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Abstract

Modern computational tasks often involve large amounts of data, and efficiency is a
very desirable feature of such algorithms. Local algorithms are especially attractive,
since they can imply global properties by only inspecting a small window into the
data. In Property Testing, a local algorithm should perform the task of distinguishing
objects satisfying a given property from objects that require many modifications in
order to satisfy the property.

A special place in Property Testing is held by algebraic properties: they are some of
the first properties to be tested, and have been heavily used in the PCP and LTC
literature. We focus on conditions under which algebraic properties are testable,
following the general goal of providing a more unified treatment of these properties.
In particular, we explore the notion of symmetry in relation to testing, a direction
initiated by Kaufman and Sudan. We investigate the interplay between local testing,
symmetry and dual structure in linear codes, by showing both positive and negative
results.

On the negative side, we exhibit a counterexample to a conjecture proposed by Alon,
Kaufman, Krivelevich, Litsyn, and Ron aimed at providing general sufficient condi-
tions for testing. We show that a single codeword of small weight in the dual family
together with the property of being invariant under a 2-transitive group of permuta-
tions do not necessarily imply testing.

On the positive side, we exhibit a large class of codes whose duals possess a strong
structural property ('the single orbit property'). Namely, they can be specified by a
single codeword of small weight and the group of invariances of the code. Hence we
show that sparsity and invariance under the affine group of permutations are sufficient
conditions for a notion of very structured testing. These findings also reveal a new
characterization of the extensively studied BCH codes. As a by-product, we obtain
a more explicit description of structured tests for the special family of BCH codes of
design distance 5.
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Chapter 1

Introduction

Decision problems occur ubiquitously in computation, and while very often they might

be hard to solve exactly, many models have been proposed to approach reasonably

efficient relaxations. In Property Testing, the model of our focus, the goal is to

distinguish between objects that belong to a class, and objects that differ in many

locations from each object in the class. A tester algorithm in this model is allowed to

accept objects that do not belong to the class, but which are close to some object in

the class. The algorithm should use randomness and run in sub-linear time, hence it

should make a correct decision after reading only a restricted, but judiciously chosen

portion of the input. Such so-called local algorithms are desirable in settings where

the decision problem might not be known to be efficiently computable, but also even

when it admits polynomial (super-linear) time algorithms.

Surprisingly, many natural questions have been shown to admit local algorithms with

good error parameters. A domain where local algorithms are both desirable and

computationally feasible is in protecting information from errors. In practice for

example, data storage devices use redundant encoding in order to facilitate recovery

from errors. However, when the amount of error is too large, recovery could become

too time consuming, and in fact unaffordable. Local algorithms to test membership

in error correcting codes might be employed in these scenarios in order to quickly

decide what data is recoverable.



The focus of this thesis is on testing membership in error correcting codes. Error

correcting codes can be viewed as a special subclass of algebraic families of functions.

The ultimate driving goal of this research is to understand features that distinguish

between algebraic families for which membership can be tested in a time-efficient man-

ner, and those which provably require non-local algorithms. This direction is strongly

motivated by intimate connections with Locally Testable Codes and Probabilistically

Checkable Proofs, and has received wide attention in recent years.

1.1 Property testing and algebraic property test-

ing

A brief history Blum, Luby and Rubinfeld [33] initiated the field of Property

Testing by proposing a tester for the class of linear functions. The immediate follow-

up works of Rubinfeld and Sudan [89], Babai, Fortnow and Lund [15], and Babai,

Fortnow, Levin and Szegedy [14], considered testing polynomials of higher degrees in

various settings of parameters and domains. Algebraic property testing rapidly took

off ever since, and has so far found myriads of applications across theoretical computer

science. These results were instrumental in the proofs of MIP=NEXP [15] and in the

highly acclaimed PCP Theorem of Arora, Lund, Motwani, Sudan and Szegedy [12].

Testing graph properties has also been well-studied. Graph property testing was

introduced by Goldreich, Goldwasser and Ron in [53] who considered properties such

as colorability, bipartiteness or connectedness in the dense graph model. The recent

results of Alon et al. [5] and Borgs et al. [35] completely characterized testable

properties in this model.

Property testing Formally, a tester for a property P is a randomized algorithm

which can access a given object given as a black-box via queries. Based on the

answers to the queries, the algorithm makes an accept/reject decision which satisfies

the following conditions: if the object belongs to P it should accept; otherwise, if the



object is far from P it should reject with high probability over the randomness of the

algorithm. P is thought of as a collection of properties, i.e. P = UnPs for n -* o,

where the objects in P, have size n. The tester is local if the number of queries

it performs does not depend on the size of the input object, that is, the number

of queries is independent of n. The notion of distance to P is captured by metrics

dependent on the descriptions of the objects belonging to the property. When the

property refers to sets of graphs, distance is measured in the number of edges to be

added to or removed from the input graph in order to build a graph in the target

collection. In this thesis we concentrate on algebraic properties, namely collections of

functions f : D -± R, mapping a vector space D over a field, into a subfield R. In this

case the notion of distance is given by the Hamming metric, which is the number of

places the function needs to be modified in order to obtain a function from the target

family. A tester could be adaptive if the choice of the queries it makes depends on the

answers it had received; it is non-adaptive otherwise. The definition above describes

a single sided tester; when the test may also err on objects in the family it is called

double sided.

Locally Testable Codes Locally Testable Codes (LTCs) form a special class of

algebraic testable properties. They are error correcting codes for which membership

can be tested with a small number of queries. Error correcting codes are usually de-

scribed by sets of vectors, called codewords, such that the Hamming distance between

pairwise vectors is somewhat large. Their design parameters are the block length N

and alphabet E. An alternate view of a code C C EN is as collections of functions

in {D -± R}, where |D| = N and R = E (i.e. if c E C the function c(a) = c,

Va E D.) The set of linear functions, and the set of low degree polynomials are some

basic examples of LTCs. Building LTCs with good parameters has been a direction

of active research [57, 22, 24, 44, 84], bearing strong connections with similar trends

in the study of PCPs. In this thesis we focus on a second intriguing direction in

the area, namely on understanding what features of codes/algebraic properties could

reveal global structure from an average local structure. The current trends in the



study of LTCs have been recently surveyed in [21].

1.2 Structure and symmetry in testing

A starting example In coding theoretic terms, testing whether a function is linear

[33] corresponds to testing membership in the Hadamard code, formally denoted by

n-

H = {fa : IF' - IF2 | fa(X) = aix2 , a E IF}.
i=o

To describe a tester for this family one uses the evident fact that for any a, # E Fn

every linear function f E H satisfies the constraint f(a) + f(#) + f(a + /) 0. A

tester for linearity simply picks uniformly at random a, # E Fn and queries f at a, #
and a + . It accepts if and only if f(a) + f() + f(a + ) = 0, and rejects otherwise.

An alternate way to represent this test is as a binary vector of weight 3, indexed by

elements of Fn and supported on a, #, a + #. This vector has the property that it has

inner product 0 with each codewords of H. This view will become useful in analyzing

future testers.

Consider now the set of all binary vectors whose inner product is 0 with each codeword

in H. As we will see later on, each such vector could represent a test for the Hadamard

code, and its support size is called the locality of the test. This set of vectors forms

a vector space H'. Moreover, this set characterizes the Hadamard code, in the sense

that no other function g : F- F2 , has inner product 0 with each function in H'.

Formally, H' is the dual of the Hadamard code, i.e. the Hamming code.

Linearity and Duality The example above illustrates the concepts we will be

working with in this thesis. We focus on linear families of functions1 , namely families

for which if f, g E P then f + g C P. Viewed as a collection of vectors, a linear

family is just a vector space. Notice that the Hadamard and Hamming codes are

'Not to be confused with families of linear functions.



linear codes. Each linear family can be associated with a unique dual family, which

is the vector space dual to it. In other words, the dual of P C {F -- F2}, denoted

P', is {g : F IF2 , EZ f(x)g(x) = 0, Vf e P}. The dual family is of central

interest in testing linear properties, since essentially, every test (even in the adaptive

or double-sided setting) must belong to it [23]. This point has motivated the need for

a better understanding of the structural features of the dual family that are relevant

to testing. Our work delves into this connection with the goal of identifying necessary

and sufficient conditions for local testability.

Symmetry in algebraic properties The structural features of a family can be

studied from the perspective of the set of symmetries that the family exhibits. The

initial systematic study by Kaufman and Sudan [72] on the role of symmetries in

algebraic property testing has sparked a wave of great interest in this connection

[60, 61, 74, 25, 54, 31, 30].

A group of symmetries or invariances acting on a family P C { f:D R} is a set

of functions i : D -± D such that f E P if and only if f o w E P. When dealing with

codes, it is most common to only consider functions w which are permutations, and

hence f o -F is a permuted codeword. The largest group of symmetries acting on a

family is called the automorphism group. 2

Many common families of algebraic properties exhibit large automorphism groups.

Invariance under linear transformations of the domain is a most commonly encoun-

tered symmetry. The Hadamard code, and Reed Muller codes are invariant under the

linear group {g : F' - F' I g(x) = Ax, A c F"X"} (a.k.a GL(n, 2)).

Invariance under affine transformations occurs also commonly. For example, Reed

Muller codes are invariant under the affine group {g : F _ F- I| g(x) = Ax + b, A c

F"xn, b E Fn} (a.k.a AGL(n, 2))3.

2In the coding literature, the set of all permutation that keep the code invariant is called the
permutation group. The automorphism group of a code includes, besides permutations, transforma-
tions that multiply each element of a function by a non-zero element of the field. In this thesis we
only focus on binary functions, and thus the two groups coincide. In a few places we slightly abuse
its common usage by calling it the automorphism group when we only mean permutation group.

3Strictly speaking, AGL(n, 2) and GL(n, 2) only refer to nonsingular transformations A. We are



In this thesis we concentrate on linear and affine groups of symmetries and analyze

the testability of codes that feature these invariances.

1.3 A few motivating questions

To summarize our introductory exposition, in this work we investigate the relations

among (1) bases of low weight vectors, (2) affine/linear invariance and (3) testability.

In this section we propose a few basic questions tackling the interplay between these

notions. We describe our results in more detail in Section 1.4.

Codes with/without bases of low weight Ben-Sasson et al. [23] formalized the

fact that any tester (even adaptive or double-sided ones) for membership in a linear

family F can be reduced to picking g c FL. That is, the tester queries a given

function f at locations in the support of g. This result motivated understanding the

testability of families whose duals are generated by bases of low weight functions.

Bases of low weight functions have been very relevant in testing many common fami-

lies. Returning to our starting example of the Hadamard code, one can prove that the

Hamming code is generated by the weight 3 codewords, i.e by the minimum weight

codewords. Similarly, bases of low weight functions were used in testing Reed Muller

codes [7, 63] and dual-BCH codes [67].

However, the existence of a low weight arbitrary basis is not sufficient for testing [23].

Random Low Density Parity Check (LDPC) codes, although generated by weight 3

codewords, require a large number of queries in order to test for membership. Vaguely

speaking, this phenomenon is caused by the fact that large collections of low weight

functions cannot combine into (sum up to) another low weight function, which would

be a necessary condition.

Understanding when a family can be characterized by low weight functions is an

important step in understanding its testability. This task could be highly non-trivial:

abusing notation slightly.



given an arbitrary basis possibly of large weight vectors is there a small weight basis for

it? What if the family is represented by collections of functions, or say polynomials?

What if the family exhibits some large group of symmetries? We note that techniques

to analyze this type of questions are rare in the literature: a successful approach was

made in [23], by means of analyzing properties of expander graphs.

This leads us to a first question that motivates out work.

Question 1 Can one exhibit explicit families that are invariant under a large group

of symmetries, contain low weight functions but cannot be characterized by low weight

functions? That is, can one exhibit such a family for which any basis must contain a

large weight vector?

The family we exhibit for an answer to this question will also be relevant to showing

our negative testing results. In particular, we prove that the dual of an affine subcode

of Reed Muller codes of order 2 cannot have a low-weight basis (See Chapter 4.) This

result has applications to a conjecture of Alon et al. [7] (the AKKLR conjecture),

which attempted to unify specific testing approaches in the literature. Namely, the

conjecture stated that families that are '2-transitive' and admit small constraints

should be testable by tests with small locality.

The AKKLR [7] conjecture has been so far an important source of sufficient conditions

for testability in the literature, motivating the major contributions that the work of

Kaufman and Sudan [72] has brought in this direction.

The single orbit characterization in common codes Kaufman and Sudan [72]

realized that the symmetries of a family can lead to more structured bases and fur-

thermore to structured tests. In particular, they focused on families that can be

completely characterized by a single function and its set of transformations under a

group of symmetries. This property is denoted by single orbit characterization under

a group of symmetries of the family.



Again, the Hadamard code provides an example of families that admit single orbit

characterization. Indeed, every codeword of the Hamming code can be obtained as a

linear combination of the set of permutations AGL(n, 2) of the codeword supported

on (ei, e2, ei + e2) (here ei and e2 are the standard basis vectors in Fn.)

This property similarly holds for Reed Muller codes. For different settings of field size

versus degree, a single orbit characterization exists, but its description might differ

with the setting. For example, for Reed Muller codes of order d in fields of character-

istic 2 (that is, RM(d) = {f : -F F2 | deg(f) < d},) a single orbit characterization

of the dual is given by a function supported at {Span(ao, a 2 ,... , ad) + #}, for some

aO,...,c ad,# IF". For degree d < IKI and RM(d) {f : K' -± K, deg(f) < d}

a single orbit generator for the dual is supported at {1, w,... , wd+1}, where w is a

primitive element of K.

The single orbit property is to some extent expected under such large groups of

symmetries (i.e. AGL(2, n)): one should able to find a basis of dimension, say O(2n),

among 2n2 vectors. A more intriguing question is whether such single orbit bases

could be found for smaller groups of invariances, which leads to a 2nd sequence of

questions that we propose.

Question 2 Do Reed Muller codes have the single orbit property under a smaller

group of symmetries? Also do BCH codes (which are also extensively studied codes)

have the single orbit characterization property? If so, what is the smallest group under

which this property holds for BCH codes?

We show that Reed Muller codes (in characteristic 2) have the single orbit property

under even smaller groups of invariances, namely under affine groups over a domain

1F2. (a.k.a. AGL(1, 2n)) (see Chapter 5). Furthermore, we show that this property

also holds for BCH codes. In some cases, BCH codes have this property under an

even smaller group of invariances, i.e. under linear transformations of F2- (a.k.a.

GL(1, 2n)) (see Chapter 6).



Structured testing in general settings The reason why the single orbit charac-

terization is a relevant feature is due to the fact that it immediately leads to a notion

of structured testing. A structured tester simply picks a random permutation from a

group of invariances and computes its composition with a low weight generator of the

single orbit. Kaufman and Sudan [72] showed that having the single orbit property

under affine invariant transformations implies structured testing. Structured tests are

nice since as soon as a single low weight generator is known, the rest of the tests are

immediately explicitly specified by a group of symmetries. This observation prompts

us to another set of questions of broad interest.

Question 3 What general families of functions admit structured tests under the

affine group? What general families have the single orbit property under other groups?

To answer these questions we show some general families that have the single orbit

characterization under affine and linear invariances (see Chapter 6.)

We proceed with a more detailed account of our results.

1.4 Our results

We focus on families F C {IF 2n -+ F2} that are invariant under affine/cyclic transfor-

mations of IF2. and show positive and negative testing results.

1.4.1 A counterexample to the AKKLR conjecture

As mentioned, our first result provides an answer to Question 1 discussed above

and a counterexample to the AKKLR conjecture (in Chapter 4.) We provide an

explicit family F C {F2n - F2 } that is invariant under a group of 2-transitive

transformations, but that cannot be tested with a small number of queries. This

counterexample is a subcode of Reed Muller codes of order 2, and in addition, it is

affine invariant. We argue that any small weight vector in F' must belong to the



dual of the Reed Muller code of order 2. Hence any basis for the dual of F must have

a large weight codeword. For an illustration of the broader context of this example

see Figure 1.4.3.

2-transitivity Informally, a family of functions is 2-transitive if any two coordi-

nates look the same as any other two. This notion of symmetry is related to that

of pairwise independence, which in turn plays a crucial role in the analysis of self-

correctors for linear properties. To be more precise, a self-corrector for a function

f (which is assumed to be correct on most inputs) computes the value of f at each

location x, with high probability, from the value of the function at a few other places.

Self-correctors and testers for linear properties have very similar features. While local

testers use functions of small weight in the dual to test for membership, self-correctors

use the same dual-functions in order to correct corrupted locations in the given func-

tion. A common analysis argument on the success probability of self correctors (e.g.

[33, 7, 70]) relies on the fact that f(x) can be computed from values f(xi) such that x

and x are almost pairwise independent. The fact that 2-transitive codes with small

dual distance are correctable was formalized in [73]. These apparent interconnec-

tions between 2-transitivity, correctability and testability prompted Alon et al. [7] to

propose 2-transitivity as an indicator for local testability. Finally, we note that the

most natural 2-transitive groups are the affine groups, and in fact families that are

2-transitive but not affine invariant are non-trivial to construct.

Supporting evidence The proposed sufficient conditions were an initial attempt

at a more unified theory of the features that enable testability in Hadamard, Reed

Muller, and BCH codes.

A confirmation of the conjecture in a broader context was exhibited in [72]. Their

results show that the existence of a low weight dual function together with invari-

ance under the affine group implies the existence of a special basis (the single orbit

characterization), which in turn implies testability.



As additional evidence from the negative side, the conjecture does not hold for random

LDPC codes. Clearly such codes do not have large groups of symmetries, and in

particular they are not invariant under a 2-transitive group. As shown by Ben-Sasson

et al. [23] random LDPC codes require a large number of queries in order to test for

membership, even though their dual may contain small weight functions (in fact they

may contain a basis of small weight functions.)

Implications Disproving the conjecture is a step toward a better understanding of

the structural properties that enable testing in algebraic settings. Our results here

can be stated as saying that for families F C {K " --+ F} where |KI - oc (in our case

m = 1,) affine invariance and the existence of a small weight dual function does not

imply local testing. This contrasts with the case when K is of fixed size [72]. Even

though the conjecture is false in general, it has the merit of identifying symmetry

(2-transitivity,) as a possible indicator of testability. This view has inspired positive

results in the same vein and has been expanded in subsequent works, including this

thesis.

1.4.2 Explicit structured testing in some BCH codes

Chapters 5 and Chapter 6 give partial answers to Question 2 described above. In

Chapter 5 we start our study of the single orbit characterization in BCH codes, by

presenting an explicit structured basis for the restricted family of BCH codes of design

distance 5. We also show that Reed Muller codes can be generated by an explicit

single orbit under the group AGL(1, 2"). Furthermore, the results of Chapter 6 imply

that general BCH codes can be generated by a single low weight codeword under the

affine group AGL(1, 2n), for some settings of the field size. Moreover, BCH codes

admit low weight single orbit generators even for slightly smaller groups, namely

under the linear (cyclic) group GL(1, 2').



Explicit succinct representation As far as we are aware, explicit single orbit

generators of low weight have only been known for families such as the Hadamard

code and Reed-Muller codes. For these codes the explicit description is to some extent

obvious: the tests are supported on affine subspaces, or on evenly spaced points on a

line ([33, 89, 7, 63, 69]).

We only show explicit single orbit generators of low weight in BCH codes of design

distance 5 (see Chapter 5). The novelty of this result lies in the fact that the support

of a single orbit generator under AGL(1, 2n) can be described by a fixed set of carefully

chosen univariate polynomials. This is a somewhat surprising uniform description of

such codes, as n grows. While this result is a modest contribution, we believe that the

question of finding fully explicit generators for BCH codes of general design distance

could open an interesting direction of further investigation.

Previous works Counting arguments using MacWilliams identities can show that

BCH codes of small design distance must contain small weight codewords. While BCH

codes are well-studied, only recently Kaufman and Litsyn [68] showed that these codes

have a basis of almost smallest weight codewords. Such a basis was however arbitrary

and unstructured and would require O( 2n) bits to specify. Our result gives a basis

that require only 0(n) bits to specify (i.e. the support of the generator of the single

orbit characterization.)

1.4.3 Sufficient conditions for structured testing

In Chapter 6 we attempt to answer Question 3 above and provide some more general

sufficient conditions for the existence of the single orbit property. We show that duals

of families F C {F 2. -> IF2} that are invariant under affine transformations of IF2n and

which contain a small number of codewords (namely, they are sparse,) must contain

a small weight function that generates a basis (under the action of the affine group).

See Figure 1.4.3 for an illustration of these families in a broader hierarchy. Hence,

we exhibit a general class of affine invariant families that admit structured testing.



We note that we can only show our result in some restricted settings of n, which are

implied by the number theoretic machinery that we make use of.

We also consider families that are cyclic invariant. Here we also show that duals

of sparse families that are invariant under the cyclic group must have a low weight

single orbit generator. Since a set of cyclic permutations is about a factor of 2"

smaller than. a set of affine permutation of a given word, this is a somewhat stronger

result. However, the settings of n for which it holds are more restrictive than before.

Settings of n Our results for affine invariant families hold when n is prime, a

condition that ensures that FT, does not have non-trivial subfields, as required by

Bourgain's number theoretic results that we employ. For the cyclic case, we addi-

tionally need that 2' - 1 does not have large divisors. This condition is satisfied

in particular when 2' - 1 is a Mersenne prime. We believe that our results should

hold regardless of these restrictions, however our approach could lead to more general

settings only if the number theoretic tools we use can be generalized.

1.5 Organization and credits

Credits This work has been written in collaboration with Tali Kaufman and Madhu

Sudan. Chapter 4 appeared in [60]; Chapter 6 appeared in [61]; Chapter 5 has not

appeared in published form.

Organization In Chapter 2 we introduce some basic definitions that we will use

throughout the thesis. In Chapter 3 we give polynomial descriptions of families that

are affine and cyclic invariant. We continue with presenting a counterexample to the

AKKLR conjecture in Chapter 4. We start our study of the single orbit property by

considering explicit tests for the common codes Hadamard, Reed Muller and some

BCH in Chapter 5. In Chapter 6 we present our general conditions for succinct

representation, and finally we describe some open problems in Chapter 7.



(a) primals

Figure 1-1: Relations among the families considered in this work. In (a): the
red/black sets represent non-testable/testable families, respectively. In (b): diagram
of the duals of families in (a). The red families also correspond to vector spaces that
do not have a basis of low weight vectors. T represents the counterexample to the
AKKLR conjecture from Chapter 4. C is a sparse, affine invariant family discussed
in Chapter 6.

1.6 Bibliographic notes

1.6.1 Testing various properties

The test for linearity [33] generated numerous works on improved analysis [20, 75,

62, 92, 95], and on further generalizations to higher degree polynomials. The initial

results [89, 15, 14] dealt with field sizes larger than the degree. More recently, low

degree polynomials have also been considered over small characteristic by Alon et

al. [7], and for other field sizes smaller than the degree, in works of Kaufman and

Ron [69] and Jutla et al. [63]. Many other results demonstrated improved parameters

for low degree tests in various settings [13, 48, 50, 90]. In graph properties, [53] also

opened up the way for a long list of notable works [2, 4, 9, 8, 34, 66, 55, 5, 35] that

considered different models and a wide range of related questions.

Another domain of interest has been in testing boolean functions. Testing dictator-

ships, juntas, monotonicity, sparsity are just a few examples in the vast literature in
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(b) duals



the area [86, 32, 43, 82, 58, 52, 47, 1]. Property testing has also been intensely

investigated in the setting of testing distributions. Some examples of properties

considered there are uniformity, statistical distance of pairs of distributions or en-

tropy [18, 17, 19, 97, 3]. For detailed surveys on developments on these aspects,

see [51, 87, 45, 78, 88].

1.6.2 Symmetries and testing

Assorted results Symmetry has been invoked rather implicitly in testing results

before the work of Kaufman and Sudan [72].

Graph testing in the dense model is one area where necessary and sufficient condi-

tions are well understood by now [5, 35]. An implicit feature of classes of graphs is

invariance under vertex relabeling. Their group of symmetries could be in fact much

larger. For example, the group of symmetries of the class of bipatite graphs includes

invariances under vertex removal or edge removal. In general, a graph property is

testable if and only if it is 'regularly reducible' - a notion that abstracts invariance

under a large group of actions on these graphs. This observation has motivated the

search for similar groups of symmetries in algebraic settings that could enable testing

applications.

Properties that are symmetric under data relabellings have been also considered in

testing distributions. In [97] Valiant considers such questions as testing the entropy

of distribution or testing closeness between distributions. Symmetry was studied in

cyclic codes by Babai et al. [16] to show that no good cyclic codes are testable.

Also Goldreich et al. [56] studied symmetric properties and showed bounds on the

randomness complexity of testing these families.

Kaufman and Sudan's results Symmetry has been singled out explicitly as a

common characteristic of known algebraic testable families only recently by Kaufman

and Sudan in [72]. There they focus on general algebraic families of function f :

Km -+ F, where K, F are finite fields and F is a subfield of K. Any such function is



in fact a special type of m-variate polynomial over K, which takes values only in F.

Affine/linear invariance restricts the monomials that may occur in these families, and

understanding monomial structure eventually leads to pinning down characteristics

of the dual generators of the family.

The general question of focus is how does the existence of a low weight function relate

to the existence of a low weight basis (characterization,) and furthermore to testing

in linear or in affine invariant families?

They show a few main results in this direction.

1. First, they prove that families F C {Km -+ F} whose duals admit a weight k

single orbit under affine/linear transformations of the domain K m can be tested

by tests of locality roughly k.

2. They then relate the existence of a low weight function to the existence of a low

weight single orbit. In families that are invariant under affine transformations of

the domain K m, the existence of a function of weight k implies the existence of a

single orbit of locality at most g(k, 1KI) = (k. K12)Jl 2 . Notice that this quantity

is independent of m, and it is constant when both k and |K| are constant. This

dependency was slightly improved by Lin et al. [79] to a quantity that is still

exponential in |Kl.

3. They also relate the existence of an arbitrary low weight basis (characterization)

to the existence of a low weight single orbit. In families that are invariant under

linear transformations of the domain Km a k-weight basis implies a g(k, 1KI)-

single orbit (under linear transformations).

This perspective unravels a unified view of case specific analyses for testing Hadamard

and Reed Muller codes [33, 89, 7, 63, 69], since these families do admit single orbit

generators of small weight. It also motivates our search for other families whose

testability is owed to the property that a low-weight single orbit generates the dual.



Chapter 2

Preliminaries

We start with some standard notation. [N] denotes the set {1, 2,..., N}. A finite

field of q = pt elements is denoted by Fq, where p is the prime characteristic of the

field; F* = Fq - {0}. A primitive element of a field Fq, denoted w, is such that

Fq {o, 1, w, w2, .. . , W- 2}. The inner product of two vectors x, y E Fn is denoted
n-1

by (X, y) = E xiyi. The inner product between two functions f, g : D -4 F 2 is
i=1

(f, g) = Z f(x)g(x). For a non-negative integer s, let bwt(s) be the binary weight
xED

of s (i.e., if s = E si 2 ' then bwt(s) = Z si.)

2.1 Algebraic properties

Algebraic properties An algebraic property is a collection of functions {f : D - R},

where D and R are finite of infinite domains and ranges. Most often D and R are

vector spaces over finite fields. In particular, D = K and R = F12 where K is

some finite extension of F. As it is the case in Property Testing, we study families of

algebraic properties indexed by n - oc, namely families Fn C {f : K"(n) 9 F12(n)}.

We will often drop the subscript n whenever the family is clear from the context.

In this thesis we focus on binary functions (R = F2) and on domains of size 2n or

2n - 1. This representation will also be useful at describing error-correcting codes,

our focus throughout this work.



Functions vs vectors A function f : D -- F 2 can be represented as a vector in the

following sense. Consider a fixed order of the elements in D, say ei, e2,... , e|D and

represent f by its evaluation table at these points, i.e. by the vector (f(ei), f(e 2),

. f.. , (elDI)). Similarly, given a binary vector of length N we view it as the evaluation

table of a function f : D - F 2 , with |D| = N. Throughout this work we will alternate

between these two equivalent descriptions of codes and families of functions without

further comment.

Linearity A property F C {f : D -± F 2} is linear if it satisfies the condition that, if

f, g E F then f + g E F. A linear property is essentially a vector space over F 2. A

basis for F is a set of functions (vectors) that generate it.

Dual of a linear property One can associate with every linear property F another

property, denoted the dual of F defined as follows:

F' = {g : D -± F2 1 (f, g) = f ()g(x) = 0 for all f E F}.
xED

Duals of linear properties are extremely useful objects in the context of property

testing. One is interested in particular in understanding their structure in terms of

functions of small weight.

Weight The weight of a function f : D - F2 denoted Wt(f) {x E DIf(x) / 0}|.

The relative weight is defined as wt(f) = wtf

Hamming distance The Hamming distance between f, g E F is defined as Wt(f -g).

Similarly, the relative Hamming distance between f, g is wt(f, g). For a function

g : D -+ F2 and property F = {fff : D -a F 2} the distance from f to F is

Dist(f, F) = minge.F Wt(f - g), and the relative distance from f to F is dist(f, F)

minger wt(f - g). We will most often use the notion of relative distance.



2.2 Error-correcting codes

Typically, an error-correcting code C over an alphabet E is defined as the image of

a function C that encodes a message m E E' into a codeword C(m) E EN. The

alphabet E is usually a finite field F, or a vector space over F.

In particular, one can now define the distance of C by A(C) = minci,c2 Ec Wt(ci - c2 )

and its relative distance by 6(C) = minc1 , 2 EC wt(Ci - C2). The dual of a linear code C

was also implicitly introduced in the previous section as C' = {y (y, c) = 0 Vc E C}.

2.3 Property testing and locally testable codes

We begin by defining 2-sided local testers, and then a 1-sided strong testers. The

former testers are used in our negative results, while the latter in the positive sufficient

testing conditions.

Definition 4 (k-local tester) For integer k and reals E2 > E1 > 0 and 6 > 0, a

(k, E1, E2, 6)-local test for a property F is a probabilistic algorithm that, given oracle

access to a function f E F, queries f on k locations (pro babilistically, possibly adap-

tively), and accepts f G F with probability at least 1 - c, while accepting functions f
that are 6-far from F with probability at most 1-62. Property F is called (k, 61, 62,6)-

locally testable if it has a (k, ei, 62, 6)-local test.

Given an ensemble of families F' ={ F}, we say F' is k-locally testable if there

exzist 0 < 61 < E2 and 6 > 0 such that for every n, F is (k, 61+0(1), 62-0(1), 6)-locally

testable (where the o(1) term goes to zero as n -- oo).

We will often drop the subscript n when this is clear from the context.

If both 61 > 0 and 62 > 0 then the tester is double-sided, else it is single sided. A

single-sided tester is perfect if it accepts every function f E F with probability 1.



A tester is called adaptive if the queries it makes are based on answers to previous

queries. Otherwise, namely when it can send all its queries at once, it is called

non-adaptive.

Definition 5 (strong k-local tester [57]) For integer k and real a > 0, a (k, a)-

strong local tester for a property F is a probabilistic algorithm that, given oracle access

to a function f G F, queries f on k locations (probabilistically, possibly adaptively),

and accepts f E F with probability at least 1, while accepting functions f that are

6-far from F with probability at most 1 - a - 6(f, F).

F is said to be strongly locally testable if there exist k < oc and a > 0 such that F is

(k, a)-locally testable.

Accordingly, we can define weak and strong Locally Testable Codes.

Definition 6 (Locally Testable Code-weak version) An error-correcting code C

is (k, ei, 62, 6)-locally testable for some integer k and reals E2 > E1 > 0 and 6 > 0, if

there exists a (k, El, 62, 6)-local tester for the property C.

Definition 7 (Locally Testable Code- strong version) An error-correcting code

C is (k, a)-locally testable for some integer k and real a > 0, if there exists a (k, a)-

local tester for the property C.

2.4 Invariance

Let F C {f : D -+ IF2 } be a family of binary functions and let G C {r : D -4 D} be a

set of transformations of the domain. A transformation w : D -± D is a permutation

if it is a bijection. We say that F is invariant under G if for every f E F and every

w E G it is the case that f o 7 E F, where for every x E D f o w(x) - f(7(x)).

Automorphism group The automorphism group of family/code F, denoted Aut(F),

is the group of all transformations 7 : [D] - [D] such that if c E C then c o - E C.



We are interested in families that are invariant under some well-studied groups (i.e.,

whose invariant groups contain some well-studied groups).

In particular we look at invariance under linear and affine groups, defined over a

domain of size p'. If eln then Fp'n Fne under addition, and one can consider a

series of nested linear/affine groups by viewing Fp, as a vector space over Fe for all

such e.

Most generally, the linear group acting on a domain of size pf when the domain is

seen as a vector space of dimension n/e over the subfield Fpe is

n/e-1

GL(n/e, pe) ={7 : Fpn + Ipn 7F(x) = aizx", Vai E IFn},

i=O

(see for e.g. [28].) A linear function w : F ' - F- n x) =Z() aix"" is a

permutation if and only if the ai's involved above are linearly independent over Fpe

(For a formal proof see Chapters 4 and 7 of [80].)

Similarly,

n/e-1

AGL(n/e, p') = {w: Fp, + IFpn1(X) = 3 aixz' + b, Vai, b E Fpn},
i=O

is the affine group acting on a domain of size p" when the domain is seen as a vector

space of dimension n/e over the subfield Fe.

These definitions are equivalent to the typical definitions of GL and AGL involving

matrix transformations. We choose these descriptions since they provide a concise

representation of all the linear/affine groups over a fixed domain size p".

Observe that if eie2 |n then

GL(1,p") C GL(n/(eie 2 ), p12) C GL(n/ei, p") C GL(n, e)



and similarly

AGL(1,p") C AGL(n/(eie 2),2 1 2) C AGL(n/ei, 21) C AGL(n, p).

In this work we focus on algebraic families that are invariant under the smallest such

linear/affine subgroups for p = 2, namely on GL(1, 2") and AGL(1, 2n), respectively.

In fact, the linear families that are invariant under the largest linear/affine group over

a domain of size 2n (i.e. GL(n, 2) and AGL(n, 2)) are well studied families of codes,

namely variants of Reed Muller codes [42, 72].

Definition 8 (Affine invariance) A function r : lF2n -± F2 n is an affine permuta-

tion if there exist a G F* and O3E Fn such that wr(x) = ax + b. A code C C JFN is

said to be affine invariant if the automorphism group of C contains the affine group

AGL(1, 2) ={7r(x) =ax + b, a E Fn, c F 2 n}.

Linear invariance under the group GL(1, 2n) is sometimes called cyclic invariance, due

to the fact that the codes invariant under this group have a cyclic structure. We stick

with this nomenclature hereafter.

Definition 9 (Cyclic/linear invariance) A function 7r : F*,, -4 F* is a cyclic

permutation if it is of the form 7(x) = ax for a E Fin. 1 A code C C JF-1 is said

to be cyclic invariant (or simply cyclic) if the automorphism group of C contains the

linear (cyclic) group GL(1, 2n) ={(X) = aX, a F*.}.

1Note that this is a permutation of F*. if the elements of F3. are enumerated as (w, w2  N-1

where w is a primitive element of F*22.



Chapter 3

Description of Cyclic/Affine

Invariant Linear Families

Cyclic/affine-invariant families admit nice representations as sets of univariate poly-

nomials. This description will be useful in our results and we start by making this

connection explicit. In the last part of this chapter we relate this description to the

classical representation of cyclic codes, as ideals in univariate rings of polynomials.

Notation Let N = 2' and we view elements c E IF as functions c: FN -4 12, and

similarly we view elements c E FN- as functions c : F*, - F 2 . For d E {1, ... , N-2},

let

orb(d) ={d, 2d (mod N - 1), 4d (mod N - 1),... , 2"-d (mod N - 1)}.

Also for a set D C [N] let orb(D) = UdEDorb(d). Notice that 2'd = 2id (mod N - 1)

iff 2i(2i-- - 1)d = 0 (mod 2' - 1), and recall that 2 - 1 |2" - 1 iff f | n. Therefore,

whenever n is prime lorb(d)| = n for all d, and otherwise there exists d such that

lorb(d)| < n. Let lorb(d) = d. Let min-orb(d) denote the smallest integer in orb(d),

and let

D = {min-orb(d) Id {1, ... , N - 2}} U {N - 1}.



For D C D let

PN,D {aO + adXd Iad E FN, 0, aN-1 E {0, 1}}, and

deD

PN-1,D Z d d ad GEFN, N-1 C {0, 1}}.
deD

Trace functions In general, for K = Fpte and F = Ft (with p prime) the trace

function of K over F is TraceK/F : K - F

TraceK/F(X) Xp' ± . + Xp3 -)t

In this work we only consider p = 2 and F = F 2, and from here on we will drop

the subscript in the trace to refer to the binary Trace : F 2n - F2 as Trace(x)

X + X2 + X22 +...+ x2n-1

In addition to the full trace, in this chapter we also make use of the truncated trace

defined for each positive degree d as Traced : FN - FN by

orb(d)|-1

Traced(x) = xz.
i=0

Properties of the Trace functions

1. The Trace functions are linear, i.e. Trace(a + 3) = Trace(a) +Trace(#) Va, E

FN, and Traced(a + 3) = Traced(a) + Traced (Q) Va, / E FN.

2. Another useful property is that Trace(a) = Trace(a2) for all a C F 2n, which

implies Trace(ax 2) = Trace(#x) for # = a2n-1, and all x E F2n.

3. While Traced could take values outside F 2, for c C F2 d the function Traced(cXd)

is a map FN F2. Indeed, since c2' = c and d2ed = d (mod N - 1), one can

check that (Traced(cXd))2 =(Ze (cd))2 =cx 2 d + cx" + . c22 rd2a =

4 (cXd)2 = Traced(cxd) for all x E FN.



4. For c E F 2 d it is the case that Trace(cxd) = 1 -Traced(cxd). Therefore,

Trace(cxd) {
Traced(czd)

if 4 is even
d

if ' is odd

The following lemma is the main property of the truncated trace that we exploit in

the following section.

Lemma 10 For every d C D and # C F2ed there exists a GEN such that Traced(#3xd)

Trace(axd).

Proof: Let L = 21d and notice that for each a E FN

Trace(axd)
n-1

= Z(aXd) 2 i

i=O

xd + a2X2d 2 d- d 2ed-1 2d d 2^-, d 2d-1

fd-1

S ((a aL aL 2 ±.+±2L(n/fd-1) d) 2'

i=O

= Traced(TraceFN/FL(a) d)

It is a well-known fact that the map TraceFN/FL : FN -FL is surjective. Indeed,

the polynomial TraceFN/FL (x) has degree 24-ed and it defines a linear map FN a FL-

Therefore its kernel has size at most 2"- d and hence each element in FL could be the

image of a cosets of size at most 2 4n- d. Therefore, each element of FL is the image of

some element in FN-

Finally, this implies that for every # E FL, there exists a E FN such that TraceFN/FL (a)

#. It now follows that Traced(#Xd) =Traced(TraceFN/FL (a)Xd) =Trace(aXd), which

concludes the proof.

I



3.1 Cyclic-invariant families

In this section we will show the following formal description of cyclic-invariant fami-

lies.

Proposition 11 [Description of Cyclic-Invariant Families] For every cyclic invari-

ant family C C {IIF*--> F 2 } there exists a (unique) set D C D such that C

{Trace(p)|p c PN-1,D}. Conversely, every arbitrary set D C D corresponds to a

cyclic invariant family C ={Trace(p)|p c PN,D}. We say that the set D uniquely

describes the family C.

We begin by describing binary functions defined over F 2 -: they are polynomials with

monomial degrees closed under multiplication by 2.

Lemma 12 For every word w : FN - F2 (respectively w : -F*v IF2) there is a

unique polynomial p G PN,D (respectively p e PN-1,D) such that w(x) = Trace(p(x)).

Proof: Every function w : FN I FN is a polynomial, and thus we can write w(x)

uniquely as cix for some coefficients ci E FN. The condition that w(a) E {o, 1}

for every a E FN, yields some constraints on ci. In particular we have w(a)2 = w(a)

for every a E FN and so w(X) 2 = w(X) (mod XN - x). But w(X) 2 = -1 c24X

and so, equating coefficients we have, co co, CN-1 - CN-1 (thus cO, CN-1 E F2), and

moreover c2i (mod N-1) = c for every i E {1,... , N 2}.

In particular, for d E D - {N - 1} we must have cd 2ed(mod N-1) Xd-2d cdXd and thus

cd =cd2d(mod N1) C2ed implying Cd E F 2ed for all d E D - {N - 1}.



Thus,

N-i

w(x) = : c X (3.1)
i=O

= 0 + CN- 1 X N-I + Traced(cdXd) (3.2)
dCD-{N-1}

- Trace(cox 0 ) + Trace(cN- 1XN-1) + Traced(Cdxd) (33)
dED-{N-1}

= Trace(cox 0 ) + Trace(cN-1XN-1) + Trace(cdXd) (3.4)
dED-{N-1}

= Trace( c'Xod), (3.5)
dEDU{O}}

for some c' CE FNVd E D - {N - 1} and c' = co,c' 1  = cN-1 Equation 3.2

follows from writing the set {0, ... ,N - 1} (the set of degrees of x) as {0, N -

1} U (UdeD-{N-1}orb(d)), where the sets orb(d) are disjoint. Equation 3.3 follows by

noticing that coxo and cN-XN- 1 belong to IF2 for all x C EFN, and thus Trace(cixi) =

cizi (i E {0, N - 1}). Equation 3.4 is implied by Lemma 10, and finally equation 3.5

follows by the linearity of the trace function.

This concludes the proof for the case of functions mapping FN to F 2. For the case of

functions w : IF*-- F 2, the proof is similar except we start by writing w uniquely as

N Ci (and So 1 N-1 plays the role of the constant function 1). i

Lemma 13 Suppose C C {IF* - F2 } is a cyclic invariant code containing the word

w = Trace(p(x)) for p E PN-1,D. Then, for every monomial xe in the support of

p, the function Trace(xe) is in C. Moreover, if e z N - 1 then for every 3 C FN,

Trace(xe) E C.

Proof: The proof is essentially from [72]. Since their proof is a bit more complex

(and considers a more general class of functions and non-prime n), we include the

proof in our setting for completeness.

Let p(x) = EdED cdXd, where cN-1 C {0, 1} and let w(x) = Trace(p(x)). Fix e in

the support of p. We first consider the case e # N - 1. We wish to show that



Trace(#xe) is in C for every # C FN. Note that for every a E F*v, w(ax) is in C (by

the cyclic invariance). Furthermore, the function C Trace(c-e)w(ax) is also in

C (by linearity). But as we show below this term is simply Trace(cexe).

S Trace(a-e)w (ax) = Trace(a-e)Trace(p(ax))
aEF* aEF*

n-1 /n-1

-e-2i 2 d-2" d-2"(E E ea ) (f C~ d Cexd )

ae F* j=0 i=0 d ED

n-1 n-1

C 2'xd-2' d-2'-e-2i

j=O i=0 dED aEF*N

Recall that EF* a1 is 0 if t # 0(modN - 1) and 1 if t = 0. So we conclude

that the innermost sum is non-zero only if d - 2 = e - 2i (modN - 1) which in turn

happens only when d = e and j = i (since both d, e E D - {N - 1}). We conclude

SiTrace(a-e)w(ax) = En-1 cf Xe.2' = Trace(cexe).

Finally, we need to show that Trace(Oxe) is also in C. To see this, consider the set

S C FN defined as S = {y|Trace(ceyxe) C C}. We know S is non-empty (since 1 c S),

S is closed under addition, and if #G S, then so is / - (e for every ( C FN. Thus,

in particular, S contains the set T {p(we)|p E F2[x]} where w is the multiplicative

generator of IF*. T is again closed under addition and also under multiplication and

so is a subfield of FN. Finally it includes We as an element and so T = IFN (the only

strict subfield of FN is F2 which does not contain We for e E D). We thus conclude

that both S and T equal FN and so for every / E FN, Trace(Oxe) E C.

It now only remains to consider the case e = N - 1. By hypothesis CN-1 = 1 in this

case. Thus we consider the simpler function E,,, w(ax) which is also in C. It can

be argued as above that this function equals cN-1xN-1 _ N-1 = Trace(xN-1). This

concludes the analysis. I

Observation 14 Lemma 13 also holds for affine invariant families. Indeed, we only

used the facts that C is linear, and that w(ax) is in C for every a C FN-



Proof of Proposition 11: Let D be the set of all integers d E D such that there

is some polynomial p E PN-1,, with positive support on the monomial Xd such that

Trace(p) c C. By Lemma 13 we have that every function Trace(#xd) E C for every

# E FN, if d V {,N - 1}.

Conversely, any arbitrary set of degrees D E D determines the code C {Trace(p(x)) Ip

PN-1,D}. It is easy to notice that this code is cyclic invariant, since Trace(p(ax)) C

C, WE FN-

I

3.2 Affine-invariant families

We can now explicitly describe affine invariant families. These families are also char-

acterized by a set of degrees, but this set has an additional closure property.

Shadow of degree For non-negative integers d and e we say e is in the shadow of

d, denoted e -< d, if in the binary representations d = Zi dj2' and e = EK ei2 with

di, ej E {0, 1}, it is the case that ej < di for every i. The shadow of a positive integer

d, denote Ad, is the set {ele I d}. The shadow of a set of non-negative integers D,

denoted AD, is the set {ele - d for some d E D}. For D C D we say that D is

shadow-closed if (AD) n D = D.

We will also need the following widely known fact.

n-1 n-1
Fact 15 (Lucas identity) For 0 < d, e < 2n - 2 and d = E dj22, e = ej2

i=O i=O

(d) (mod 2)= ... .
eO ei eni

Hence

)(mod 2)= if e d

0 if e d.



In this section we will show the following structural statement.

Proposition 16 [Description of Affine Invariant Families! For every affine invariant

family C C {FN - IF2 } there exists a (unique) shadow-closed set D C D such that

C = {Trace(p)|p e PN,D}. Conversely, every shadow-closed set D C D corresponds to

an affine invariant family C = {Trace(p) p E PN,D }. We say that the set D uniquely

describes the family C.

We start with following lemma.

Lemma 17 If C is an affine-invariant code, Trace(xd) e C and e -< d then Trace(xe) C

C.

Proof: Since Trace(xd) E C and C is affine invariant, then Trace((x + I)d) c C. But

by Lucas' formula (x + I)d =Esc (d)Xe - 'e. Therefore, Trace(E xe) E C
e--<d

and by Observation 14 Trace(xe) E C. I

Proof of Proposition 16: The first part of the proof is similar to the proof of the

cyclic case. Let D be the set of all integers d E D such that there is some polynomial

p E PN,D with positive support on the monomial xd such that Trace(p) E C. By

Observation 14 we have that every function Trace(&xd) c C for every / C IFN, if

d V {0, N - 1}. Furthermore since Trace((x + I)d) is also in C, it follows that the

constant function 1 is also in C. We conclude that the traces of all the polynomials

in PN,D are in C.

By Lemma 17 it follows that for all e E AD Trace(xe) E C. Thus it must be that

D -AD.

Conversely, we verify that for any shadow-closed set D C D, the family

C = {Trace(p(x)) I p E PN,D}



is affine invariant. Indeed, for p(x)= EdED pdXd and Trace(p(x)) E C, it follows that

Trace(p(ax + b)) = Trace (ZPd(ax+b)) =Trace (Pd I (d)
aeD (dD O<e<d

= Trace I: Pd E a bd-eXe

\dED 0-<e-<d/

= Trace I: E pdae b -e)e

\ e dED : e-b<d

=(Trace E pda" b d-exe.

e \dED : e- d/

In the above we used Lucas' formula from Fact 15 and the linearity of the trace

function. Now recall that D = AD n D and therefore the terms Trace(axe), with

e E D belong to C. Finally, examining the remaining terms, these are monomials

of degrees e such that e < d for some d E D and e V D. Therefore, e E orb(e')

for some e' c D, and e e'2' for some k. But Trace(axe) = Trace(ax2ke')

Trace(a2-kX2ne') Trace(a2 -kXe') which belongs to C.

3.3 Cyclic/affine codes as polynomial ideals

We mention that a common description of cyclic/affine invariant codes is as polyno-

mial ideals. While we do not use this description, we comment on these alternate

definitions here in order to make the connection between our results and the literature

on these well-studied codes. For more detail see for example [81].

Alternate description of cyclic codes A vector in v C FN-1 can be abstracted

as a polynomial pv(X) C F2 [X/x(N-1 - 1), where pv(x) = E -2 vizi. A cyclic code

C can be represented as an ideal in F2[x]/(XN- - 1) generated by a polynomial

generator g(x). That is, a polynomial p, represents a codeword if and only if pv =

ae bd-eXe)



gh mod xN-1 - 1, for some h C F2 [x]. The roots of g(x) in IFN uniquely describe the

code, and bear a one-to-one relationship to the degrees D that characterize the dual

code C' in the sense described in Proposition 11. Namely, the roots of g are exactly

the field elements wd, where w is a fixed primitive element of FN and d E orb(D).

Alternate description of affine invariant codes A vector v E IF can be ab-

stracted as a polynomial pv(X) E F2 [x]/(XN - x), where p,(x) = EN vizi. An affine

invariant code C is the extension of a cyclic code by a parity bit. It is also the ideal

generated by a polynomial a E FI2[x]/(XN - x) whose roots are in a one-to-one cor-

respondence to the set D that characterizes the affine code CL. Namely, the roots of

a(x) are {0} and the elements wd, where d E orb(D). The cyclic code whose extension

is the affine invariant code characterized by the set of degrees D has the same set of

roots, except possibly 0.

3.4 Bibliographic notes

Affine codes (and cyclic codes whose extensions are affine invariant) received a lot of

attention in the 1970s and we mention here a few notable results.

Limitations to building good codes In [64] Kasami shows that affine invariant

codes for which the distance is linear with respect to growing block length must have

vanishing rate. McEliece [83] however prove that there are arbitrarily long non-linear

good codes (i.e. codes of constant rate and relative distance).

Automorphism groups and structure of affine invariant codes Structural

properties of affine invariant codes were initially described in [65]. Delsarte [42]

studied codes that are invariant under subgroups of AGL(n, p). These families include

in particular affine codes of length p' (since these are invariant under AGL(1, p").)

He proved that the only linear codes over an alphabet IF, invariant under AGL(n, p)

are the Reed Muller codes (this is also proved in [72]). Affine invariant codes could



have larger automorphism groups than just AGL(1, p"). Berger [27] showed that the

automorphism groups of affine invariant codes are in fact subgroups of AGL(p, n).

More recently Berger and Charpin [28] completely characterized the automorphism

groups of many affine invariant families, by explicitly describing their elements as

special types of polynomials. Interestingly, they were able to fully characterize the

automorphism group of BCH codes, and identified exceptions to the common case

when the automorphism group is just AGL(1, pf).



Chapter 4

2-Transitivity is Insufficient for

Local Testability

In this section we start our study of sufficient conditions for testing, by presenting a

negative result. We show that families that are invariant under a 2-transitive group

and whose duals contain a small-weight function are not necessarily testable. This

disproves a conjecture made by Alon et al. in [7] (denoted here as the AKKLR

conjecture.) We start with the definition of 2-transitivity.

Definition 18 (2-Transitivity) A group G of permutations mapping D to D is 2-

transitive if for every x, x', y, y' E D such that x # y and x' # y', there exists 7r E G

such that 7(x) = x' and r(y) = y'.

Abusing notation slightly, we say that F is 2-transitive if Aut(F) is 2-transitive.

By now, it has become folklore that having a low-weight function in the dual code is

a trivial necessary condition for testability. Indeed, the following result of Ben-Sasson

et al. [23] formalizes the fact that any test for a linear property reduces to picking

dual functions and checking a linear condition. If the dual family contains only large

weight function, no local test exists.



Theorem 19 ([23, Theorem 3.3]) Let f= {F- }n be a linear property that is k-

locally testable. Then F is k-locally testable by a non-adaptive, perfect tester. Specif-

ically, if F is (k, 61, 62,6)-locally testable, then F is (k,0, 62 - 1, 6)-locally testable

by a non-adaptive, perfect tester. Moreover, if f is the given word, the test checks if

( f, v) = 0 for v G F1-, where v has support of size at most k.

Theorem 19 will be very useful in presenting our counterexample to the AKKLR

conjecture. It implies that in order to rule out any test for linear properties (even

adaptive or 2-sided error tests) it is enough to rule out non-adaptive, perfect testers.

4.1 The conjecture

We now formally state the AKKLR-conjecture.

Conjecture 20 ([7]) For every d E N, there exists k = k(d) < oc such that the

following holds: Let F = {F} be an ensemble of properties such that for every n,

1. Ft has a non-zero function of weight at most d, and

2. F, is 2-transitive.

Then F is k-locally testable.

We disprove this conjecture in the following formal statement.

Theorem 21 For every k < oc, there is an ensemble of domains {D,}n and an

ensemble of properties F = {Fn}n such that the following hold:

1. For every n, Fn has a non-zero function of weight at most 8.

2. For every n, Fn is 2-transitive.

3. F is not k-locally testable.



As pointed out earlier, we plan to prove this theorem by ruling out a restrictive class

of tests that are non-adaptive and perfect and then using Theorem 19. However to

use that theorem we need to ensure that our property is linear. The following theorem

gives the more technical result that we show.

Theorem 22 For every k < oo, there is an ensemble of domains {D,}, and an

ensemble of properties F = {.F}n such that the following hold:

1. F is linear.

2. For every n, F' has a non-zero function of weight at most 8.

3. For every n, F, is 2-transitive.

4. F is not k-locally testable by a non-adaptive, perfect tester.

Note that Theorem 21 follows immediately by combining Theorem 22 and Theo-

rem 19. In the rest of this chapter we focus on Theorem 22.

4.2 The counterexample, basic properties, and proof

ideas

Our counterexample family comes from a the broad class of affine invariant prop-

erties introduced by Kaufman and Sudan [72]. Indeed, as we prove next, every

affine-invariant family is 2-transitive. This observation reveals a large collection of

2-transitive families that can be further explored in the context of the conjecture.

Proposition 23 For every field K and integer n, the set of affine permutations from

"- K" is 2-transitive.



Proof: It suffices to prove that for every x 1 , x2 , Y1, Y2 E K" with x1 # x2 and

Y1 = Y2, there exists an affine permutation A : Kn -+ Kn such that A(xi) = yi and

A(x 2 ) = Y2. Let A be given by A(x) = Mx + b where M e K" fl and b e K". The

condition that it be a permutation implies M should be non-singular, and satisfy

M(Xi - X2) = Y1 - Y2, while b = y1 - Mxi. It is easy to see that a non-singular M

satisfying M(Xi - X2 ) = Y1 - Y2 exists. i

Let K =IF2. and N = 2 .

Recall from Chapter 3 the definition of the set Dn = {min-orb(d) I d E {1,. .. , N -

2}} U {N - 1}. Let Dk,n be the set of degrees

Dk,n={2'+1|0<i<k}U{1}, andDQ, =DODkn.

Recall also that PN,D' is the set of polynomials supported on the monomials with

degrees in D' and coefficients in FN.

The counterexample The family that we focus on in this chapter is

F*,, = {Trace(p(x)) I p(x) E PN,D}-

Proposition 24 *, is linear, and affine-invariant.

Proof: The proof is immediate from the description of affine-invariant families

shown in Chapter 3. i

As we will prove later, Fe*, is also a strict subfamily of the common Reed-Muller

codes of order 2 (RM(2, n)), for k < [n/2]. The dual of therefore contains the

dual of RM(2, n). Since RM(2, n) has small weight codewords (in fact codewords of

weight 8) the small dual distance of F, comes for free.

The main insight of the proof is the fact that a small number of queries cannot

distinguish F* from RM(2, n). In other words, a codeword of RM(2, n) is accepted

with probability 1 by tests that only employ a number of queries t < k - 1. Since the



distance between codewords of RM(2, n) is large (i.e. RM(2, n) is a code of constant

distance), it follows that there is a word w such that w E RM(2, n) - F* that is

accepted by any t-query test, a contradiction. Hence, for every k there exists F*~n,

which, even though it does contain functions of low weight, it is not testable with k

queries. As a consequence, for k = w(1) (think of t as, say ~ log n), F cannot be

tested with tests of constant locality.

We establish a basic property of our counterexample family, which will be useful in

arguing that F*, is distinct from RM(2, n).

Lemma 25 For every t<rn-1, F* c Fn*+1,n. If t < [n/2] then T** 2 Ft*1,n-

Proof: The proof of the first containment follows from the definition. The second

part can be derived from, for instance, [81, Chapter 9, Theorem 7]. For the sake of

completeness we include a proof here.

We claim that for distinct 1 < i, j < n/2, the functions Tr(X2z+1) and Tr(X2 1+ 1) have

disjoint support, when viewed as polynomials of degree at most 2n - 1. This suffices,

since it implies that the function Tr(x 2+1) V -F*_ 1,n. We prove the claim below.

Note that the function Tr(x2 +1) has support on the monomials xA for d = 2'+' +

2e(mod2n - 1) and similarly Tr(X2 4 1) is supported by the monomials Xd for d =

2j+m + 2m(mod2n - 1) (here we use the phrase mod non-conventionally to refer to

the unique integer in [2" - 1] from the equivalence class). Suppose for contradiction

that 2ie + 21 = 2j+m + 2m (mod2" - 1). Then, by multiplying both sides by 2s-£

and reducing modulo 2" - 1, we see that we have 2' + 1 = 2j+m' + 2m'(mod2n - 1)

(where m' = m - f). Now we consider two cases: If m' < n/2, then the unique

integer between 1 and 2n - 1 equal to 2j+m' + 2'(mod2" - 1) is 2j+m' + 2"'. But

then 2j+m' + 2"' ± 2 1 unless m' = 0 and i = j (violating distinctness of i and

j). In the other case, if m' > n/2, then the unique integer in [2' - 1] equal to

2"' + 2j+ ' > 2n/2 > 22 + 1. So again the modular equivalence can not hold. This

proves the claim, and thus the lemma. I



Linearized polynomials On a technical level, the main proof uses properties of

so-called linearized polynomials and employs simple algebraic arguments.

A linearized polynomial of degree 2 d is a mapping L : F2n - F2. defined by

d

L(x) =( lix 2'.
i=O

The Trace function and the Traced function are particular examples of linearized

polynomials. Notice that L(O) = 0 and if a, # E FN are roots of L, then a + # is a

root of L. It follows that the kernel of L is a subspace of dimension at most d, an

observation that will be useful in the proof.

4.3 Proof of main theorem

4.3.1 Reed-Muller of Order d families

As already discussed, the counterexample family defined above is included in RM

codes of order 2. This is not immediately obvious from the usual definition of RM

codes as low degree polynomials.

Definition 26

RM(d, n) = {f: F' F2| = ad,d 2 ..,dnxi 2 .. , ai E IF2 , with Sdi < d}.

Notice that it is enough to consider di E {0, 1}, since over F 2 X' = x for i > 2. In

this section we give an alternative definition and first show how that is equivalent to

Definition 26.

Definition 27

C(d, n) = {f : IF2n -a F2 f(x) = Trace( bixdi), bi C F2n, with bwt(d) < d.}

Lemma 28 Definition 26 and 27 describe the same family.



Proof: Let w be a primitive element of F2 and consider the bijection i : F' -4 F2-

given by 7(Xi, ... , xz) = Z O ziw2 .

To show that RM(d, n) C C(d, n) it is enough to show that every monomial x1 X2 ... Xn

can be written as a univariate polynomial from C(d, n), and then use the linearity

property of the two families.

We first show that for every i, there exists ac E F2n such that Trace(aix) = xi, where

Srxzi, ... , X). Indeed, since Fn ~ F2n, there exists a bijection between the set of

linear transformations mapping Fi n F2 (i.e. L = {LA(x)= A-x, A C F"X"l}) to the

set of linear functions mapping F2n -+ F 2 (i.e. E2 = {l(X) = Trace(ax), a E F 2 n}-)

The map (xi, ... , x,) -+ xi is a linear transformation in E1, and hence it follows that

there exists ac E F2n such that xi = Trace(aix) and so RM(1, n) C C(1, n).

Using this observation, we next show that the polynomial di d2 can be expressed

as a polynomial of the form Trace(p(x)) (with x= 7(X 1 , x 2, - -. , Xn)) such that each

monomial degree in p has binary weight at most 2.

n-1 n-1

1 2  Trace (ax)Trace(a2x) (E (i (E (2) )
i=O j=0 i,j

n-1

( 2  1 2 )X2 +23  _ Z2 (1+2-)2+
i=0 j>i i j>i

1 S> ((aiad + 2d a2)X1 = Trace((iad + a a 2)i+2d)
d=O i d=O

n-1

= Trace Y(a + a a2)±l+2d
d=O

Hence, RM(2, n) C C(2, n). A simple inductive argument implies x, ... Xn E C(d, n),

for all d.

To show that C(d, n) C RM(d, n) it is enough to prove that Trace(az -01 di 2 ), with

E di < d, can be expressed as a multivariate polynomial from RM(d, n). Let L =

{ifldi / O} = (li, .. . , lILI}, thus |LI < d. Let (xi, . . . , x) = - 1(x) and let I = {ilix /



o}.

It follows that

n-1 2

= : ae ( x w i)2

j=0 l1EL iEI

Trace(axi=oZ ) 2

n-1

j=Z

n-1

i1,i2 EL I

-XS ( --Ll) Trace(p(w))

E RM(dn),

where p(x) = a Ez
I., |IEI

_= t2't, and recall that Xi E IF2, Vi.

The following proposition is an immediate consequence of Lemma 28

Proposition 29 For every t < n, Ft*, C RM(2, n).

We will further need the following notation. For points xO, x1, . , xf E F2n, define

A(xo; x 1,..., xj) to be the affine subspace generated by x1,..., xj through xo. I.e.,

A(xo; x 1 ,... , xj) = {xo + 1 a . , a E F2}.

We now note the fact that RM(2, n) has weight 8 functions in its dual.

Proposition 30 For n > 3, RM(2, n)' contains weight 8 functions.

Proof: We will show that all f E C(2, n) = RM(2, n) satisfy the 'RM(2, n)' con-

straint EzEA(xo;x1,X2,X3) f(z) = 0 for every xO, X1, x 2 , x 3 E F2n.

Using the linearity of the Trace function (Trace(x + y) = Trace(x) + Trace(y)) we

note that it suffices to show that every f E {Trace(3), Trace(0ox), Trace(0 1x21 +1,

... , Trace(#kx2k+1)} satisfies the above constraint, for all 0 < k < n - 1.

(aj=O
E

ill .. iLIEI

ZILI i 21t)

(il,---,ijLjCIXil 
... XiILIW 

_t=l it2't



For f = Trace(#) and f = Trace(#ox) this is straightforward, since f(x + y) =

f (x) + f (y) and so the zEA(xo;xiX 2 X3 ) f(z) = 8f (xo) + 4f (x1) + 4f(x2 ) + 4f(x3) = 0

(since we are performing the arithmetic modulo 2).

Now consider Trace(#x 2'+1). We will show that EzEA(xo;xi,.x.,X3) 22+1 - 0. It then

follows that EZ Trace(z 2 +1) = Trace(0(E, z2 +1)) = Trace(0) = 0. Note further

that (x + y) 2 +l = x2'+1 + y2'+1 + x2'y + y2x. Using this expansion we have:

E z2i+1

zEA(XoXi,...,X3)

Y, w T+1 + W+X)2'+1

wcA (xO i,X2 )

= (wx +w 2 x 3 +x +1
wCA(xo;x ,X2)

=x E
wEA(xO;x1,X2)

w + x 3  E
wEA(Xo;Xi,X2)

= x (4xo + 2x1 + 2x2) + x3 (4X + 2x2 + 2')

=0

We will also need to show that the codewords of RM(2, n) are far away from each

other.

Proposition 31 For every f f g E RM(2, n), 6(f, g) > 1/7.

Proof: Consider any function f E RM(2, n) and let h be such that 6(f, h) < 1/14.

We claim that h uniquely specifies f. In particular, the algorithm: Pick x1, x 2, x 3

at random and output EzeA(x;zix,2,X3 ) h(z), outputs f(x) with probability at least

1 - 76(f, h) > 1/2 and thus defines f uniquely.

We thus conclude that there can not exist f, g E RM(2, n) such that o(f, g) < 1/7.

I

w + 0



4.3.2 Key lemma

Finally we move to the main lemma of the paper. The goal of this section is to prove

the following lemma.

Lemma 32 (Main Lemma) Suppose g G (T*,,)' has weight t < k. Then g G

RM(2, n)'.

To prove this lemma we first state three useful sub-lemmas, which yield the main

lemma easily. We prove the sub-lemmas later.

The sub-lemmas refer to a positive integer m and the set U {(i, j)10 < i < j <

m or i = j 0}. Note that |UI = 1 + ("21). We also use bo to denote the zero of

F2fl.

Lemma 33 Let a1,..., at E F 2 - be such that Yi f(ai) = 0 for every f E 7 .

Further, suppose there exists g e RM(2, n) such that j:= g(ai) -f 0. Then there

exists m < t, T2 -linearly independent elements b1 , .. . , bm E 72n, and a non-zero

vector (Ai)(1j)EU G jFpu such that E( , )eu Aif (bi + bj) = 0, for every f E F*.

Lemma 34 Suppose b1,..., b, G IF2. are F2 -linearly independent elements, and

KAj)(ij)cu c ]Flu' is a non-zero vector such that EZ(,j)Eu Aif (bi + bj) = 0 for every

f C F*,n. Then there exists a non-empty set E C {<i,j)|1 i < j < m} such that

for every d E [k] it is the case that (ij)E (b +( b db) 0.

Finally we show that the conclusion of the previous lemma implies that m > k + 1.

Lemma 35 Suppose b1,..., b, E F2 are F2 -linearly independent elements and sup-

pose E C {(i,j)|1 i < j m} is a non-empty set such that for every d E [k],

Zbije (bj + b dbi) 0. Then m > k + 1.W(i,j)EE

We first show that Lemma 32 follows from the three sublemmas.



Proof: (of Lemma 32) Let h E (T*n)' and suppose h V RM(2, n)'. We wish

to show t > k. (We actually show t > k + 1, but we state the weaker bound for

notational simplicity.)

Let a 1, ... , at C F2 , be the points such that h(ai) = 1. By definition of (Tn)' we

have that 0 = EZxEF2n f-(x)hl) X f(a). Since h ( RM(2, n)', there must exist

a function g E RM(2, n) such that E _i g(ai) # 0. Using Lemma 33 we get that

there exist m < t, linearly independent points bi, ... , bm E F2n, and a non-zero vector

(1 i)(j)E E FluI such that E(ij),u Aijf(bi-+bj) = 0 for every f E Fk,, where bo = 0.

Applying Lemma 34 we get that there exists a non-empty set E G {(i, j)|1 i <

j m} such that for every d e [k] we have E(ij)EE (bfby + bfdb) = 0. Applying

Lemma 35 we then get that m > k and thus t > m > k as desired. I

We now turn to proving the three sub-lemmas. Again the crucial result here is

Lemma 35 and the other two are just to pin the problem down.

Proof: (of Lemma 33) Let bi, . . . , bm be the largest linearly independent subset of

points among ai,..., at and let g E RM(2, n) be the function satisfying E' g(aj) #
0.

We first claim that for every function f (E Fkn at least one of the following must

hold: (1) f(0) $ g(0), or (2) there exists i E [m] such that f(bi) / g(bi), or (3) there

exist (i, j) e [m] x [m] such that f(bi + by) # g(b. + by). To see this claim, assume

otherwise, for some f E n Note that we can prove, by induction on the size of

the set S, that for every set S C [m] we have f(EiS) =g( s bi). Indeed, this

is obviously true for |S| < 2. Now consider a set S = T U {i, j} where i,j ' T. Let



b = EET be. Now note that

f(b+bi + bj)

= f(O) + f(b) + f(bj) + f(bj) + f(b+ bj)

+ f(b + b) + f(bi + b )

= g(O) + g(b) + g(bi) + g(bj) + g(b + bi)

+g(b+b) +g(bi +b)

=g(b + bi + bj ),

where the first and third inequalities follow from the fact that both f, g E RM(2, n)

while the middle equality is by induction. But then, we have that f and g agree on

the entire subspace, which contradicts the fact that E= f(ai) # Et= g(ai). Hence

our claim must be true.

Consider the set V {(f(b + bj))(ij)Eu f E Tkn}. V is a linear subspace of F1u

since F*, is a linear subspace; but V / Flu' (since in particular (g(bi + by))()EU

Thus there must be a non-trivial constraint (KAj)(,j)Eu such that every vector x E V

satisfies E( .)EU Aixj = 0. This yields the lemma. i

Proof: (of Lemma 34) We use the basis functions to establish this lemma. Let

bo, bi, . . . , bm and (KA) be as given.

This proof also relies on the linearity of the the Trace function, and the additional

fact that Trace(ax) = 0 for every x E TF2n if and only if a = 0. (This is easily seen

since Trace(ax) is a non-zero polynomial of degree 2f--1 in x, if a $ 0.)

First consider the constant function 1 = Trace(#) for some 3 C F2n. Since Trace(#) E

-k*n we have Ej Ai = E>2 AijTrace(#) = 0, and thus A00 = (ij)cU-(,o) Ai.

Next we consider the functions Trace(030x) C Fkn. We have 0 = E Ai3Trace(o(bi+

bj)) = Trace (#0 Ei2 j Ai3(bi + bj)). Using the aforementioned property of the Trace

function, we have that the above identity holds for every #o E IF2n only if gj Aj (bi +

bj) = 0. Let T = Ej A + E i A. (For simplicity of notation below, we will



assume A2j = Ar.) Then we have 0 = Ei,, A (bi + bj) - Eo r bi = E i ribi (where

the last equality follows from bo = 0). But bi, ... , bm are linearly independent over

F2 and ri, A23 c F2 , so the only way Ei ribi = 0 is ifri = 0 for every i. Thus we get

Aoi = E 0 A32 for every i E [m]

Finally we consider Trace(#dx2d+1) E F for d E [k]. We have

0 = 1A 2 Trace (/d(bi + by)2d+) = Trace #3d A (bi + bj)2d+)

Again, we have that the above identity holds for every #d E F2 n only if Zi Aj (bi +

- \d l 2 d+l 2 d l 2 d
b )2+ =-0. Expanding (x-+ y)2+ as xd+ +±yd+ +±x y +y yd,we get

0 = A bid+1 + + b± + bbj + bib d

S Tibd+1 + ( A (bdb + bib 2d
i=1 isi<jsm

S S (b2d b + bib 2 d),
(ij)E

where E= {(i, j)|1 < i < j < m s.t. A3  0} as required for the lemma statement.

The only remaining issue is to show that E # 0.

We claim that if E = 0 we have Aij 0 for every i, j. For i,j ; 1 this follows from

the definition of E. For i 0 and j = 0 this follows from the identity above that

Aoi = =A3  0. For i =j 0, we also have A00 = E(j)EU-(oo) A = 0. But this

contradicts the hypothesis that (Aij) / 0, and so we conclude E $ 0. i

Proof: (of Lemma 35) This is the crux of our analysis and uses a mix of linear

and polynomial algebra arguments. Assume for contradiction that m < k + 1.

Recall we are given that for every d C [k] E(ij)CE(bldb + bib,2d) = 0. Note further

that we also trivially have this condition for d = 0, since y(ij)EE(b2dbj + biby2d) -

b(ij)EE +b) (ij)cE 0.



For i E [m], let pi = E{jl(i'j) or (ji)EE} bj. Then we can rewrite Z(i,j)CE(b dbj + bibj2 d

as E' pib2d and so we have, for every d E {0, 1,.. . , k} as E' , pib2d = 0.

Consider the m x m matrix A = (ai3 ) with aig b . Then the previous paragraph

implies that A -p = 0 for the column vector p (pi, ... , pm). (In particular, we have

that the ith entry of A -p equals Ej_1 b> p4 which is 0 for every i E {1, ... , k +1} 2

{l .7 ... , M }.)

Next we note that p # 0. This is true since for at least one i c [in] the summation

Z{j(i,j) or (j,i)EE} bj sums over a non-empty set of indices j (since E 1 0). But now

the linear independence of bi,... , bm over IF2 implies that the summation, and hence

pi, is non-zero.

We conclude that the matrix A is singular. We now use this fact to infer that

A has a non-zero vector in its left kernel, i.e., there exists a non-zero row vector

A = (Ai,... , Am) such that AA = 0. But now consider the polynomial A(x)

E2l Aix . Using this notation, we have AA = (A(bi),... ,A(bm)). Thus the con-

dition AA 0 implies that A(b4) = 0 for every j E {, . . , m}.

But now, we have that A(x) is a non-zero polynomial (since A is a non-zero vector), of

degree at most 2m-1. Furthermore A is a linearized polynomial and satisfies A(x+y) =

A(x) +A(y). This implies that A(bs) = 0 for every S C [m], where bs Z Eies bi. The

linear independence of b1 , ... , bm furthermore implies that the bs's are all distinct and

thus we get that A is a non-zero polynomial of degree at most 2m-' with 2m distinct

roots, yielding the desired contradiction. i

4.3.3 Putting it together

We now use the main lemma of the previous subsection to claim that membership

in F*,1 is not testable with a strong k-local test (i.e. non-adaptive, one sided error).

This part is more or less standard and follows, for instance, from the methods in [23].

We include the full details for completeness.



We first summarize our arguments from the previous section in a slightly more con-

venient form.

Lemma 36 Fix ai,... ,at E F 2n. For f : F2n -± F2 let 7(f) = 7a.,...,at(f)

(f(a1),..., f(at)) be the projection of f to a1,..., at. Let V C F2 be the set V =

{(f)f E Tk*n}, and let W = {(f) |f C RM(2, n)}. If t < k, then V W.

Proof: We first note that V and W are linear subspaces of Ft. This follows from

the fact that F*, and RM(2, n) are linear spaces. Since F*C & RM(2, n), it also

follows that V C W. Suppose V # W. Then it follows, by linear algebra, that there

exist vectors u, w E Ft such that u - = 0 for every v c V, u - w z 0 and w C W.

Since w C W there exists h E RM(2, n) such that w = -(h). Let a', ... , a', be the

subsequence of ai, ... , at corresponding to indices i such that ui f 0. Then we have

i h(a') = 1 while EI f(a') = 0 for every f E Fk*,. By Lemma 32 we have

t > t' > k.

I

We can now prove Theorem 22.

Proof: (of Theorem 22) For every n, the domain D, = IF2. For every n, the

family of functions we work with is F = -F*,n.

First note, by Proposition 30 that for every n, FT has a non-zero function in its

dual of weight 8. Next, by Proposition 24 we also have that F, is affine invariant

and thus (by Proposition 23) 2-transitive. It remains to show that F is not k-locally

testable. Assume F is t-locally testable, i.e., for all sufficiently large n there is a

one-sided error, non-adaptive, tester T = Tr, that accepts every member of F, while

rejecting all functions at distance at least, say, 1/7 from F with positive probability.

We argue below that this can not happen if t < k and n > 2k + 1.

Suppose t < k. Fix the coins of T to some string R and let a1,..., at E 7 2 n be the

queries of the tester T on random string R. Let 7r, V and W be as in the statement



of Lemma 36. Since the tester makes one-sided error, it follows that it must accept

every pattern in V (i.e., accepts every function f such that ir(f) E V). By Lemma 36

we have V = W and so the tester accepts every element of RM(2, n) also on random

string R. Thus we get that every element of RM(2, n) is accepted with probability

one by the tester T. Since RM(2, n) # T*,, for k < Ln/2] (Lemma 25) there exists

a function h E RM(2, n) - F*, that is accepted with probability one. Furthermore,

by the distance of RM(2,n) (Proposition 31) and the fact that F* C RM(2, n),

we have that 6(h, * ) > 1/7. We conclude that the tester T accepts functions at

distance 1/7 from F* with probability one, violating the requirement above. I

4.4 Discussion

As mentioned in the introduction, our results here show the existence of families F*,

whose duals contain weight 8 functions but any basis must contain functions of weight

> k - 2. This is enough to show that for growing k these families are not testable

(hence, they are not weakly testable in the sense of Definition 6.)

A stronger variant of the AKKLR conjecture considers 2-transitive families that are

spanned by low weight functions. In this case one can also consider the strong testa-

bility notion from Definition 7. In that notion any codeword that does not belong to

the code is rejected with some non-zero probability. Note that in order for the test

to reject codewords that are very close to the code it must be the case that the code

is spanned by low-weight codewords.

We now formally state a stronger variant of the AKKLR-conjecture which considers

families whose duals have a basis of low weight rather than just small distance (See

also [21].)

Conjecture 37 (variant of AKKLR) For every d E N, there exists k = k(d) < oo

such that the following holds: Let F = {F}n be an ensemble of properties such that

for every n,



1. Fi is spanned by fntions of weight at most d, and

2. F, is 2-transitive.

Then F is k-locally testable.

We remark that this variant remains open and it leads to similar conjectures for other

groups of symmetries (such as affine, cyclic, or less-explicit abelian or non-abelian

groups.)



Chapter 5

Explicit Structured Testing in

Common Algebraic Families

In this chapter we focus on explicit and succinct representations of common algebraic

families, two properties which imply nice testing applications, namely structured test-

ing. We show the existence of explicit structured tests for BCH codes of design dis-

tance 5 (i.e. BCH(2, n), for any n) and the novelty of this result lies in the fact that

the support of the test can be described by a fixed set of carefully chosen univariate

polynomials.

As described in the introduction, explicitness and succinctness are motivated by the

recent results of Kaufman and Sudan [72], who identified 'the single orbit property'

as a source of sufficient conditions for testing. A family exhibiting the single orbit

property can be generated as a vector space by one function of small weight and all

its translates under permutations in its automorphism group.

An immediate consequence of the single orbit property is that it implies a succinct

description of the family, in the following sense. To specify a vector space one needs to

specify a set of basis vectors, which could amount to specifying dN log N bits (where

N is the length of a vector, and d is the dimension of the vector space). However,

when the vector space has a single orbit generator of small weight, then it can be

specified by the support of this generator, i.e. by O(log N) bits.



Let us discuss explicitness and succinctness for Reed-Muller codes of order 1, i.e. the

family of n-variate polynomials over IF2 of total degree at most 1 (A similar argument

was shown in the introduction for the Hadamard code, which is linear invariant under

GL(n, 2) but not affine invariant under AGL(n, 2)). A set of explicit tests for such

families is supported on 4-tuples from the set S {(a, b, c, a + b + c) a, b, c E F2}. It

is well-known that this set of tests contains a basis for the dual of RM(1, n). Why

does RM(1, n)' have the single orbit property? Consider the function f supported

on T1 = (0, ei, e2, ei + e2), where ej is the standard ith basis vector over Fn. One

can easily check that any 4-tuples (a, b, c, a + b + c) in S can be obtained from T

as (a, b, c, a + b + c) = (7(0), w(ei), 7(e 2), w(ei + e2)) for some i : Fn - IFn with

7(x) = Ax+a, and A E Fnn. Thus f is a single orbit generator for RM(1, n)' under

the group AGL(n, 2).

In this chapter we will see that RM(1, n)' (and in fact the more general RM(d, n)')

has a single orbit generator under a much smaller group of invariances, namely

AGL(1, 2"). This observation requires viewing these codes as univariate polynomials

over F2n (rather than n-variate polynomials over F2.) In particular, if w E F 2. is a

primitive element and 72= (0, 1, w, 1 + w) then RM(1, n)' is generated by the set of

all functions supported at (7(0), 7(1), -(w), -(1 + w)), with 7 E AGL(1, 2n).

In the next chapter we study what families, other than Hadamard, Reed Muller,

and eBCH(2, n) exhibit the single orbit property under the group AGL(1, 2n). Those

results exhibit a large class of families that admit structured tests. There we do

not insist on fully explicit tests to the extent of specifying the relations between the

elements of the support of a generator. In fact such descriptive level might be hard

(if possible) to achieve in that general setting.

Regarding our techniques, we first analyze sufficient conditions for a family to exhibit

the single orbit property, in terms of certain 'diagonal' systems of equations. These

equations bear a resemblance to the equations arising in the so-called Waring problem.

A version of the Waring problem studies ways to express a polynomial as sums of d-th

powers of some special polynomials. Our explicit description is inspired by old results



of Paley [85] from the 1930s on the Waring problem. There he describes families of

explicit polynomials that satisfy conditions similar to those required by the single

orbit property.

5.1 Definitions and main result

Definition 38 (k-Single Orbit) Let F {D - F2} be a linear collection of func-

tions from D to F2 for some domain D. Let G be a group of functions from D to D.

Then F is said to have the k-single orbit property under the group G if there exists

f G F with wt(f) < k such that F = Span({f o irlir e G}). We say that f is a

k-single orbit generator for F.

We note that in [72] the single-orbit property under the affine group is described as

'formal characterization'.

Definition 39 (Structured Tester) Let P be such that its dual has a k-single orbit

generator g under a group G. A structured tester for P, given a function f : (1) picks

,r c G uniformly at random, and (2) accepts if (f, g o ir) = 0, otherwise it rejects.

When the group of symmetries is an affine group of permutations of the domain,

the results of [72] show that the dual family is testable by a structured tester. We

state the theorem in the form we need it here and refer to Appendix A for comments

regarding the original form from [72].

Theorem 40 ([72]) If F {F2n -± F2} is linear and has the k-single orbit prop-

erty under the affine group AGL(1, 2"), then F' is (k, Q(1/k 2 ))-locally testable by a

structured tester.

BCH codes We next define BCH codes and mention a few of their properties.

BCH codes have many alternative and equivalent definitions, for example as subfield



subcodes of Reed Solomon codes with BCH(t, n) being the subfield subcodes of RS

codes of degree N - 2t -1. They are also commonly defined as cyclic codes whose roots

satisfy certain relations. Here we use their representation as evaluations of univariate

polynomials, and it is more convenient for us to define them by first defining their

duals.

Definition 41 (BCH code) For every pair of integers n and t, the (binary) dual-

BCH code with parameters n and t, denoted BCH(t, n)' C 2 1 consists of the

evaluations of traces of polynomials of degree 2t over F* .Le.,

BCH(t, n)-L {(Trace(f (a)))C If E F 2 n[x], deg(f) < 2t}

The BCH code BCH(t,n) is simply the dual of BCH(t,n)L.

eBCH(t, n) is the extension of BCH(t, n) by a parity check bit. That is, eBCH(t, n)

is the evaluation of the same polynomials, over the entire domain F2n. The design

minimum distance of BCH(t, n) is 2t + 1 and the minimum distance of eBCH(t, n) is

2t + 2.

We can now state the main result of this chapter.

Theorem 42 For any n, there exists ae E F2n - F2 such that the function supported

at

(0, 1, 1 + a4, ae + a2 + a4, a2 + as3 + ae 4, a + as3 + a 4)

is 1 a 6-single orbit generator for eBCH(2, n) under the affine group AGL(1, 2").

Corollary 43 eBCH'(2, n) is (6, Q(1))-locally testable by an explicit structured tester.

As mentioned, we also describe an explicit structured test (by presenting a single

orbit generator under the group AGL(1, 2n),) for general RM codes.

1A variant of these polynomials were suggested in [85] in relation to a problem of Waring.



5.2 Sufficient conditions for single orbit

First recall from Chapter 3 that for d {1, ... , 2 - 2}, orb(d) = {d, 2d (mod 2n -

1), 4d (mod 2" - 1), . . ., 2'-Id (mod 2 -- 1)}, min-orb(d) denotes the smallest integer

in orb(d), and D {min-orb(d) I d c {1,... , 2 - 2}} U {2"n - 1}. Also recall that As

denotes the shadow of degree s. Hereafter, in this chapter affine invariance refers to

invariance under the group AGL(1, 2n). We will make use of the characterization of

affine invariant properties by a set of degrees D C D as stated in Proposition 16.

The following lemma is the main tool in proving our theorem.

Lemma 44 Let F E {F2n -± F 2} be an affine invariant family, and let D be the set

of degrees that describe F. If for some (a1, a2,..., ak) E Fk the following conditions

hold

k
1. E a'= 0 for all d E D

i=1

k
2. Eai +1 # 0 for all 2'+1 CD-D

i=1

k

3. Ea' # 0 for all s E D - D with bwt(s) > 3 for which As - {s} C D,
i=1

then F' has the k -single orbit property with a generator g supported at (a1, a2 ,... , ak).

We first show a simple lemma.

Lemma 45 Let F E {F 2n -+ F 2 } be an affine invariant family and let D be the set of

degrees that describe F. Then a function g supported at (a1, a2 ,..., ak) E IFk belongs

to F' if and only if
k

Sad = 0 for all d E D.
i=1



Proof: By definition, F = {Trace(EdED adxd), ad E IF2 n}. Then g E F' if and
k

only if for any f E F, (f, g) 0, that is Z f(ai) = 0. Let f,(x) = Trace(axd) E F,
i=1

k k k
for some a C F2n. Then 0 E f,(ai) E Trace(aa d) = Trace(a Z ag). Since

i=1 i=1 i=1
k

fa E F for all a E F, it follows that for =E a the previous identity holds if and
i=1

only if Trace(#a) = 0 for all a E F2n. But the function Trace(#x) is linear, and it is

identically null only when # 0, which concludes the proof.

I

Proof of Lemma 44: By Lemma 45, condition 1 immediately implies that g E F'.

We will show that F' is the smallest affine invariant family that contains g. Notice

that if g belongs to some affine invariant family then the set {gor, E AGL(1, 2")} be-

longs to that family, and by linearity, the set of functions Span{go w, 7 E AGL(1, 2")}

is included in the family as well. Therefore, g is a single orbit generator for the small-

est affine invariant family that contains it, which will conclude the proof.

Assume for the sake of contradiction that g E C C F' and C is affine invariant. Then

F C C', and let D' C D be the shadow-closed set of degrees that characterizes C',

i.e. C' {Trace(EdED adxd), ad EE F2n), }. Since g C C, by Lemma 45 we must
k

have Za = 0 for all d E D', where by assumption D C D'. Since D' is shadow
i=1

closed it follows that all the weight 2 shadows of degrees d e D' also belong to D'.
k

By condition 2, Z a $ 0 if 21 + 1 V D, which implies that D' does not contain
i=1

any extra weight 2 degrees than those in D. Hence the degrees in D' are of the form

d = 21 + 22 + ... + 2 + 1such that 2i + I E D for all i, j If D # D', any

affine invariant family with degrees of this form must contain some degree s such

that As - {s} E D. Since g satisfies condition 3 it must be the case that E2 a' f 0.

Hence, since s E D' by Lemma 45 g V C, a contradiction.

We next show a simple application of the above lemma.



5.2.1 A warm-up: explicit single orbit for the eBCH(1, n)

Proposition 46 Let w be a primitive element of F2n. Then the function supported

on (0, 1, w, 1 + w) is a 4-single orbit generator for eBCH(1, n).

Proof: Notice that the set of degrees that characterizes eBCH(1, n)l is D = {1}.

Then condition 1 of Lemma 44 is trivially satisfied. Also condition 3 is vacuously

satisfied, since if bwt(s) > 3 then As - s gt D.

To verify condition 2, notice that 1 + w2'+1 + (1 + w)2'+1 = w + w2'+1 # 0. Indeed,

otherwise w2'-1 = 1, which would imply that w belongs to a subfield of size 2e,

contradicting the assumption that w is a primitive element. I

Corollary 47 If n is prime, then eBCH(1, n) is the only affine invariant family that

contains functions of weight at most 4.

Proof: Proposition 46 implies that eBCH(1, n) satisfies the corollary. Suppose that

C is another affine invariant family which contains a function f of weight at most 4,

and whose dual is characterized by a set of integer degrees D.

Assume that the support of f is {0, 1, a, 1 + a}, for some a 0 F2 . As shown in

Lemma 44, any degree d E D must satisfy 0 1 + 1d + ad + (1 + a)d = 0. If D contains

degrees of binary weight at least 2, since D is shadow closed it must contain a degree

of binary weight 2. If 21 + 1 E D then by the same argument as in the proof of

Proposition 46 it follows that a E F21 , a contradiction to the fact that F2n does not

contain non-trivial subfields.

It remains to argue the case when {0, 1} is not included in the support of f. Let

ai, a2, a3, a4 belong to the support of f. Then there exists a permutation 7r E

AGL(1, 2") such that wr(ai) = 0 and 7r(a 2)= 1. Then the function f o 7r supported at

7r(ai),7r(a 2),7r(a 3 ),7r(a 4) also belongs to C, and hence this case reduces to the above

case.

I



5.3 Explicit single orbit for the eBCH(2, n)

In this section we prove our main theorem. As a by-product of our method we show

an explicit single orbit under AGL(1, 2n) for general RM codes.

Proof of Theorem 42: Notice that D = {1, 3} is the set of degrees that char-

acterizes eBCH(2, n)'. We will show that there exists a c F2- such that ai = 0,

a 2 =1, a3 = 1+ a 4, a4 =aOZ +a 2 + a 4, a5 = a 2 + a 3 + a4 , a6 = a + a - a4 , satisfy

the conditions of Lemma 44 and therefore they form the support of a 6-single orbit

generator for eBCH(2, n).

One can easily check that there is no s C D - D with bwt(s) > 3 such that As -s C D,

and hence condition 3 is vacuously satisfied.

We now proceed to verify condition 2. To that end, for each 2 < f < Ln/2] + 1 define

the polynomial

Pi(x) 1 + (1 + x4)21+1 + (X + X2 + X4 )21+1 (2 - 3 + x4)2+1 + (Xx3 + X + X4)+1.

Also let,
Ln/2J +1

Q~x = 1 Pf (x)
f=2

We will argue that Q(x) is not identically 0 over F2n, which implies the existence of

an a # 0, 1 such that Q(a) # 0, and concludes the proof.

First notice that the degree in each P is at most 4(2k + 1), and thus the total degree

of Q is at most 4 (2n/2+1 + 1)n/2 < 2n - 1, for large enough n. Hence, no degree is

too large to wrap around modulo x 2 1 - x and cause cancellations with smaller degree

terms from the expansion of Q.

Secondly, we argue that each factor is a non-zero polynomial. Hence the product of

minimum degree monomials in each P results in a non-zero term of Q(x) that cannot

be canceled by other terms in the expansion. Indeed, one can easily check that the

minimum degree monomial in each P is X2'+2. Therefore, the monomial of degree



Ln/2J +1

E 2'+2 < 2n/2+3 + n < 2" - 1 is the minimum degree term of Q in the expansion.
e=2

Since Q(x) is a non-zero polynomial over F24 , there must exist a E F2n such that

Q(a) # 0 and thus Pe(a) # 0 for all 2 < f < [n/2j + 1. To finish the proof of

condition 2 of Lemma 44, notice that for f > [n/2] + 1 it is the case that 2f +1 D.

Indeed, for f > [n/2] + 1, 2f + 1 = 2' + 2n = 2f(1 + 24 -)(mod 2n - 1) and therefore

2 + 1 E orb(2n- + 1). In fact there are at least 2" - 1 - 2n/2+3 - n a's that satisfy

the conditions of Lemma 44.

5.4 Explicit single orbit for RM(d, n)'

We will need a generalization of Lucas' identities to multinomial coefficients.

First recall that for d, ei, .. .<,ek 2" -2 with Zf_1 ej < d the multinomial coefficient

( d d d-e1 d-e1-e2-..--e /-1
1i,e2,---,k e1/ e2 ek

Fact 48 (Generalized Lucas identity)

n-1
and e= E eij 23 . Then

j=0

d
mod 2

For d, el, . . ., ek < 2n - 2 with d =

n- 1

(eij e2 , ..
Sekj)

k

if Z eij < d

otherwise.

V 0<j <n-1

Theorem 49 For large enough n and integer d > 1, there exists a E F2n such that

the function supported at

(Span{1, a, a 2 ,.. .,ad}),

n-1

Z di2'
i=O

(e
Hence

( dei, e2,.

r1
2

0
) mod



is a 2d+1-sirngle orbit generator for RM(d, n)' under the group AGL(1, 2n).

Proof: We proceed with proving that condition 1 of Lemma 44 is satisfied. Recall

Definition 27 of RM(d, n) from Chapter 4, and the fact these codes are characterized

by the set of degrees D(d) = {j bwt(j) < d, j # 0}. Since RM(1, n) is equivalent

to eBCH'(1, n) and we proved this case in Proposition 46, it is enough to consider

d > 2. In this case condition 2 of the lemma becomes vacuously satisfied.

Condition 1 of the lemma is standard (and holds for any a, and in fact for any support

of dimension at most d+ 1), but we include its proof here for the sake of completeness

(similar arguments appear for example in [81], Chapter 12.) We prove it by induction

on d. Ford= 1, 0+1+a+(1+a) = 0. Let A(a, l) = Span{1, a, a 2,..., a'}. Assume

that for any a and any d' < d it is the case that E #r = 0 for all bwt(r) < d'.
I3eA(a,d')

We show that Z #e 0 for all f with bwt(f) < d. Notice that
#cA(a,d)

Z o z (of +±(o3±ad)f) Zf ( +± (Pr od WYr
73EA(a,d) /3EA(a,d-1) /3&A(a,d-1) \ r (! /

zf + Z r/3 d - r(Cef r
EAa~/1 /3EA(a,d-1) r-<e,r<e

(O Z~d)ir (ofr (Od3 -r
rE EA(a,d-1) r4,r<f

=0.

In the above we used Lucas' identity from Chapter 3 and, since r - £, r < f im-

plies bwt(s) < d - 1 we used the identities given by the induction hypothesis. This

concludes the proof for condition 1.

To show condition 3, notice that the set S = {s|As - s c D} n D = {sbwt(s) =

d+ 1} nD. The existence of a satisfying the theorem follows from an argument similar

to the one made in the proof of Theorem 42.

We need to define some notation first. For the purpose of this proof let {0, 1, ... , d}



be denoted by [0, d]. For s E S, such that bwt(s) = d + 1, and T C [0, d] (T # 0) let

the polynomial qT(x) = KIT Xz and let

PS(x) = 5:
TC[O,d]

q(x) 8 .

We first show that P, is a non-identically zero polynomial, by exhibiting a non-

canceling degree. Let s - 280 + 281 + ... + 2Sd, with s 0 < si < ... < Sd.

Then

PS(x ) S qT (x)
TC [O,d]

TC[O,d]
j

Ji±.. ±jITI

where T = {io, i ... . iiT|}. By the generalized Lucas' identities, a multinomial ( "8)
is non-zero only when j, -< s for all 1 < 1 < t and for any 1, m it is the case that

juj + jmi < si for all 0 < i < d. In other words, this multinomial is non-zero if there

exists a function 7r : [0, d] -+ T such that jZ =Z( 1 2', for all 1 < 1 < |TI. Also,

each function -r : [0, d] -4 T gives rise to a set of degrees i, ... , jt s.t. (j 7.) = 1.

Let FT be the set of all functions 7r : [0, d] -- T.

Hence,

TC[Od] jl+...+jITi=s

TC[O,d] 1rC.FT t

0,..JTI)

2r
re~r-

1
t

X i1j1±+ZilTljlTI

Suppose now that |TI < d and for some 7r E T T let the formal degree 2 QT, =

Zt E 2".
tET rE7r- 1

(t)

Let T C T' and - E FT. Then there exists a unique -r' E F, such that 7' = 7r

2by formal we mean that the terms in the summation are exactly the same

PS(xW

=s \ 1, - - - , T|/l



(on the entire domain [0, d].) This implies that the formal degree QT,, appears in

Equation 5.1 exactly once for each set T' D T, hence it will be counted an even

number of times, and thus every such degree vanishes.

The only monomials that remain in the summation are those degrees of the form

Q[O,d],, where 7 C F[Od] is a bijection. It is now clear that the degree Q = EcO'd] i2si

is the maximum degree of P(x) and it is uniquely obtained. This concludes that

P,(x) is a non-trivial polynomial of degree at most s -d. Since s E D this implies that

s < 2 d dn+d. Indeed, one can notice that max min-orb(e) is a degree f' whose
bwt(f)<d+1

binary representation contains consecutive 1's (mod 2' - 1) at distance roughly d

from each other.

Finally, define the polynomial

L(x) = f Ps(x).
seS

To argue that L(x) is a non-null polynomial, we argue that its total degree is at

most 2' - 1 and thus no further cancellation can occur from taking modulo x - x.

To conclude the proof, notice that the sum of maximum degrees in each Ps(x) is a

unique degree of L and hence it cannot cancel. Hence, L's total degree is at most

Q)d 2 ddln+d < 2" - 1 for some n large enough.

I



Chapter 6

Succinct Representation of Codes

with Applications to Testing

In the previous chapter we motivated and introduced the single orbit property, and

we showed explicit single orbit tests for a few common families of codes. Since this

property leads to succinct representations and to nice testing results, namely struc-

tured testing, it is important to understand when it is the case that low weight single

orbit generators can be encountered in more general settings.

In this chapter we describe our main results in this direction by presenting a set

of sufficient conditions that imply single orbit under the affine group AGL(1, 2"). In

addition we study an even smaller group of permutations, namely permutations under

the linear group GL(1, 2n). We remark that in this section we are not concerned with

providing explicit support for the generators of our families. Our results here focus

on families where it appears to be hard to exhibit such fully explicit tests. We also

note that while single orbit under affine invariance implies structured testing, there

are no known testing implications for families whose duals have single orbit under

cyclic groups.

Again, we concentrate on families of binary functions over the domain FT,. Our first

result states that if a family is affine invariant and it contains only a polynomial

number of functions (i.e. it is 'sparse') then its dual is generated by a function of



low weight and by its permutations under the affine group. We require that n be

prime, a technical consequence of results from number theory that we make use of.

These families of functions correspond to codes of very small rate (i.e. poly n/2")

and large relative distance (i.e. 1/2 - 2 nE.) Therefore their duals are very dense

codes, and as it turns out they have very small distance. Our results imply that the

duals of sparse, affine invariant codes can be specified succinctly by only 0(n) bits

- the support elements of a generator. Notice that the dimension of such a dual is

Q(2'), and hence a priory in order to specify it one would need to describe Q(2n)

basis vectors.

Cyclic invariance is a generalization of affine invariance. Every punctured affine-

invariant code (i.e. puncturing means removing one coordinate) is a cyclic code. It is

also common to define a cyclic code as an ideal generated by a univariate polynomial

in F2 [x], as commented in Chapter 3. Such an ideal generator exactly corresponds to

a generator of the code as a vector space. Hence, every cyclic family has a single-orbit

generator function, but it may not have a low weight single orbit generator.

Our results here consider functions defined over the domain F*,. We show that duals

of sparse, cyclic invariant families are also generated by a small weight function. In

this case we require that not only n be prime, but also 2" -1 have no large non-trivial

divisors (in particular Mersenne primes satisfy this condition.)

An immediate application of our results is in the study of BCH codes. Since the

duals of BCH codes (and eBCH codes) are sparse and cyclic (or affine, respectively)

invariant it follows that BCH (and eBCH) codes are generated by a small weight

codeword. These findings improve on the previous state of knowledge regarding their

structure in terms of their low weight codewords.

As previously discussed, the single orbit property has applications in testing. In par-

ticular, our results imply that general sparse, affine invariant families are testable by

strong, structured testers. This gives a large class of testable properties that contains

the Hadamard and dual-BCH codes. Our results lead to a couple of conjectures which,

if true, would complete the characterization of testable affine invariant properties.



6.1 Main results and implications

First recall the definition of the single orbit property (Definition 38 from Chapter 5.)

Also, we will use N = 2". We now state our results more formally. Our first result

considers affine-invariant families.

Theorem 50 (Single orbit property in affine-invariant families) For every t

> 0 there exists a k = k(t) such that for every prime n the following holds. Let

C C {lF2n - F 2 } be a linear affine-invariant family containing at most 2"nt functions.

Then C' has the k-single orbit property under the affine group AGL(1, 2").

Next we state our main theorem for cyclic families. We present it here in a general

form and then we mention an immediate corollary.

Theorem 51 (Single orbit property in cyclic families) For every t and e > 0

there exists a k = k(t, e) such that the following holds. Let n be a prime such that

2n - 1 does not have nontrivial divisors larger than 2"(1--). Let C C {F 2 n -± F2} be a

linear, cyclic invariant family with at most 2nt functions. Then C' has the k-single

orbit property under the cyclic group GL(1, 2").

We remark that the condition that 2' - 1 does not have large divisors implies that,

if 2" - 1 is not a prime then all its prime divisors are somewhat large (larger than

24n,) and in particular 2" - 1 has only a few prime divisors. The following corollary

is a simple consequence of our theorem.

Corollary 52 (Single orbit property in cyclic families) For every t there ex-

ists a k = k(t) such that the following holds. Let n be such that 2' - 1 is prime. Let

C C {IF2n -+ F2} be a linear, cyclic invariant family with at most 2 nt functions. Then

C' has the k-single orbit property under the cyclic group.

It is not known if there are infinitely many n such that 2n - 1 is prime. Nevertheless,

as things stand, the question of whether the number of such primes is infinite or not

is unresolved (and indeed there are conjectures suggesting there are infinitely many

such primes).



6.1.1 Implications to property testing

As mentioned in Chapter 5, it follows from the work of [72] that codes with a single

local orbit under the affine symmetry group are locally testable.

Our main theorem, Theorem 50, when combined with Theorem 40 (stated in Chap-

ter 5,) immediately yields the following implication for sparse affine invariant families.

Corollary 53 For every constant t there exists a constant k such that if C C {F2"-1l

F 2} is a linear, affine-invariant family with at most 2" functions, then C is (k, Q(1/ k2))_

locally testable by a structured tester.

6.1.2 Implications to BCH codes

In addition to the implications for the testability of sparse affine-invariant fami-

lies/codes, our results also give new structural insight into the classical BCH codes.

Even though these codes have been around a long time, and used often in the CS

literature, some very basic questions about them are little understood.

Recall from Chapter 5 that BCH(t, n)' = {(Trace(f(a)))EFn If E 7 2 n[x], deg(f) <

2t} and BCH(t, n) ={(Trace(f (a)))aeFn If E IF2 [x],deg(f) < 2" - 2t - 1}.

In the previous chapter we showed an explicit single orbit basis for the restricted

family of BCH(2, n) codes. While explicitness would be a nice feature to exhibit in

general BCH codes, we do not address this question here. However, in this chapter

we make progress in showing the existence of a succinct basis consisting of affine

transformations (and in some cases cyclic transformations) of a low-weight function

for BCH codes.

Corollary 54 For every t there exists a k such that for all prime n, eBCH(t, n) has

the k-single orbit property under the affine group.

The above follows from Theorem 50 using the observation that eBCH(t, n)' is sparse

(has NO(t) codewords) and affine invariant.



Corollary 55 For every t and c, there exists a k such that for all n prime such that

2n - 1 does not contain any nontrivial divisors larger than 2*0--0, BCH(t, n) has the

k-single orbit property under the cyclic group.

The above follows from Theorem 51 using the observation that BCH(t, n)' is sparse

(has NO(t) codewords) and cyclic invariant.

Finally, we point out that the need for various parameters being prime or having small

divisors (n and 2n - 1, respectively) is a consequence of the application of some recent

results in additive number theory that we use to show that certain codes have very

high distance. We do not believe such assumptions ought to be necessary, however we

do not see any immediate path to resolving the "stronger" number-theoretic questions

that would arise by allowing n to be non-prime.

6.2 Overview of techniques and helpful lemmas

Our main theorems are proved essentially by implementing the following plan:

1. Using the description of affine and cyclic invariant families as polynomials (from

Chapter 3), we notice that sparse codes correspond to Traces of sparse polyno-

mials.

2. We then apply the recent results in additive number theory to conclude that

these families have very high distance. This already suffices to show that sparse

affine-invariant families are testable by [71]. However the tests given there are

arbitrary and we need to work further to get structured tests for these families,

or to show the single-orbit condition.

3. The final, and the novel part of this work, is to show by a counting argument,

that there exists one (in fact many) low-weight functions in the dual of the

functions we consider such that their orbit spans the dual.



In order to elaborate on these steps, we will need to recall some definitions Chapter 3.

For d E {1, ... , N-2}, orb(d) - {d, 2d(mod N-1), 4d(mod N-1), ... , 2n-ld(mod N-

1)} and min-orb(d) denotes the smallest integer in orb(d). Also D = {min-orb(d) I d E

{1,.. ., N-2}} U{N- 1}, and

PN,D = {aO E d ad C IFN, aO, aN-1 E (0, 1}},

dcD

and PN-1,D cdX dI ad E FN, N-1 E {o, 1}}.
deD

Also recall the description of cyclic and affine invariant families from Propositions 11

and 16. Namely, every cyclic family is characterized by a set D C D such that c E C

if and only if there exists a polynomial p E PN-1,D such that c(x) = Trace(p(x)) for

every x E F* . Similarly, every affine invariant family is described by a set of degrees

D C D such that c E C if and only if there exists a polynomial p E PN,D such that

c(x) = Trace(p(x)) for every x E FN.

The first part of the proof is described by the next lemma.

Lemma 56 For every cyclic-invariant family C C {F* -* F2} with |C | N', the set

of degrees D C D that characterizes C satisfies |D| < t.

Similarly, for every affine-invariant code C {IFN -- IF2} of cardinality Nt, the set

of degrees D that characterizes C satisfies |D| I t and D C {1, ... , N1 -1/t}.

Thus in both cases the families/codes are represented by collections of t-sparse poly-

nomials. And in the affine-invariant case, these are also somewhat low-degree poly-

nomials. In what follows we use CN(D) to denote the code {Trace(p(x))|p E PN,D}

and CN-1(D) to denote the code {Trace(p(x))|p E PN-1,D}-

Bourgain's bounds We next use a (small variant of a) theorem due to Bour-

gain [36] to conclude that the families CN(D) and CN- 1(D) have very high distance

(under the given conditions on D).



Theorem 57 ([36]) For every c > 0 and r < o0, there is a 6 = 6(e, r) > 0 such

that for every prime n the following holds. Let N = 2" and F= FN and let f(x)

zr axki e F[x] with ai E IF, satisfy

1. 1 < ki < N - 1

2. gcd(ki, N - 1) < N E for every 1 < i < r

3. gcd(k - kj, N - 1) < N for every 1 i j r

Then

(--)nace(f (x)) < N1-6.
XEF

We note that strictly speaking, [36, Theorem 7], only considers the case where N

is prime, and considers the sum of any character from F to the complexes (not just

(- 1)nace()). We note that the proof extends to cases where N = 2' where n is prime

as well. We comment on the places where the proof in [36] (and related papers) have

to be changed to get the result in our case, in Section 6.5. The proof of Bourgain's

theorem uses a heavy number theoretic machinery and recent results in additive

combinatorics, and it builds on similar results for even sparser polynomials [37, 40, 38].

In our language the above theorem implies that functions represented by traces of

sparse polynomials of somewhat low-degree have many non-zeros. Even when the

degree is large, but when in addition to n being prime we have that the gcd of the

degrees of the polynomial with N - 1 is not too large, then we again get functions

with a large number of non-zero values in the field.

We thus obtain the following implication.

Lemma 58 For every t and e > 0 there exists a 6 such that the following holds for

every N = 2" for prime n. Let D = D(N) and let D C D be of size at most t and such

that max d < N 1 -E. Then the family C = CN(D) satisfies 1 - N- 6 < 6(C) < 1 + N--.
deD 2 2



_ degree sparsity of f bound

W-C-U [98, 41] d2 = 0 any N/2 t d1N1 /2
B [36] d2 < N1 ' constant N/2 ± N1 -6

B [37] di < N 1/2  for g, any N/2 t N'-'
d2 < N1 - for h, constant

Table 6.1: Weil-Carlitz-Uchiyama and Bourgain bounds on the number of non-zeros
of Trace(f); f(x) = g(x) + h(x) with deg g = di < N1 /2, deg h = d2 and N'1 2 <

mindeg h.

Similarly, for every t and c' > 0 there exists a 3 such that the following holds for

for every N = 2" such that N - 1 does not have any nontrivial divisor larger than

N1 -". Let D = D(N) and let D C D be of size at most t. Then the C= CN- 1 (D)

satisfies 1 - N-- < 6(C) < 1 + N-'.

We remark that Bourgain's theorem above is a generalization of the widely used Weil-

Carlitz-Uchiyama bounds [98, 41], which in particular can be employed in estimates

of the distance of BCH codes. Those initial bounds however fail to give interesting

estimates when the degrees of the polynomials inside the trace are larger than roughly

N2. Since general cyclic/affine invariant codes/families could be characterized by

degrees much larger than this, Bourgain's estimates turn to be greatly applicable in

obtaining our results. See Table 6.2 for a quick comparison between the bounds.

Main argument We now move to the crucial part of the paper where we attempt

to use counting style arguments to claim that the codes we are considering have the

single orbit property for small k. Here our plan is as follows.

We first use a result from [71] to show that for any specific family C we consider

and for every sufficiently large k, its dual has roughly (N) /ICI functions of weight

k (this bound is tight to within 1 ± E(1/Nc) factor, for large enough k (where k is

independent of N and depends only on t, c and the 6 of Lemma 58). Specifically they

show:

Theorem 59 ([71] Lemma 3.5) For every c,t < oc and 6 > 0 there exists a ko

such that for every k > ko and for every family C C {FN -- F2} with at most N'



functions, and satisfying - N- K 6(C) + N- it is the case that C' has

C(N)I/C| - (1 ± O(N-C) functions of weight k.

Thus for any family C = C(D) under consideration, this allows us to conclude that

C' has many functions of weight k (for sufficiently large, but constant k). What

remains to be shown is that the orbit of one of these, under the appropriate group

(affine or cyclic) contains a basis for the whole code C'. To do so, we consider any

function x of weight k in the dual whose orbit under the group does not contain a

basis for C' (i.e., Span({x o wirr}) # C'). We show that for every such word x there

is a set D' C D of size D'l = |DI + 1 such that x C C(D')'. The size of C(D') is

roughly a factor of N larger than the size of C and thus C(D')' is smaller than C'

by a factor of roughly N. We argue further that this family C(D') also satisfies the

same invariant structure as C and so one can apply Lemma 58 and Theorem 59 to it.

We can thereby conclude that the number of weight k functions in C(D')' are also

smaller than the number weight k functions in C' by a factor of approximately N.

Finally, we notice that the number of sets D' to consider is smaller than the factor

between the number of functions of weight k in C' and C(D')'. That lets us conclude

that the set UD'C(D')' can not include all possible weight k functions in C', yielding

the k-single orbit property for C. This leads to the proofs of Theorem 50 and 51 that

appear in Section 6.4.

6.3 Proofs of the helpful lemmas

We now prove Lemma 56 and Lemma 58.

Proof of Lemma 56.: For the cyclic invariant case, the lemma is immediate.

Indeed, by Proposition 11 if C is cyclic invariant and it is characterized by some

D C D, then C = CN- 1 (D) = {Trace(p)|p E PN-1,D}. For every pair of functions

it is the case that if pi / P2 E PN-1,D then Trace(pi) # Trace(p 2). Hence CI =

|PN-1,D > NIDI yielding |D < t if |CI < Nt.



We now consider the affine invariant case. Consider an affine-invariant family C,

which by Proposition 16 is described by the set D C D such that C= CN(D) =

{Trace(p)|p e PN,D}. As above we also have |DI < t if |CI < N'. It remains to be

shown that D C {1, ... , N1-1/t}.

We now use the fact that the set D is shadow-closed, i.e., if d c D and e -< d then

e E D.

Consider the binary weight of the integers d E D. We claim that for every integer

d e D, its binary weight is at most t (or else its shadow and hence D has more than

t elements). It follows that the integer d = min-orb(d) < 2"(-1/t) NI-1/. Since

this holds for every d E D, we conclude that D C 1 ... , [N 1-1/t]}. This yields the

proof of Lemma 56 for the affine-invariant case. i

Proof of Lemma 58: For p E PN,D such that Trace(p) E C define for the purpose of

this proof 6(p) = PrzEFN[Trace(p(x)) = 1]. Since the degrees in D are upper bounded

by N1 -E, by Theorem 57 there exists 6' = 6'(t, e) such that | E (1)Trace(p(x)) <
XCFN

N 1-- '. Since ExEFN 1)race(p()) = 1 - 26(p), it follows that there exists 6 such that

- N- < (p) < 1 N-. The first part of the lemma is now immediate by noting
2 2

that 6(C) = min 6(p). The second part follows easily by a similar argument. i
PCPN,D

6.4 Proofs of the main theorems

We now derive the proofs of the main theorems.

6.4.1 Analysis of the cyclic case

Proof of Theorem 51: Let 6 = 6(t, 6) and 6' = 6'(t+1, c) be as given by Lemma 58

for the cyclic invariant case (so codes of length N-I have distance roughly 1/2-N-6).

Let c = 2 and let ko = ko(c, t, 6) and k' = ko(c, t + 1, 6') be as given by Theorem 59.

We prove the theorem for k = max{ko, k6}.



Fix N = 2' such that n is prime and N - 1 does not have any non-trivial divisor

larger than Nl-. Let C C {F* -- F2 } be a cyclic code of cardinality at most N'.

Let D C D be the set of degrees that describes C as given by Proposition 11 so that

C = {Trace(p) p E PN-1,D}. For d E D - D, let C(d) = {Trace(p)|p c PN-1,DU{d}}.

Our analysis below will show that (1) Every function w E C' - UdED-D(C(d))

generates the family C' by its cyclic shifts, i.e., C' = Span{w(ax)|a E IF*}, and (2)

There is a function of weight k in C' - UdED-D(C(d)-). Putting the two together we

get the proof of the theorem.

We start with the first part. Consider any function w E C'. We claim that if

Span{w(ax)Ia E F*I}} # C', then there must exist an element d c D - D such that

w E C(d)'. To see this, first note that Span{w(ax)|a C F* }} is a family invariant

under the cyclic group, and is contained in C'. Thus if Span{w(ax)Ia E F*}} # C'

then it must be strictly contained in C'. Therefore (Span{w(ax)|a E F*}})' must

be a strict superset of C. Using Proposition 11 there must exist a set D' such that

(Span{w(ax)|a E F*}})'= PN-1,D'. Furthermore D' must be a strict superset of D

and so there must exist an element d E D' - D. We claim that w E C(d)'. This is so

since C(d) C (Span{w(ax) a E F*}})' and so w E (Span{w(ax) a e F*}}) C C(d)'.

This concludes the proof of the first claim.

It remains to show that there is a function of weight k in C'- UdeD-D(C(d)). For

this we employ simple counting arguments. We first note that, using Lemma 56 we

must have that |D| < t. Further, by Lemma 58 we obtain that C is a code satisfying

- N- K (C) I + N-6. Hence we can apply Theorem 59 to conclude that C'
2 2

has at least (N)/(ICl) - (1 - 0(1/N 2 )) functions of weight k.

On the other hand, for every fixed d E D - D, we have (by Lemma 56 and Lemma 58

again) - N-' < 6(C(d)) < 1 + N-6'. Again applying Theorem 59 we have C(d)'

has at most (N)/(|C(d)|)(1 +0(1/N 2 )) functions of weight k. In case d = N -1, then

|C(d)|= 2. Cl. In case d # N -1 then |C(d)|= N -|Cl. Thus we can bound the total



number of functions of weight k in UdCD-DC(d)' from above by

(N) (N)
) (1 + O(1/N2+ (NkC (1 + 0(1/N2 )) 

( 2. -CIl) ( N - |C|)

2 ()(1 ± 1/log2 N + O(1/N 2 )),
2|C| k

where above we use the fact that D < N/log 2 N.

For sufficiently large N (i.e., when 1/log 2 N + O(1/N 2 ) < 1/2) we have that this

quantity is strictly smaller than (1 - O(1/N 2)), which was our lower bound on

the number of functions of weight k in C'. We conclude that there is a function of

weight k in C' - UdCD-D(C(d)') as claimed.

This concludes the proof of the theorem. i

6.4.2 Analysis of the affine-invariant case

Proof of Theorem 50: The proof is similar to the proof of Theorem 51 with the

main difference being that we need to argue that the polynomials associated with

functions in C and C(d) are of somewhat low-degree (to be able to conclude that they

have high-distance).

Given t, let 6 be from Lemma 58, where c' = 1/t, and let k be large enough for

application of Theorem 59. Fix N = 2' for prime n and and let C be an affine-

invariant family of cardinality Nt. Let D C D be a set of cardinality at most t and

consisting of integers smaller than N1 I/t such that C = {Trace(p)|p E PN,D} (as

given by Proposition 16). For d E D - D, let C(d) = {Trace(p) p E PN,DU{d}}-

Let D' = (D - D) n {1, . .. , LN1-1/t]}.

Similar to the proof of Theorem 51 we argue that if there is a weight k function w in C'

that is not in some C(d)', but now only for every d E D', then {Span(w (a+x + ) Ie c

F*, FN} = C'. The same counting argument as in the proof of Theorem 51

suffices to show that such a function does exist.



Consider w E C' and the family {Span(w(ax + #)|c E Fy, E FN}. {Span(w(ax +

#)} is affine invariant and so is given by PN,E for some shadow-closed set E. If

{Span(w(ax + )}' # C then E strictly contains D and so there must exist some

element d' E E - D. Now consider the smallest binary weight element d -< d'

such that d E E - D. We claim that the binary weight of d must be at most

t + 1 (since elements of D have binary weight at most t). We then conclude that

w E {Span(w(ax + #)} C C(d)' yielding the claim.

The counting argument to show there is a function of weight k in C' - (UdED'C(d) is

now same as in the proof of Theorem 51 except that we use the affine-invariant part

of Lemma 56 and Lemma 58.

This completes the proof of Theorem 50. i

6.5 On using results from additive number theory

As pointed out earlier Theorem 7 of [36] only considers the analog of Theorem 57

where the field F is of prime cardinality N, and shows that for any additive character

X, EExF X (f(x))| < N1-6. Here we mention the modifications necessary to extend

the proof to the case where FN is of cardinality 2' with n being prime.

In [36] the proof reduces to the two cases r = 1 and r = 2. The case r = 1 in the

prime case was obtained in [40]. In our case, where N = 2', the r = 1 case was shown

in [38]. For r = 2 the proof in the prime case applied the sum-product theorem from

[39] and uses Proposition 1 of [37]. We note that Proposition 1 of [37] works also when

the field is not of prime cardinality. As argued in [39], the sum-product statement

might weaken for more general fields only when the field FN contains somewhat large

subfields. However, when n is prime F2 - contains only the constant size base field

F2. We conclude that when F = F2m (n prime) it remains true that if a set A C FN

has size 1 < JAI < N 1  for some given e then |A + Al + |A - A| > C|Ali+ 6 , for

some 6 = 6(c). The key ingredient of the proof in [37] is an additional sum-product

theorem in the additive/multiplicative group FN X FN with N prime, where addition



and multiplication are defined coordinate-wise. The equivalent formulation for our

case F2 . x F2 follows exactly as in [37], and so does the rest of the proof.

6.6 Discussion

Based on the alternate definition of affine/cyclic codes from Chapter 3 as polynomial

ideals, our results can be reformulated as describing relations between the sparsity of

a polynomial over F2[x] (i.e. its number of monomials) and the number of its roots

over F2n.

Theorem 51 essentially says that for any small, arbitrary set D C D (under the

specified restriction of n and 2n -1) there exists a polynomial p E F2 [x]/(x 2n--I _ 1) of

monomial sparsity at most some k k(I D I), such that the roots of p in F2n are exactly

wd, where d E orb(D). Such a polynomial generates a cyclic code characterized by

the set of roots {wd d c orb(D)}. We note that even when ID = 1 this is not known

for general n [49, 96], and understanding the relation between sparsity and number of

roots for such polynomials seems to be an important open question, with applications

to the theory of cyclic codes.

We next summarize a few immediate open questions suggested by the results pre-

sented here.

1. Can Theorems 50 and 51 be extended to non restricted block lengths? Progress

in this direction requires either stronger number theoretic versions of the Bour-

gain theorem we use or a somewhat different approach.

2. Our results give sufficient conditions for binary codes to be generated by a small

weight function. Codes that have a constant number of small weight genera-

tors under affine transformations are also testable: simply pick random affine

transformations and verify that the permuted generators have inner product 0

with the given function. It would be interesting to provide non-trivial sufficient



conditions for codes to have a constant number of low weight single orbits that

generate the code.

3. What other groups of permutations could be relevant in the study in boolean

functions? Codes that are invariant under larger groups that contain AGL(1, 2n)

(in particular, codes invariant under 2-transitive groups) could lead to testing

implications. These groups have been described explicitly in [28].



Chapter 7

Conclusions and Future Directions

7.1 Towards a full characterization of affine invari-

ant codes

The results of this thesis as well as further supporting evidence [25] lead to the follow-

ing conjecture which would complete the characterization of testable linear families

that are invariant under the affine group AGL(1, 2n).

Conjecture 60 Let k > 0 be an integer and let F C {F2 n - I2} be a linear,

and affine invariant family, where n is a prime. Then F is k-locally testable if and

only if the set of degrees that characterize the family is D - R U S, where the set

R characterizes a Reed Muller code of order r < k and S is g(k)-sparse (for some

function g : N -+ N independent of n).

Our Corollary 53 from Chapter 6 confirms this conjecture from the positive perspec-

tive.

A few other examples confirm the conjecture from the negative side. A first observa-

tion comes from the examples of Reed Muller codes. The dual of RM codes of order

d has distance 2 d+1, which immediately implies that RM codes of order, say w(1),

cannot be tested locally.



A second piece of supporting evidence comes from our Lemma 32, which essentially

states that certain non-sparse affine invariant families included in RM(2, n) are not

testable. In particular, families described by the set of degrees Dt = {2' + 1 0 <

f < t} are such that their duals do not contain functions of weight < t - 2 other

than those functions that also belong to RM(2, n)'. Hence, for t = w(1) this gives a

non-testable family. It also suggests the following conjecture in the same vein.

Conjecture 61 Let D = {2f + 1 | E L and |L| < t} and let F be the affine

invariant family F C {F2n -+ 1F2 } with n prime, characterized by the set of degrees

Dt. Then if f E F' - RM(2, n)' it must be the case that wt(f) > g(t), for some

strictly increasing function g : N - N.

This conjecture might be key to a similar more general statement that would imme-

diately imply one direction of the Conjecture 60.

Conjecture 62 Let n be prime and let Dt = R(d) U St C R(d') be a shadow closed

set such that the degrees in R(d) (and R(d')) characterize the Reed Muller code of

order d (and d', respectively) and |S| < t. Then if f G F' - RM(d', n)' it must be

the case that wt(f) > g(t, d'), for some function g : N -+ N strictly increasing in t.

Also pertinent to the role of sparsity in testing affine-invariant families, Ben-Sasson

and Sudan in [25] show that if an affine-invariant family is characterized by a set

that contains a degree of binary weight t then its dual cannot have functions with

weight smaller than t - 2. This immediately implies that affine families that are

NlogN(-sparse are not testable with a constant number of queries.

The extent to which sparsity determines testability was also studied by Kaufman

and Sudan in [71] where they show that sparse codes of large distance are testable.

Kopparty and Saraf [76] conjectured that if a linear code is sparse then it is testable,

regardless of distance. That conjecture was however disproved by Ben-Sasson and

Viderman [26].



7.2 Further related work in testing non-linear, linear-

invariant properties

Linear invariance is a common property of many natural collections of boolean func-

tions. Testing dictators [86], juntas [46, 32], halfspaces [82], concise representation

[43], Fourier sparsity and dimensionality [58] are just a few other linear invariant

families well studied in the literature. These families are not linear and, it turns out

that devising and analyzing tests for non-linear families have so far required tech-

niques somewhat broadly different from those used in analyzing linear families that

are invariant under linear transformations. Such techniques include Fourier analytic

tools and even a machinery specific to learning theory.

As posed by Sudan [93], the question of finding a unifying proof for all testable prop-

erties that are invariant under linear transformations is an important open direction

of further investigation. A promising perspective comes from analyzing families of

functions that are free of prescribed patterns. This view is somewhat complementary

to that taken in analyzing linear properties, in the following sense. A linear property

P C {f :D -+ F2} is characterized by a set of vectors in the dual family that gen-

erate the dual. Let F {fi, f2, ... , fd} be a set of functions generating P' and let

G = {(1, a2,... , ak) E Dk} be the set of supports of all function in F, where k is

the maximum size of a support. Then f E P if and only if EZ f(a) = 0 for any tuple

(a1, C2, ... , a C) E G. In other words, the tuple (f (ai), f (C2),. .. , f (ak)) can only

contain binary patterns with an even number of l's. Alternately, P can be defined

as the collection of functions that are free of any complementary pattern (i.e. they

do not allow patterns that include an odd number of non-zeros at those locations).

This particular perspective is amenable to defining non-linear properties, where there

is no notion of dual.

Green [59] initiated the study of boolean families defined by forbidding patterns by

considering testing triangle freeness. More formally, his results show that the family

P = {f :F - IF2 (f (a), f (#), f (a + 0)) # (1, 1,1), Va, # E F'} is testable with a



constant number of queries. Remarkably, the technique to prove this result is based on

a number theoretic analogy of the Szemeredy regularity lemma for graphs [94], which

brought up an entirely new connection between testing properties of boolean functions

and graph properties. Follow-up generalizations in this direction were obtained by

Shapira [91], Kril et al. [77] and Bhattacharya et al. [29].

More recently, Bhattacharyya et al. [31] proposed a conjecture concerning the char-

acterization of all linear invariant properties (under the group GL(n, 2)) that are

testable with one sided error. Namely, a linear invariant property is testable with one

sided error if and only if it is closed under taking restrictions to subspaces. Closure

under restrictions to subspaces can be casted in the language of sets being free from

solutions to systems of linear equations. This view allows for a great parallelism

between algebraic properties and graph properties. Namely, to a large extent, a set

free of solutions to a system of linear equations corresponds to a graph that is free

of a certain induced subgraph. This analogy allows borrowing techniques from graph

property testing [6, 11, 10], and allows the usage of variants of Green's regularity

lemma. In [31] we prove that testability with one sided error implies closure under

taking subspaces, and moreover we show that freeness from patterns of 'small com-

plexity' lead to testable properties. In upcoming work [30] we attempt to understand

the formalism of being free of solutions to systems of equations at a level that allows

to argue relations between various classes defined this way.



Appendix A

Missing details from Chapter 5

Theorem 40 is stated in [72] (Theorem 2.9) in a slightly different form and in what

follows we show the equivalence between these statements. We start by defining

'formal characterization' from [72] and then describe its relation to the notion of

single orbit characterization.

Local affine formal characterization F C {K -* F2} has a k-local affine formal

characterization if there exist integer in, and linear functions 1, f2 ... , k KI - K

(with Ei(Yi, Y2, .-- , ym) = Y1 + E ijyj) such that
j=2

k

f E F if and only if f(li(y)) = 0 for all y E K".
i=1

Claim 63 Let F C {F 2n -+ IF 2} have the k-single orbit property under AGL(1, 2").

Then F' has a k-local affine formal characterization.

Proof: Let g E F be a k-single orbit

the support of g. Let ei : F2. -+ IF2

1 <i K k. We show that f E F' if and

generator for F, and let { 1, 2 ... , ak} be

be defined by i(Y1, Y2) = Yi + Cy 2, for all
k

only if E f(fi(y)) = 0, Vy E Fi.
i=1



Since g is a generator, it follows that T = Span{g o 7r 1 7r(x) = ax + b, a, b E F2n}.
k

Thus if f E F1 then (f, g ow) = 0 for all 7r. Hence Z f(aai+b) = 0, for all a, b E F2n.

We only need to show now the opposite direction of the claim. Let h : F 2, -4 F 2k

satisfy Z h(ti(y)) =0, Vy E F2n. We will show that h E F'. Indeed, for all a, b c F2n
i=1

k

E h(aai + b) = 0 and hence (h, g o 7r) = 0, V7r(x) = ax + b. This immediately implies
i=1

that (h, f) 0, Vf E Span{g o 7r I -r (x) = ax + b, a, b C F 2n, and hence h E F'.

I

Theorem 2.9 from [72] states that if F C {F2n - F 2 } is linear invariant and has a

k-local affine formal characterization then it is k-locally testable. If f E F the test

accepts, and if f is 6-far from F the test rejects with probability Q(min{6/2, 1/k 2}).

In addition, given the k-local affine formal characterization f1, f,2. .. , k: -Fn a F2 n
k

the test picks Y1, Y2 at random and checks whether E f(i(yi, Y2)) = 0. Hence, if F
i=1

has a k-single orbit property under the affine group then it is linear invariant, and

by Claim 63 its dual has a k-local affine formal characterization. By Theorem 2.9

from [72] F1 is testable by structured tests in the sense described in Chapter 5. This

concludes the proof of the Theorem 40.
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