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Abstract

We prove that the class of locally testable affine-invariant properties is closed under sums,
intersections and "lifts". The sum and intersection are two natural operations on linear

spaces of functions, where the sum of two properties is simply their sum as a vector space.

The "lift" is a less well-studied property, which creates some interesting affine-invariant

properties over large domains, from properties over smaller domains.

Previously such results were known for "single-orbit characterized" affine-invariant prop-

erties, which are known to be a subclass of locally testable ones, and are potentially a strict

subclass. The fact that the intersection of locally-testable affine-invariant properties are

locally testable could have been derived from previously known general results on closure

of property testing under set-theoretic operations, but was not explicitly observed before.

The closure under sum and lifts is implied by an affirmative answer to a central question

attempting to characterize locally testable affine-invariant properties, but the status of that

question remains wide open.

Affine-invariant properties are clean abstractions of commonly studied, and extensively

used, algebraic properties such linearity and low-degree. Thus far it is not known what

makes affine-invariant properties locally testable - no characterizations are known, and till

this work it was not clear if they satisfied any closure properties. This work shows that

the class of locally testable affine-invariant properties are closed under some very natural

operations. Our techniques use ones previously developed for the study of "single-orbit

characterized" properties, but manage to apply them to the potentially more general class

of all locally testable ones via a simple connection that may be of broad interest in the study

of affine-invariant properties.

Thesis Supervisor: Madhu Sudan

Title: Adjunct Professor
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Chapter 1

Introduction

In this work we investigate the closure of the class of locally-testable affine-invariant (linear)

properties under some natural operations. We define these notions below and then give some

motivation for our investigation.

1.1 Main terms and results

Throughout this work Fq will denote the finite field consisting of q elements. We consider

properties of functions mapping a big field Fqn (for growing n) to a small field Fq. Denoting all

functions mapping Fqn to Fq by {Fqn -+ Fq}, a property is given by a family F C {Fqn -+ Fq},

which is the family of functions that satisfy the property. Throughout the discussion below,

F C {CFqn -+ Fq}. Throughout this paper, we will consider only linear properties, where F

is said to be linear if for every a, # E Fq and f, g c F, the function af + 3g is also in F

(where (af + 3g)(x) = af(x) + pg(x)).

A property F is said to be affine-invariant if F is invariant under affine permutations of

the domain as elaborated below. A map A : Fqn -+ Fqn is said to be an affine permutation

if there exist a, E FEqn with a f 0 such that A(x) = ax + # for every x E FEqn. (We often

drop "permutation" and often simply refer to A as affine map.) For f : Fqn -+ Fq and affine

A, let f oA: Fqn 4 Fq be the function (f o A)(x) = f(A(x)). F is said to be affine-invariant
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if for every affine A, f E F => f o A E F.

Property testers for a property F aim to estimate the distance between a given function

f : FEqn Fq and a property F. We formalize this concept below, starting with the notion

of distance. For functions f, g : Fqn -+ Fq, the distance between f and g, denoted 6(f, g) =

Pr.+.UFqn [f(x) $ g(x)], where the notation x +- Fqn denotes x chosen uniformly at random

from Fqn. We define 6(f,.F) to be ming9 .{(f, g)}. We say f is 6-close to F if 6(f, F) < 6

and 6-far otherwise.

A property F is said to be (k, c) locally-testable if there exists a probabilistic algorithm

with oracle access to a function f : Fqn --+ Fq that makes k queries to the oracle f and

accepts with probability 1 if f E F and rejects all f with probability at least e - 6(f, F).

Our interest in this work is in an ensemble of properties F, {Fqn + Fq} for infinitely

many n that are testable with some fixed parameters k < oo and e > 0 for every n. If such

k and e exist we will refer to these properties as simply locally testable.

Our main results show that locally testable affine-invariant properties are closed under

some basic operations.

The first operation we consider is the intersection. Given F 1 , F 2 g {Fqn -+ Fq}, F1 n F 2

is just the set of functions satisfying both the properties. In Theorem 4.3 we prove that

the class of locally testable affine-invariant properties is closed under intersection, i.e., if F 1

and F 2 are locally testable, then so is F1 n F 2 . We note that this result also follows from

the general study of the closure of property testing under set-theoretic operations by Chen

et al. [8, Proposition 2] who show (roughly) that F1 n F 2 is locally testable if F 1 U F 2 is

contained in an error-correcting. The fact that the hypothesis holds follows from a result of

Ben-Sasson and Sudan [6], but this combination of observations does not seem to have been

made before.

The second operation is almost as natural in the context of linear properties. For F 1 , F 2 G

{Fqn -+ Fq}, their sum, denoted F 1 + F 2, is the property {f1 + f2 I fi E F 1 , f2 E F 2}. In

Theorem 4.8 we show that if F 1 and F 2 are locally testable, then so is F1 + F 2 .

The final operation we consider is a unary one. Given a property F C {Fq -+ Fq} and
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positive integer f, there is a unique natural affine-invariant property F' _ {Fqne -+ Fq} that

extends F. (A formal definition is given in Chapter 4.) This property F' is called the e-lift

of F and denoted Lifte(F). In Theorem 4.15 we show the lifts of locally testable properties

are also locally testable.

We now describe the reason to study affine-invariant properties and their closures.

1.2 Motivation

We start by reiterating the case for the study of affine-invariant properties briefly. (This case

has already been made in many of the previous works and surveys [16, 10, 11, 6, 4, 2, 17].)

Affine-invariance is the natural abstraction of a very important class of properties that have

proven to be of central interest in complexity theory. Namely they abstract the property

of being linear, and/or low-degree, with the feature that they offer the ability to preserve

the efficiency of the proofs and techniques in this area. Finally, they offer the potential for

new constructions of locally testable codes (and potentially PCPs), though such possibility

would need much better understanding of the testability of affine-invariant properties.

The study of what makes an affine-invariant property locally testable is still in its early

stages. We are still far from getting an exact characterization of when such properties may

be tested with a constant number of queries, and the work of [2] poses many questions

that remain open that need to be resolved to reach such a goal. The question as to what

operations preserve testability is among the basic questions one can ask to gain understand-

ing of testability. In the case of general property testing, the seminal work of Goldreich,

Goldwasser and Ron [9] explored this question, but derived mostly negative results. The

work of Chen et al. [8] explored this question under the condition that the properties were

"code-like" and managed to get some positive results, under technical conditions. (As men-

tioned earlier, these results imply that the intersection of testable affine-invariant properties

is testable, though to get this implication one needs to invoke some of the structural aspects

of affine-invariant properties.) The work of Ben-Sasson et al. [2] studied this question for a

restricted class of testable properties (called "single-orbit characterized" properties) which
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we will discuss below. Our work settles the closure questions positively, unconditionally, for

all locally testable affine-invariant properties and thus represents progress towards the broad

goal of understanding what makes an affine-invariant property locally testable.

1.3 Single-orbit characterized properties

Most previous works on local testability have focussed on a special route to local-testability

via what are termed "single-orbit-characterizations". Single-orbit characterizations go to

the heart of the most commonly studied locally testable affine invariant properties. These

are properties characterized by a single local "constraint" and the feature of being affine-

invariant (a k-(local)-constraint looks at the value of a function at some k values and restricts

the values in some way). Canonical examples include the fact that a multivariate function

f is of degree d if and only if its restriction to the first coordinate axis is of degree d and the

function is invariant under affine transformation of F,' (the n dimensional vector space over

Fq).

It is known that the single-orbit characterized properties (of a local constraint) are lo-

cally testable [16]. All known locally testable properties are also known to be single-orbit

characterized [2]. Motivated by these considerations Ben-Sasson et al. [2] studied the closure

of single-orbit characterized properties under intersection, sums, and lifts and showed that

this class was closed under these operations.

They however left open the more general question of the closure of locally testable prop-

erties under these operations. To the best of our knowledge these two classes - locally

testable properties, and single-orbit properties - may be identical, but even the truth of

this statement (leave alone the ability to prove it) is wide open. Indeed one path to separate

these classes would have been to show that the former class is not closed under one of these

operations. Our work closes this possibility.
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1.4 Technical contributions

The results in this work are obtained by simple combinations of known facts in the litera-

ture on testing affine-invariant properties. These facts already tell us that affine-invariant

properties should be viewed via a basis of (traces of) monomials. The set of exponents of

the monomials in the support of functions contained in an affine-invariant properties form

the "degree set" of the property, and completely determine the property. In the reverse

direction, it is known that not every degree set corresponds to an affine-invariant property,

and the structure of what the degree set can look like for the property to be affine-invariant

is completely understood.

Turning to local testability, among the known families of locally testable properties, their

degree set is well understood. But for a generic locally testable property, it is still open as

to what the degree set may look like. In the absence of such understanding it seemed this

structural feature would offer little help in understanding local testability. This is where this

work manages to improve the understanding.

Our main technical lemma manages to relate the performance of testers to the degree sets

of the properties. Specifically it says that the "canonical local tester" of an affine-invariant

property must behave nicely with respect to the monomials appearing in the degree set, and

distinguish them from a small set of "excluded" monomials, which come from the complement

of the degree set. The "canonical local tester" is one introduced in the work of [3] which shows

that without loss of generality any linear property can be tested by picking a distribution

over "low-weight linear constraints" satisfied by all functions with the property and testing

that a randomly chosen one of these constraints holds. Our lemma says that every monomial

in the degree set should also satisfy all these constraints, while every monomial in in the

excluded set should fail to satisfy E-fraction of these constraints.

While our lemma is simple to prove given the known results on testabilility of affine-

invariant properties, the resulting understanding is valuable. Indeed, the closure properties

follow quite easily from this lemma, since the behavior of the degree sets is well-understood

under the operations in consideration.
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Organization. In Chapter 2 we introduce some of the notation and background material

from the study of affine-invariant properties. In Chapter 3 we state and prove the main

technical result, Theorem 3.4, of this thesis relating degree sets to testability. In Chapter 4

we then prove the closure theorems using Theorem 3.4.
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Chapter 2

Preliminaries

We use [m] to denote the set {1,...,m}. We start with some background material on

constraints and (single-orbit) characterizations. We then describe the Reed-Muller property

which is known to be locally testable, and to contain all locally testable affine-invariant

properties.

2.1 Constraints and Characterizations

A k-constraint on functions mapping Fn to Fq is given by a pair C = (d, A) of k-tuples where

a= (ai,,..., ak) E F knanad I= (Al, ... , AXk) E Fq. A function f : Fqn -+ Fq is said to satisfy

C if k Af(ai) = 0. (Note that while the notion of satisfaction is intended to apply to

functions mapping to Fq, it extends also to functions mapping to Fqn also, and we will need

this extension in this thesis.)

A collection of k-constraints C1,..., Cm k-characterizes a property F C {Fqn - Fq} if

the following holds:

Vf : Fqn -+ Fq, f E T Vj E [m], f satisfies Cj.

For a k-constraint C = (a, A) on {Fqfn + Fq} and affine transform A : Fqn -+ Fqn,

C o A denotes the k-constraint (A(6-), X) where A(d) = (A(ai),..., A(ak)). The orbit of a
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constraint C is the collection of of constraints orb(C) = {C o A I A is an affine transform}.

Note that if F is affine-invariant and every member of F satisfies C, then every member of

F satisfies every constraint in orb(C).

We say that F is k-single orbit characterized if there exists a k-constraint C such that

orb(C) is a k-characterization of F.

We use the following theorem showing that single-orbit characterized properties are lo-

cally testable.

Theorem 2.1 ([16]). There exists a constant c such that for every prime power q and integers

k, n, if F C {Fqn -+ Fq} has a k-single orbit characterization, then it is (k, 1/(ck 2))-locally

testable.

We note that the test from [16] simply picks an affine transformation A uniformly at

random and tests if f satisfies C o A, where C is the k-constraint giving the single-orbit

characterization.

2.2 Reed-Muller Property

We first introduce some basic notions. For integer d, let do, d,.... denote its expansion in

base q, so that 0 < di < q - 1 and d = Ej diqi. The q-weight of d, denote q-wt(d), is

the quantity Ej di. Recall that every function f : Fqf - Fqn is uniquely expressible as a

univariate polynomial of degree at most qfl - 1. For f(x) = Eqn_1 ciX, we say that its

support is the set of integers supp(f) = {i I ci / 0}. Let Tr(x) = X + Xq + Xq2 + + zqn

denote the "trace" function, which is a linear map from Fqn to Fq.

For integer d, the Reed-Muller property RM[n, d, q] {Feqn --+ Fq} is the collection of all

functions which are traces of polynomials supported on integers of weight at most d, i.e.,

RM[n, d, q] = {Tr(p) I p E Fqn[X] s.t. Vi E supp(f), q-wt(i) < d}.

We note that there are several alternate definitions of Reed-Muller properties, but none

of these is relevant to us. The only aspects we care about are (1) the Reed-Muller property is
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an affine-invariant property that forms an error-correcting code for constant d, (2) the Reed-

Muller property is locally testable for constant d, and (3) every affine-invariant property

that admits a local constraint is contained in the Reed-Muller property. We give references

below.

Proposition 2.2 (Folklore). 1. For every prime power q and positive integers n and d,

the Reed-Muller property RM[n, d, q] is Fq-linear and affine-invariant.

2. For every prime power q and positive integer d there exists 6 > 0 such that for every

n, the Reed-Muller property RM[n, d, q] is a code of distance 6, i.e., for every pair of

distinct functions f, g C- RM[n, d, q], 6(f, g) > 6.

Theorem 2.3 ([15]). For every prime power q and positive integer d there exists k < oo and

E > 0 such that for every n, the Reed-Muller property RM[n, d, q] is (k, e)-locally testable.

We note that the study of testability of the Reed-Muller property was initiated by Alon

et al. [1] who analyzed the case of q = 2. The case of prime q was proved independently by

[15] and [14]. By now, improved analyses of the tests (with better k and E) are also available

(see [7, 13]).

Theorem 2.4 ([6]). For every prime power q and integer k there exists an integer w such

that for every n the following holds: Suppose F C {Fqn -> Fq} is an affine-invariant linear

property and C is a k-constraint satisfied by every member of F. Then F C RM[n, w, q].

17



Chapter 3

c-separators and local tests

In this section we introduce the notion of an e-separating test, and prove a theorem relating

the existence of a tester to the existence of such separating tests. This theorem will be

employed repeatedly in Chapter 4 to get testers for various composed properties.

We start with a result of Ben-Sasson et al. [3] that shows that all testers for linear

properties can be made "canonical", i.e., described by a collection of k-local "constraints"

and a distribution over them. We describe their result first.

A canonical k-test T on functions mapping Fqn to Fq is given by a sequence of k-constraints

Cl,..., Cm and a distribution D on [m]. To test a function f, the tester picks j "D [m] and

accepts if and only if f satisfies C.

Proposition 3.1 ([3]). A linear family F is (k, E)-locally testable if and only if there exists

a canonical k-test T that accepts f E F with probability 1, while rejecting f : Fqn + Fq with

probability at least c 6( f, F).

Our notions will consider the performance of canonical tests on a certain selection of

monomials (viewed as functions mapping Fqn to Fqn).

Definition 3.2. For sets A C B C {0,... ,q - 1}, we say that a k-canonical test T =

(C1,... , Cm; D) (for functions mapping Fqn to Fq) e-separates A from B if the following

hold:

18



Completeness: Va E A, PrjD[,mI[xa satisfies Cj] = 1.

Soundness: Vb E B - A, PrjDlm[x does not satisfy Cj] > E.

To identify sets appropriate for separation by canonical tests, we move to the structural

aspects. It is by now well-known that an affine invariant family F C {Fq. -+ Fq} has an

associated degree set Deg(F) 9 {0,..., q" - 1}, which uniquely specifies F. Specifically,

Deg(F) = Ufer supp(f). The degree set of a family F is well-studied and the following

lemma is an easy consequence of its well-known properties.

Lemma 3.3. For every affine-invariant linear family F C {Fqn -+ Fq}, for every d E

Deg(F), and for every A E Fqn, the function Tr(A - xd) E F. Conversely, if d V Deg(F),

then there exists A E Fqn such that Tr(A - xd) V F.

For an affine-invariant family F, let wt(F) = maxdEDeg(F) q-wt(d). Let RM-Deg(F) =

{d E {, ... , q" -1} I q-wt(d) <_ wt(F) + 1}. (The notation RM-Deg recalls the fact that the

Reed-Muller family contains all degrees of q-weight bounded by w.) Our main result about

testability of a family F is summarized below.

Theorem 3.4. A linear affine-invariant family F is locally testable if and only if a canonical

test separates Deg(F) from RM-Deg(F). More precisely:

-> Vq, k, e > 0, Bk' < oo and e' > 0 such that Vn the following holds: If F C {Fqn 4 Fq}

is (k, e)-locally testable, then there exists a k'-canonical test c'-separating Deg(F) from

RM-Deg(F).

- Vq, k', e' > 0, Bk < oo and c > 0 such that Vn the following holds: If F C {lFqn -+ F,}

has a k'-canonical test c'-separating Deg(F) from RM-Deg(F), then F is (k,,e)-locally

testable.

3.1 Proof of Theorem 3.4

We prove Theorem 3.4 in this section. We give a brief overview first. The forward direction

is straightforward - any canonical local tester T for F gives a (k, e)-canonical test separating
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Deg(T) from RM-Deg(F), and the proof is almost immediate from definitions and basic

properties of the trace function.

The reverse direction takes a few steps. To start with, it is not the case that the canonical

test T separating Deg(F) from RM-Deg(.F) is itself a tester for F (or at least we do not

know how to prove this). So we combine this test with a test for the Reed-Muller property

corresponding to the degree set RM-Deg(F). Completeness of this test is immediate, but

soundness takes some calculations. Roughly, if a function f is far from the Reed-Muller

property, then the Reed-Muller test detects this with high probability. If f is very close to

F but not contained in it, then also the Reed-Muller test rejects it with sufficiently high

probability. The only remaining case is when f is close to the Reed-Muller family, but its

closest codeword in the Reed-Muller property is a function g V F. In this case, we note first

that the function g is rejected by T with high-probability (based on the soundness condition

of canonical tests separating Deg(F) from RM-Deg(F)), and then argue that f, being close

to g, is rejected with roughly the same probability. Details below.

Proof. Let P = RM[n, wt(F) + 1, q] and let &p = J(P) be the relative minimum distance of

this code. (Note by Proposition 2.2 that op does not depend on n.)

(=>) By Proposition 3.1, there exists a canonical k-test T = (C1, . . , Cm; D) that accepts

f E F with probability 1, while rejecting f V F with probability at least E - J(f, F). We

claim that T E'-separates Deg(F) from RM-Deg(F) where c' = E - 6 p. Suppose Ci = (e, Ai)

where d1i = (ail,..., a) and Ai = (Ai, ,ik)

Completeness: If d E Deg(F), then Tr(Axd) E F for every A E Fqn (from Lemma 3.3), and

so
o=k k )

0 = Aij Tr(Aai) Tr A EAij a
j=1 j=1

for every i E [m] and A E Fqn, which implies that Ek 1 A,, aq = 0 Vi, i.e. Pri.D[,m] [xd satisfies Ci] =

1.

Soundness: If e E RM-Deg(F)--Deg(F), then there exists A E lFqn such that Tr(Aze) EcP

20



F. In particular, Tr(Axe) is a codeword of P and F is a subcode of P, so 6(Tr(Axe), F) ;> 6p.

If xe satisfies Ci, then so does Tr(Axe) since

k k

Aij Tr(Aay) = Tr A Aa = 0
j=1 j=1

and so Pri.--D [Xe satisfies Ci] 5 Pri+-D[m[Tr(AX) satisfies C] < 1 - e - 6(Tr(Axe), F)

1 - J -p.

(<=) We prove this direction in two steps. We first prove that there is a k-local test T

that accepts all f E F while rejecting f E P -. F with probability at least ei. We then prove

that T can be combined with a tester for membership in P to get a tester for the family F.

We start with a description of the test T and its analysis.

The test T1 : Let (C1,... , Cm; D) be a k'-canonical test c'-seperating Deg(F) from RM-Deg(F).

Our test T 1 consists of picking i 4-D [m], and picking an affine transformation A : F>- -+ Fq-

uniformly at random, and checking if f satisfies Ci o A.

To see the completeness condition is met, note that Ci o A accepts f if and only if Ci

accepts f o A. Since f o A E F, it follows that every monomial in the support of f o A is

accepted by Ci and so Ci also accepts f. We thus conclude that T accepts f E F with

probability 1.

Now, we analyze the soundness.

Let w be the weight given by Theorem 2.4 so that every property satisfying some k'-

constraint is contained in RM[n, w, q]. Let J0 be the distance of RM[n, w, q] from Proposi-

tion 2.2. Let to = 6o/(c(k') 2 ) where c is the constant from Theorem 2.1. We will show below

that T 1 rejects every member f E P - F with probability at least Ei = c' - Eo. Note that all

the constants are indeed independent of n, as desired.

Fix f E P - F. There must exist e E RM-Deg(F) - Deg(F) such that e E supp(f).

With probability at least c' our choice of i --D [m] will be such that Xe does not satisfy Ci.

We show below that for every i such that Xe does not satisfy Ci the probability, over the
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choice of A, that Ci o A rejects f is at least co, which yields the desired soundness.

Let F' be the family of functions that satisfy Ci o A' for every affine transformations

A'. Then F' has a k'-single orbit characterization, given by orb(Ci). Since f V F', by

Theorem 2.1, the test consisting of randomly choosing A' and accepting if and only if f
satisfies Ci o A' rejects all f with probability at least 6(f, F')/(c(k')2). Since {f} u F' C

RM[n, w, q], it follows that 6(f, F') > 60. We thus conclude that Ci o A rejects f with

probability at least 6o/(c(k')2 ) = Co. Combining with the probability that i is such that Ci

rejects xe, we get that T rejects every f E P - F with probability at least E' - Eo.

Tester for F. We now turn to using T to build a tester for F. Let T2 be a (k2 , c2)-local

test for P, as guaranteed by Theorem 2.3. Our tester T for F works as follows: With

probability 1/2 it runs T and accepts if T accepts, and with probability 1/2 it runs T2 and

accepts if T2 accepts.

We now analyze the test. The completeness is obvious: If f E F, then both T and T2

accept with probability one and so T accepts with probability one. So we turn below to the

soundness.

If f E P - F, then the probability that T rejects is at least half the probability that T

rejects, and so T rejects with probability at least e1/2. Now consider the case where f V P.

Let 6(f, F) = J and 6(f, P) = 61. Note that 61 < 6. If J < -, then the nearest codeword in

P to f is actually in F, hence S1 = 6. In this case, T2 rejects with probability at least E2 - J

and so T rejects with probability at least 62 -6/2. Otherwise, there is some g E P - F such

that J(f, g) = 61. The probability that T1 rejects f is at least El - k1 1 , since T rejects g with

probability at least Ei and the probability that f disagrees with g on one of the ki queries

made by T is at most k161. On the other hand, T2 rejects f with probability at least e2 -J.

Therefore, in this case T rejects with probability at least (E 2 - S1 + 61 - k1 61)/2 .

Putting this together with the case that 6 < -6, our test T rejects f V P with probability at

least min{E2 - J/2, '}. Putting this together with the case that f E P - F and noting

that < E1/2, we get a max{k1 , k2}-local test T that rejects f V F with probability

at least min{E2 -6/2, }1 2 1.
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Putting it all together, we get a (k, E)-local test T for F where k = max{k', k2} and

E= C - 6(f, F) where both k2 and C depend only on k'.

23



Chapter 4

Closure of locally testable properties

In this section we use our structural characterization of locally testable families (Theorem 3.4)

to prove that the class of locally testable affine-invariant properties is closed under sums,

intersections, and lifts. Our approach for each operation is the same. First, we examine how

the degree sets of the original properties relate to the degree set of the sum, intersection, or

lift. Next, we use this knowledge to construct a test which separates the degree set of the new

property from its Reed-Muller degree set, using separating tests for the degree sets of the

original properties. Finally, we apply Theorem 3.4 to immediately obtain local testability.

4.1 Closure under intersection

Proposition 4.1. Let F1, F2 g {Fq -+ Fq} be affine-invariant properties. Then Deg( 1 n

T2) = Deg( 1 ) n Deg(F 2).

Proof. Consider d E Deg(F1 n T2). Since Tr(Ax) E F1 n 72 for every A, it follows that

d E Deg( 1 ) n Deg(F 2 ) and so Deg( 1 n F2) C Deg(7 1 ) n Deg(F 2 ). The reverse direction

is similar. If d E Deg(F 1 ) n Deg(F 2) then Tr(Axd) E T1 n 72 for every A and so d E

Deg( 1 n F2).

Lemma 4.2. For i E {1,2} if there exist k-canonical tests E-separating Deg(7) from

RM-Deg(Fi), then there is a k-canonical test E/2-separating Deg(7F1 nF 2 ) from RM-Deg(F 1 n
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T2).

Proof. For i E {1, 2} let (Cii) ... , C,(; DW)) be the k-canonical tests that E-separate Deg(F;)

from RM-Deg(Fi). Then we claim that the natural test which picks i E {1, 2} uniformly at

random and then picks j according to D() is a k-canonical test that E/2-separates Deg(Fi n

F 2) from RM-Deg(Fi n F 2). To verify the claim note that all tests accept Xa for a E

Deg(F1) n Deg(F2) = Deg(Fi n.F2). On the other hand if a E RM-Deg(Fi n F2) - Deg(Fe)

then a is also in RM-Deg(Fe) - Deg(Fe) and in such case with probability 1/2 we pick

i = f E {1, 2} and then with further probability E we pick j such that Xa does not satisfy

C .)

The following theorem now follows immediately from Lemma 4.2 above and Theorem 3.4.

Theorem 4.3. For all q, k1 , k2 ,E 1 , E2 > 0, there exists k < oo and c > 0 such that, for every

n, if F1 C {Fqn 4 Fq} is (ki, ei)-locally testable and F 2 g {Fqn -+> Fq} is (k2 ,c 2)-locally

testable, then F1 n F 2 is (k, E)-locally testable.

Proof. Fix q, ki, k2 , f 1 , E2 > 0. By Theorem 3.4, for each i E {1, 2}, there is a k -canonical

test T that E'-separates Deg(FT) from RM-Deg(Fi). By Lemma 4.2, there is a k'-canonical

test c'/2-separating Deg(F 1 n F 2) from RM-Deg(F 1 n F 2) where k' = max{k', k'} and E' =

min{e', c'}. By Theorem 3.4, there exist k, E > 0, independent of n, such that F1 n F2 is

(k, e)-locally testable. L

4.2 Closure under summation

Proposition 4.4. Let F 1, F2  {Fqn + Fq} be affine-invariant properties. Then Deg(F 1 +

F 2) = Deg(F1) U Deg(F 2).

Proof. Since F1 U F2 C F1 + F2 it follows that Deg(F 1 ) U Deg(F 2) 9 Deg(F 1 + F2). In the

reverse direction, for every f E F1 + F2, we have f = fi + f2 with fi c F2 for i E {1, 2}. It

follows that supp(f) g supp(fi) U sup(f 2) 9 Deg(Fi) U Deg(F 2). Hence we get Deg(F) =

UgET supp(f) 9 Deg(F 1 ) U Deg(F 2).
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Definition 4.5. If = (u);'_1 E F'q. and if = E F*,,, then the tensor of i and i is

U0 V= (uivj)i<i< E F"
1<j t

The tensor of two constraints C1 = (5, X) and C2 = ( j,) is

C1 0 C2 := ( ' , ).

The following proposition is implicit in [2, 5].

Proposition 4.6. xd satisfies the constraint C1 0 C2 if and only if xd satisfies at least one

of the constraints C1 or C2.

Proof. Let C1 = (5,X) where I = (a 1 ,...,aki) E FqA and A (Al,.. .,Aki) E F,, and

similarly let C2 = (13, 1) where 8= (#1,...,#3 k2 ) E Fq and ji= (pi,...,pk2 ) E Fq3. Then

xd satisfies C1 0 C2 if and only if

k1 k2 k2

0 =EZ Aipj(aij )= zd) ( d

i=1 j=1 i=1 j=1

if and only if xd satisfies at least one of C1 or C2.

Lemma 4.7. For i E {1, 2} if there exist k-canonical tests c-separating Deg(F) from

RM-Deg(Fi), then there is a k 2 -canonical test ( 2 -separating Deg(.F1 + 2) from RM-Deg(.F+

F2).

Proof. For f E {1, 2}, let T = (C( ... , Cf)2; Dj) be the k-canonical test e-separating

Deg(.Fi) from RM-Deg(Fi). We claim that the test T, which picks i +-D 1 [m] and j <-D 2 [iM]

and accepts if and only if f satisfies C1) 0 C0(2) is a k2-canonical test E2 -separating Deg(F 1 +

F2) from RM-Deg(F1 + .F2). For completeness, note that if d E Deg(F 1 + F2) = Deg(.F1 ) U

Deg(F 2), then for any i, j E [M], Xd satisfies at least one of C0~) or C2) , hence, by Proposi-

tion 4.6, xd satisfies 0(&C 2). For soundness, suppose e E RM-Deg(F 1 +F 2)-Deg( 1-+.F2).

The probability that xe does not satisfy C(l) 0 C(2) equals the probability that x* satisfies3

26



neither 1) nor C(. These events are independent and each happen with probability at

least 6, hence the probability that neither constraint is satisfied is at least e2

The following theorem now follows immediately from Lemma 4.7 above and Theorem 3.4.

Theorem 4.8. For every q, k1 , k2 and e1, E2 > 0, there exists k < oc and E > 0 such that, for

every n, if F1 9 {Fqn -+ Fq} is (k1 , ei)-locally testable and F 2 g {Fqn -+ Fq} is (k2 ,62)-locally

testable, then F1 + F 2 is (k, E)-locally testable.

Proof. Fix q, k1 , k2 , Ei, 62 > 0. By Theorem 3.4, for each i E {1, 2}, there is a ke-canonical test

T that E'-separates Deg(Fi) from RM-Deg(Fi). By Lemma 4.7, there is a k'-canonical test /2_

separating Deg(F1+F 2) from RM-Deg(F1+F 2) where k' = max{k', k'} and e' = min{e', '}.

By Theorem 3.4, there exist k, E > 0, independent of n, such that F1 + F 2 is (k, e)-locally

testable.

4.3 Lifts, and closure under lifts

Given a family F C {Fqn -* Fq} its f-lift defines a family of functions mapping Fqnm to

Fq as defined next. In viewing the definition below, we use the notation f Is to denote the

restriction of f to the domain S. We also use the fact that Fqn c Fqnt.

Definition 4.9 (Lift [4]). Given a family F C {Fqn - Fq} its £-lift, denoted Lifte(F), is the

family

Lift,(F) = {f : Fqne - F, I (f o A)|Fqn E F, V affine A : Fqn, -+ Fqfl}.

We note that while the definition above seems somewhat unnatural, it turns out (as noted

in [12]) to be equivalent to the following much more natural definition.

Definition 4.10 (Lift, alternate definition). Given a family F C {Fqn -+ Fq} its f-lift,

denoted Liftf(F), is the family

Lifte(F) = {f : Fqn - Fq I fL E F, V one dimensional affine subspaces L}.
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This definition, equivalent under every linearity preserving isomorphism between F'n and

Fqn, makes the notion very natural, and as pointed out in [12] very useful. In this work,

however, we work with the original definition.

To prove that local testability is closed under lifts, we will need to use a bit more of the

well-known aspects of degree sets, and in particular the notion of "shadows".

Let q = p' for prime p. Let do, d1 ,... be the base-p expansion of d (i.e., 0 < di < p

and d = >2 dip'). Similarly let eo, e, ... be the base-p expansion of e. We say that e is in

the p-shadow of d, denoted e <, d, if ej di for every i > 0. The following proposition is

well-known (see, for instance, [2]).

Proposition 4.11. Let F C {Fqn -+ Fq} be an affine-invariant linear property and let

q = p8 for prime p. Then Deg(F) is p-shadow-closed, i.e., if d E Deg(F) and e <, d then

e E Deg(F).

The following proposition relates the degree set of the lifted family to the degree set of a

given family. The relationship uses the notion of p-shadows and a variation of the standard

modular reduction, which is termed mod*, where a (mod* b) sends a E Z 0 to an integer in

{0, . . , b - 1} so as to satisfy Xa = Xa (mod* b) (mod x - X).

Proposition 4.12 ([4]). Let F C {Fn -+ Fq} be an affine-invariant property. Then for

every m,

Deg(Lifti(Y)) = {d E {0,. . ., q - 1} | Ve <P d, e (mod* q"n - 1) E Deg(F)}.

Proposition 4.13. For every q, k and w, there exists a positive constant e = e(q, k, w) > 0

such that for every n the following is true. If e <, d and q-wt(d) w and xe does not satisfy

some k-constraint C, then xd does not satisfy E fraction of the k-constraints {C o A}affine A

Proof. Let wo be the weight from Theorem 2.4 such that families satisifying constraints of

weight k are contained in RM[n, wo, q]. Let wi = max{wo, w} and let J0 = (RM[n, wi, q])

be the minimum distance of RM[n, wi, q]. Let c = 6o/(ck2 ), where c is the constant from

Theorem 2.1. We prove the lemma for this choice of E.
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Consider the affine-invariant family F' = {f I f satisifes C o A, V affine A}. F' is a

single-orbit characterized family and e V Deg(F'). It follows (since degree sets are shadow-

closed, Proposition 4.11) that d g Deg(F'). Thus there exists some -y E Fqn such that

Tr(yXd) V F'. Since {Tr(Axd)} UF' RM[n, wi, q] it follow that Tr(7. X-) is 6O-far from F'.

Applying Theorem 2.1 we get that the probability that a random affine map A would lead

to a constraint C o A that rejects Tr(y - x) is at least 6o/(ck2 ) = E. For a choice of A such

that Tr(7 -X z) does not satisfy C o A, it is also the case that xd does not satisfy C o A, thus

yielding the lemma. O

Lemma 4.14. For every q, k and e> 0 there exist k' and c' such that for every £, n the follow-

ing holds: If F C {Fqn -+ Fq} has a k-canonical test E-separating Deg(F) from RM-Deg(F),

then there is a k'-canonical test c'-separating Deg(Lifte(F)) from RM-Deg(Lift,(F)).

Proof. Let w be the constant from Theorem 2.4 so that every affine-invariant family mapping

Fqn, -+ Fq is contained in RM[n', w - 1, q). (We note that we intend to apply this to n' = ne.

But w does not depend on n' and so doesn't depend on f.) Let ei = e(q, k, w) be the constant

from Proposition 4.13. We prove the lemma for k' = k and c' = E - Ei.

Let T = (C1,..., Cm; D) be a k-canonical test c-separating Deg(F) from RM-Deg(F).

For i E [m], let Ci = (d'i, Ai). Consider the tester T' which chooses a random affine A:

Fqn +I Fqn and accepts f if and only if f satisfies C o A. We claim that T' is k-canonical

tester that c'-separates Deg(Lifte(F)) from RM-Deg(Lifte(F)) for some c' independent of n.

For the completeness, suppose d E Deg(Lifte(F)). Let d' = d (mod* q" - 1). Then

d' c Deg(F), so xd' satisfies Ci o A for every i and all affine A : Fqn -+ Fqn. This follows

since x' certainly satisfies Ci, and if A(x) = ax + b where a, b E Fqn, then

SAij(a -a+b)' = A 'e'b'-' = (d ae'bd'-*'=0
j= j1 (e'<d/ .e)e'b~/ ' '/ j= )=

where the first equality follows from Lucas' theorem and last equality holds since for every

e' <, d', we have e' E Deg(F) and so xe' satisfies Ci.

Now we turn to the soundness. Fix e E RM-Deg(Lifte(F)) - Deg(Lifte(F)). Note that
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since Lifte(F) satisfies the k-local constraint Ci, by Theorem 2.4, we have Lifte(F) 9

RM[ne, w - 1, q]. Thus RM-Deg(Liftj(F)) 9 RM[n(, w, q] and so q-wt(e) w. Since

e V Deg(Lifte(F)), there exists some e' <, e such that e' (mod* q"n - 1) V Deg(F), and

moreover q-wt(e' (mod* q" - 1)) < q-wt(e') < q-wt(e) w + 1. Since T is an c-seperating

set, we have that with probability at least e, over the choice of i +-D [M], Xe' does not satisfy

Ci. Fix such an i. By Proposition 4.13, we have that with probability at least ei, over the

choice of A, xe does not satisfy Ci o A. Thus xe fails to satisfy Ci o A with probability at

least E - Ei = E'. l

The following theorem now follows immediately from Lemma 4.14 above and Theo-

rem 3.4.

Theorem 4.15. For every q, k, E > 0, there exists k' < oo and E' > 0 such that, for every

n, f, the following holds: If CF {Fqn -> Fq} is (k,e)-locally testable, then Lifte(.F) is

(k', ')-locally testable.

Proof. Fix q, k, E > 0. By Theorem 3.4, there is a k-canonical test that El-separates Deg(F)

from RM-Deg(F). By Lemma 4.14, there is a k2-canonical test E2-separating Deg(Lifte(F))

from RM-Deg(Lifte(F)). By Theorem 3.4, there exist k' and E' > 0, independent of n and f,

such that Liftj(F) is (k', e')-locally testable. E
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