520 research outputs found

    Every locally characterized affine-invariant property is testable

    Full text link
    Let F = F_p for any fixed prime p >= 2. An affine-invariant property is a property of functions on F^n that is closed under taking affine transformations of the domain. We prove that all affine-invariant property having local characterizations are testable. In fact, we show a proximity-oblivious test for any such property P, meaning that there is a test that, given an input function f, makes a constant number of queries to f, always accepts if f satisfies P, and rejects with positive probability if the distance between f and P is nonzero. More generally, we show that any affine-invariant property that is closed under taking restrictions to subspaces and has bounded complexity is testable. We also prove that any property that can be described as the property of decomposing into a known structure of low-degree polynomials is locally characterized and is, hence, testable. For example, whether a function is a product of two degree-d polynomials, whether a function splits into a product of d linear polynomials, and whether a function has low rank are all examples of degree-structural properties and are therefore locally characterized. Our results depend on a new Gowers inverse theorem by Tao and Ziegler for low characteristic fields that decomposes any polynomial with large Gowers norm into a function of low-degree non-classical polynomials. We establish a new equidistribution result for high rank non-classical polynomials that drives the proofs of both the testability results and the local characterization of degree-structural properties

    A Characterization of Locally Testable Affine-Invariant Properties via Decomposition Theorems

    Full text link
    Let P\mathcal{P} be a property of function Fpn→{0,1}\mathbb{F}_p^n \to \{0,1\} for a fixed prime pp. An algorithm is called a tester for P\mathcal{P} if, given a query access to the input function ff, with high probability, it accepts when ff satisfies P\mathcal{P} and rejects when ff is "far" from satisfying P\mathcal{P}. In this paper, we give a characterization of affine-invariant properties that are (two-sided error) testable with a constant number of queries. The characterization is stated in terms of decomposition theorems, which roughly claim that any function can be decomposed into a structured part that is a function of a constant number of polynomials, and a pseudo-random part whose Gowers norm is small. We first give an algorithm that tests whether the structured part of the input function has a specific form. Then we show that an affine-invariant property is testable with a constant number of queries if and only if it can be reduced to the problem of testing whether the structured part of the input function is close to one of a constant number of candidates.Comment: 27 pages, appearing in STOC 2014. arXiv admin note: text overlap with arXiv:1306.0649, arXiv:1212.3849 by other author

    Some closure features of locally testable affine-invariant properties

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 31-32).We prove that the class of locally testable affine-invariant properties is closed under sums, intersections and "lifts". The sum and intersection are two natural operations on linear spaces of functions, where the sum of two properties is simply their sum as a vector space. The "lift" is a less well-studied property, which creates some interesting affine-invariant properties over large domains, from properties over smaller domains. Previously such results were known for "single-orbit characterized" affine-invariant properties, which are known to be a subclass of locally testable ones, and are potentially a strict subclass. The fact that the intersection of locally-testable affine-invariant properties are locally testable could have been derived from previously known general results on closure of property testing under set-theoretic operations, but was not explicitly observed before. The closure under sum and lifts is implied by an affirmative answer to a central question attempting to characterize locally testable affine-invariant properties, but the status of that question remains wide open. Affine-invariant properties are clean abstractions of commonly studied, and extensively used, algebraic properties such linearity and low-degree. Thus far it is not known what makes affine-invariant properties locally testable - no characterizations are known, and till this work it was not clear if they satisfied any closure properties. This work shows that the class of locally testable affine-invariant properties are closed under some very natural operations. Our techniques use ones previously developed for the study of "single-orbit characterized" properties, but manage to apply them to the potentially more general class of all locally testable ones via a simple connection that may be of broad interest in the study of affine-invariant properties.by Alan Xinyu Guo.S.M

    Symmetries in algebraic Property Testing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 94-100).Modern computational tasks often involve large amounts of data, and efficiency is a very desirable feature of such algorithms. Local algorithms are especially attractive, since they can imply global properties by only inspecting a small window into the data. In Property Testing, a local algorithm should perform the task of distinguishing objects satisfying a given property from objects that require many modifications in order to satisfy the property. A special place in Property Testing is held by algebraic properties: they are some of the first properties to be tested, and have been heavily used in the PCP and LTC literature. We focus on conditions under which algebraic properties are testable, following the general goal of providing a more unified treatment of these properties. In particular, we explore the notion of symmetry in relation to testing, a direction initiated by Kaufman and Sudan. We investigate the interplay between local testing, symmetry and dual structure in linear codes, by showing both positive and negative results. On the negative side, we exhibit a counterexample to a conjecture proposed by Alon, Kaufman, Krivelevich, Litsyn, and Ron aimed at providing general sufficient conditions for testing. We show that a single codeword of small weight in the dual family together with the property of being invariant under a 2-transitive group of permutations do not necessarily imply testing. On the positive side, we exhibit a large class of codes whose duals possess a strong structural property ('the single orbit property'). Namely, they can be specified by a single codeword of small weight and the group of invariances of the code. Hence we show that sparsity and invariance under the affine group of permutations are sufficient conditions for a notion of very structured testing. These findings also reveal a new characterization of the extensively studied BCH codes. As a by-product, we obtain a more explicit description of structured tests for the special family of BCH codes of design distance 5.by Elena Grigorescu.Ph.D

    On Higher-Order Fourier Analysis over Non-Prime Fields

    Get PDF
    The celebrated Weil bound for character sums says that for any low-degree polynomial P and any additive character chi, either chi(P) is a constant function or it is distributed close to uniform. The goal of higher-order Fourier analysis is to understand the connection between the algebraic and analytic properties of polynomials (and functions, generally) at a more detailed level. For instance, what is the tradeoff between the equidistribution of chi(P) and its "structure"? Previously, most of the work in this area was over fields of prime order. We extend the tools of higher-order Fourier analysis to analyze functions over general finite fields. Let K be a field extension of a prime finite field F_p. Our technical results are: 1. If P: K^n -> K is a polynomial of degree |K|^{-s} for some s > 0 and non-trivial additive character chi, then P is a function of O_{d, s}(1) many non-classical polynomials of weight degree < d. The definition of non-classical polynomials over non-prime fields is one of the contributions of this work. 2. Suppose K and F are of bounded order, and let H be an affine subspace of K^n. Then, if P: K^n -> K is a polynomial of degree d that is sufficiently regular, then (P(x): x in H) is distributed almost as uniformly as possible subject to constraints imposed by the degree of P. Such a theorem was previously known for H an affine subspace over a prime field. The tools of higher-order Fourier analysis have found use in different areas of computer science, including list decoding, algorithmic decomposition and testing. Using our new results, we revisit some of these areas. (i) For any fixed finite field K, we show that the list decoding radius of the generalized Reed Muller code over K equals the minimum distance of the code. (ii) For any fixed finite field K, we give a polynomial time algorithm to decide whether a given polynomial P: K^n -> K can be decomposed as a particular composition of lesser degree polynomials. (iii) For any fixed finite field K, we prove that all locally characterized affine-invariant properties of functions f: K^n -> K are testable with one-sided error

    Testing Low Complexity Affine-Invariant Properties

    Full text link
    Invariance with respect to linear or affine transformations of the domain is arguably the most common symmetry exhibited by natural algebraic properties. In this work, we show that any low complexity affine-invariant property of multivariate functions over finite fields is testable with a constant number of queries. This immediately reproves, for instance, that the Reed-Muller code over F_p of degree d < p is testable, with an argument that uses no detailed algebraic information about polynomials except that low degree is preserved by composition with affine maps. The complexity of an affine-invariant property P refers to the maximum complexity, as defined by Green and Tao (Ann. Math. 2008), of the sets of linear forms used to characterize P. A more precise statement of our main result is that for any fixed prime p >=2 and fixed integer R >= 2, any affine-invariant property P of functions f: F_p^n -> [R] is testable, assuming the complexity of the property is less than p. Our proof involves developing analogs of graph-theoretic techniques in an algebraic setting, using tools from higher-order Fourier analysis.Comment: 38 pages, appears in SODA '1
    • …
    corecore