5,339 research outputs found

    Distributed filtering of networked dynamic systems with non-gaussian noises over sensor networks: A survey

    Get PDF
    summary:Sensor networks are regarded as a promising technology in the field of information perception and processing owing to the ease of deployment, cost-effectiveness, flexibility, as well as reliability. The information exchange among sensors inevitably suffers from various network-induced phenomena caused by the limited resource utilization and complex application scenarios, and thus is required to be governed by suitable resource-saving communication mechanisms. It is also noteworthy that noises in system dynamics and sensor measurements are ubiquitous and in general unknown but can be bounded, rather than follow specific Gaussian distributions as assumed in Kalman-type filtering. Particular attention of this paper is paid to a survey of recent advances in distributed filtering of networked dynamic systems with non-Gaussian noises over sensor networks. First, two types of widely employed structures of distributed filters are reviewed, the corresponding analysis is systematically addressed, and some interesting results are provided. The inherent purpose of adding consensus terms into the distributed filters is profoundly disclosed. Then, some representative models characterizing various network-induced phenomena are reviewed and their corresponding analytical strategies are exhibited in detail. Furthermore, recent results on distributed filtering with non-Gaussian noises are sorted out in accordance with different network-induced phenomena and system models. Another emphasis is laid on recent developments of distributed filtering with various communication scheduling, which are summarized based on the inherent characteristics of their dynamic behavior associated with mathematical models. Finally, the state-of-the-art of distributed filtering and challenging issues, ranging from scalability, security to applications, are raised to guide possible future research

    Non-fragile estimation for discrete-time T-S fuzzy systems with event-triggered protocol

    Get PDF
    summary:This paper investigates the non-fragile state estimation problem for a class of discrete-time T-S fuzzy systems with time-delays and multiple missing measurements under event-triggered mechanism. First of all, the plant is subject to the time-varying delays and the stochastic disturbances. Next, a random white sequence, the element of which obeys a general probabilistic distribution defined on [0,1][0,1], is utilized to formulate the occurrence of the missing measurements. Also, an event generator function is employed to regulate the transmission of data to save the precious energy. Then, a non-fragile state estimator is constructed to reflect the randomly occurring gain variations in the implementing process. By means of the Lyapunov-Krasovskii functional, the desired sufficient conditions are obtained such that the Takagi-Sugeno (T-S) fuzzy estimation error system is exponentially ultimately bounded in the mean square. And then the upper bound is minimized via the robust optimization technique and the estimator gain matrices can be calculated. Finally, a simulation example is utilized to demonstrate the effectiveness of the state estimation scheme proposed in this paper

    Robust model predictive control under redundant channel transmission with applications in networked DC motor systems

    Get PDF
    In networked systems, intermittent failures in data transmission are usually inevitable due to the limited bandwidth of the communication channel, and an effective countermeasure is to add redundance so as to improve the reliability of the communication service. This paper is concerned with the model predictive control (MPC) problem by using static output feedback for a class of polytopic uncertain systems with redundant channels under both input and output constraints. By utilizing the min-max control approach combined with stochastic analysis, sufficient conditions are established to guarantee the feasibility of the designed MPC scheme that ensures the robust stability of the closed-loop system. In terms of the solution to an auxiliary optimization problem, an easy-to-implement MPC algorithm is proposed to obtain the desired sub-optimal control sequence as well as the upper bound of the quadratic cost function. Finally, to illustrate its effectiveness, the proposed design method is applied to control a networked direct current motor system

    Distributed Event-Triggered Nonlinear Fusion Estimation under Resource Constraints

    Full text link
    This paper studies the event-triggered distributed fusion estimation problems for a class of nonlinear networked multisensor fusion systems without noise statistical characteristics. When considering the limited resource problems of two kinds of communication channels (i.e., sensor-to-remote estimator channel and smart sensor-to-fusion center channel), an event-triggered strategy and a dimensionality reduction strategy are introduced in a unified networked framework to lighten the communication burden. Then, two kinds of compensation strategies in terms of a unified model are designed to restructure the untransmitted information, and the local/fusion estimators are proposed based on the compensation information. Furthermore, the linearization errors caused by the Taylor expansion are modeled by the state-dependent matrices with uncertain parameters when establishing estimation error systems, and then different robust recursive optimization problems are constructed to determine the estimator gains and the fusion criteria. Meanwhile, the stability conditions are also proposed such that the square errors of the designed nonlinear estimators are bounded. Finally, a vehicle localization system is employed to demonstrate the effectiveness and advantages of the proposed methods.Comment: 15 pages,9 figures. The first draft was completed in June 2021, and this is the revised versio
    • …
    corecore