsequences in a given symbolic sequence. We have applied this technique to the DNA sequence of the human X chromosome to analyze its compositional structure. The human X chromosome is known to have acquired DNA through distinct evolutionary events and is believed to be composed of five evolutionary strata. In addition, in female mammals all copies of X chromosome in excess of one are transcriptionally inactivated. The location of a gene is correlated with its ability to undergo inactivation, but correlations between evolutionary strata and inactivation domains are less clear. Our analysis provides an accurate estimate of the location of stratum boundaries and gives a high–resolution map of compositionally different regions on the X chromosome. This leads to the identification of a novel stratum, as well as segments wherein a group of genes either undergo inactivation or escape inactivation in toto. We identify oligomers that appear to be unique to inactivation domains alone

    The Relationship betweenSkewed X-chromosome Inactivation and Neurological Disorders Development: A Review

    Get PDF
    X-chromosome inactivation (XCI) is a process by which one of the copies of the X chromosome in mammalian female cells is inactivated. The XCI causes a balanced X-linked gene quantity between male and females; moreover, it results mosaic females which have paternal active X in some cells and maternal active X in others. Cellular mosaicism is a noteworthy phenomenon and lowers the risk of X-linked diseases in women because the presentation of a mutation on both X chromosomes is unlikely. Therefore, in heterozygous females, the XCI will be present only on the half of the X genome. In contrast, a similar mutation will present in all of the cells of men.Female carriers of some neurological disorders such as autism, Rett syndrome, adreno-leukodystrophyand X-linked mental retardation are reported to present XCI. These observations underscore the important role of X chromosome in the brain which may be related to the existence of a chromosomal signature of gene expression associated with the X-chromosome for neurological conditions not normally associated with that chromosome.In this review, we focused on latestinvestigations on the role of XCI in neurodevelopmental disorders and how these investigations can be effective in the treatment of neurodevelopmental disorders

    Analysis of Transposon Interruptions Suggests Selection for L1 Elements on the X Chromosome

    Get PDF
    It has been hypothesised that the massive accumulation of L1 transposable elements on the X chromosome is due to their function in X inactivation, and that the accumulation of Alu elements near genes is adaptive. We tested the possible selective advantage of these two transposable element (TE) families with a novel method, interruption analysis. In mammalian genomes, a large number of TEs interrupt other TEs due to the high overall abundance and age of repeats, and these interruptions can be used to test whether TEs are selectively neutral. Interruptions of TEs, which are beneficial for the host, are expected to be deleterious and underrepresented compared with neutral ones. We found that L1 elements in the regions of the X chromosome that contain the majority of the inactivated genes are significantly less frequently interrupted than on the autosomes, while L1s near genes that escape inactivation are interrupted with higher frequency, supporting the hypothesis that L1s on the X chromosome play a role in its inactivation. In addition, we show that TEs are less frequently interrupted in introns than in intergenic regions, probably due to selection against the expansion of introns, but the insertion pattern of Alus is comparable to other repeats

    The Impact of CpG Island on Defining Transcriptional Activation of the Mouse L1 Retrotransposable Elements

    Get PDF
    BACKGROUND: L1 retrotransposable elements are potent insertional mutagens responsible for the generation of genomic variation and diversification of mammalian genomes, but reliable estimates of the numbers of actively transposing L1 elements are mostly nonexistent. While the human and mouse genomes contain comparable numbers of L1 elements, several phylogenetic and L1Xplore analyses in the mouse genome suggest that 1,500-3,000 active L1 elements currently exist and that they are still expanding in the genome. Conversely, the human genome contains only 150 active L1 elements. In addition, there is a discrepancy among the nature and number of mouse L1 elements in L1Xplore and the mouse genome browser at the UCSC and in the literature. To date, the reason why a high copy number of active L1 elements exist in the mouse genome but not in the human genome is unknown, as are the potential mechanisms that are responsible for transcriptional activation of mouse L1 elements. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the promoter sequences of the 1,501 potentially active mouse L1 elements retrieved from the GenBank and L1Xplore databases and evaluated their transcription factors binding sites and CpG content. To this end, we found that a substantial number of mouse L1 elements contain altered transcription factor YY1 binding sites on their promoter sequences that are required for transcriptional initiation, suggesting that only a half of L1 elements are capable of being transcriptionally active. Furthermore, we present experimental evidence that previously unreported CpG islands exist in the promoters of the most active T(F) family of mouse L1 elements. The presence of sequence variations and polymorphisms in CpG islands of L1 promoters that arise from transition mutations indicates that CpG methylation could play a significant role in determining the activity of L1 elements in the mouse genome. CONCLUSIONS: A comprehensive analysis of mouse L1 promoters suggests that the number of transcriptionally active elements is significantly lower than the total number of full-length copies from the three active mouse L1 families. Like human L1 elements, the CpG islands and potentially the transcription factor YY1 binding sites are likely to be required for transcriptional initiation of mouse L1 elements

    X Chromosome Inactivation and Xist Evolution in a Rodent Lacking LINE-1 Activity

    Get PDF
    Dosage compensation in eutherian mammals occurs by inactivation of one X chromosome in females. Silencing of that X chromosome is initiated by Xist, a large non-coding RNA, whose coating of the chromosome extends in cis from the X inactivation center. LINE-1 (L1) retrotransposons have been implicated as possible players for propagation of the Xist signal, but it has remained unclear whether they are essential components. We previously identified a group of South American rodents in which L1 retrotransposition ceased over 8 million years ago and have now determined that at least one species of these rodents, Oryzomys palustris, still retains X inactivation. We have also isolated and analyzed the majority of the Xist RNA from O. palustris and a sister species retaining L1 activity, Sigmodon hispidus, to determine if evolution in these sequences has left signatures that might suggest a critical role for L1 elements in Xist function. Comparison of rates of Xist evolution in the two species fails to support L1 involvement, although other explanations are possible. Similarly, comparison of known repeats and potential RNA secondary structures reveals no major differences with the exception of a new repeat in O. palustris that has potential to form new secondary structures

    The Impact of Local Genome Sequence on Defining Heterochromatin Domains

    Get PDF
    Characterizing how genomic sequence interacts with trans-acting regulatory factors to implement a program of gene expression in eukaryotic organisms is critical to understanding genome function. One means by which patterns of gene expression are achieved is through the differential packaging of DNA into distinct types of chromatin. While chromatin state exerts a major influence on gene expression, the extent to which cis-acting DNA sequences contribute to the specification of chromatin state remains incompletely understood. To address this, we have used a fission yeast sequence element (L5), known to be sufficient to nucleate heterochromatin, to establish de novo heterochromatin domains in the Schizosaccharomyces pombe genome. The resulting heterochromatin domains were queried for the presence of H3K9 di-methylation and Swi6p, both hallmarks of heterochromatin, and for levels of gene expression. We describe a major effect of genomic sequences in determining the size and extent of such de novo heterochromatin domains. Heterochromatin spreading is antagonized by the presence of genes, in a manner that can occur independent of strength of transcription. Increasing the dosage of Swi6p results in increased heterochromatin proximal to the L5 element, but does not result in an expansion of the heterochromatin domain, suggesting that in this context genomic effects are dominant over trans effects. Finally, we show that the ratio of Swi6p to H3K9 di-methylation is sequence-dependent and correlates with the extent of gene repression. Taken together, these data demonstrate that the sequence content of a genomic region plays a significant role in shaping its response to encroaching heterochromatin and suggest a role of DNA sequence in specifying chromatin state

    Retrotransposon-Induced Heterochromatin Spreading in the Mouse Revealed by Insertional Polymorphisms

    Get PDF
    The β€œarms race” relationship between transposable elements (TEs) and their host has promoted a series of epigenetic silencing mechanisms directed against TEs. Retrotransposons, a class of TEs, are often located in repressed regions and are thought to induce heterochromatin formation and spreading. However, direct evidence for TE–induced local heterochromatin in mammals is surprisingly scarce. To examine this phenomenon, we chose two mouse embryonic stem (ES) cell lines that possess insertionally polymorphic retrotransposons (IAP, ETn/MusD, and LINE elements) at specific loci in one cell line but not the other. Employing ChIP-seq data for these cell lines, we show that IAP elements robustly induce H3K9me3 and H4K20me3 marks in flanking genomic DNA. In contrast, such heterochromatin is not induced by LINE copies and only by a minority of polymorphic ETn/MusD copies. DNA methylation is independent of the presence of IAP copies, since it is present in flanking regions of both full and empty sites. Finally, such spreading into genes appears to be rare, since the transcriptional start sites of very few genes are less than one Kb from an IAP. However, the B3galtl gene is subject to transcriptional silencing via IAP-induced heterochromatin. Hence, although rare, IAP-induced local heterochromatin spreading into nearby genes may influence expression and, in turn, host fitness
    corecore