89,621 research outputs found

    Towards a Generic Trace for Rule Based Constraint Reasoning

    Get PDF
    CHR is a very versatile programming language that allows programmers to declaratively specify constraint solvers. An important part of the development of such solvers is in their testing and debugging phases. Current CHR implementations support those phases by offering tracing facilities with limited information. In this report, we propose a new trace for CHR which contains enough information to analyze any aspects of \CHRv\ execution at some useful abstract level, common to several implementations. %a large family of rule based solvers. This approach is based on the idea of generic trace. Such a trace is formally defined as an extension of the ωr∨\omega_r^\lor semantics of CHR. We show that it can be derived form the SWI Prolog CHR trace

    Knowledge Representation Concepts for Automated SLA Management

    Full text link
    Outsourcing of complex IT infrastructure to IT service providers has increased substantially during the past years. IT service providers must be able to fulfil their service-quality commitments based upon predefined Service Level Agreements (SLAs) with the service customer. They need to manage, execute and maintain thousands of SLAs for different customers and different types of services, which needs new levels of flexibility and automation not available with the current technology. The complexity of contractual logic in SLAs requires new forms of knowledge representation to automatically draw inferences and execute contractual agreements. A logic-based approach provides several advantages including automated rule chaining allowing for compact knowledge representation as well as flexibility to adapt to rapidly changing business requirements. We suggest adequate logical formalisms for representation and enforcement of SLA rules and describe a proof-of-concept implementation. The article describes selected formalisms of the ContractLog KR and their adequacy for automated SLA management and presents results of experiments to demonstrate flexibility and scalability of the approach.Comment: Paschke, A. and Bichler, M.: Knowledge Representation Concepts for Automated SLA Management, Int. Journal of Decision Support Systems (DSS), submitted 19th March 200

    A Denotational Semantics for Communicating Unstructured Code

    Full text link
    An important property of programming language semantics is that they should be compositional. However, unstructured low-level code contains goto-like commands making it hard to define a semantics that is compositional. In this paper, we follow the ideas of Saabas and Uustalu to structure low-level code. This gives us the possibility to define a compositional denotational semantics based on least fixed points to allow for the use of inductive verification methods. We capture the semantics of communication using finite traces similar to the denotations of CSP. In addition, we examine properties of this semantics and give an example that demonstrates reasoning about communication and jumps. With this semantics, we lay the foundations for a proof calculus that captures both, the semantics of unstructured low-level code and communication.Comment: In Proceedings FESCA 2015, arXiv:1503.0437

    State-of-the-art on evolution and reactivity

    Get PDF
    This report starts by, in Chapter 1, outlining aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query and update languages to be carried out within the Rewerse project. From this outline, it becomes clear that several existing research areas and topics are of interest for this work in Rewerse. In the remainder of this report we further present state of the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to briefly describing existing update languages for the Web, and also for updating logic programs; in Chapter 4 event-condition-action rules, both in the context of active database systems and in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some relevant rule-based agents frameworks

    Extending Hybrid CSP with Probability and Stochasticity

    Full text link
    Probabilistic and stochastic behavior are omnipresent in computer controlled systems, in particular, so-called safety-critical hybrid systems, because of fundamental properties of nature, uncertain environments, or simplifications to overcome complexity. Tightly intertwining discrete, continuous and stochastic dynamics complicates modelling, analysis and verification of stochastic hybrid systems (SHSs). In the literature, this issue has been extensively investigated, but unfortunately it still remains challenging as no promising general solutions are available yet. In this paper, we give our effort by proposing a general compositional approach for modelling and verification of SHSs. First, we extend Hybrid CSP (HCSP), a very expressive and process algebra-like formal modeling language for hybrid systems, by introducing probability and stochasticity to model SHSs, which is called stochastic HCSP (SHCSP). To this end, ordinary differential equations (ODEs) are generalized by stochastic differential equations (SDEs) and non-deterministic choice is replaced by probabilistic choice. Then, we extend Hybrid Hoare Logic (HHL) to specify and reason about SHCSP processes. We demonstrate our approach by an example from real-world.Comment: The conference version of this paper is accepted by SETTA 201

    A Formal Executable Semantics of Verilog

    Get PDF
    This paper describes a formal executable semantics for the Verilog hardware description language. The goal of our formalization is to provide a concise and mathematically rigorous reference augmenting the prose of the official language standard, and ultimately to aid developers of Verilog-based tools; e.g., simulators, test generators, and verification tools. Our semantics applies equally well to both synthesizeable and behavioral designs and is given in a familiar, operational-style within a logic providing important additional benefits above and beyond static formalization. In particular, it is executable and searchable so that one can ask questions about how a, possibly nondeterministic, Verilog program can legally behave under the formalization. The formalization should not be seen as the final word on Verilog, but rather as a starting point and basis for community discussions on the Verilog semantics.CCF-0916893CNS-0720512CCF-0905584CCF-0448501NNL08AA23Cunpublishedis peer reviewe

    Monitoring distributed systems with distributed polyLarva

    Get PDF
    polyLarva is a language-agnostic runtime verification tool, which converts a polyLarvaScript into a monitor for a given system. While an implementation for polyLarva exists, the language and its compilation have not been formalised. We therefore present a formal implementation-independent model which describes the behaviour of polyLarvaScript, comprising of the uLarvaScript grammar and of a set of operational semantics. This allows us to prove important properties, such as determinism, and also enables us to reason about ways of re-designing the tool in a more scalable way. We also present a collection of denotational mappings for uLarvaScript converting the constructs of our grammar into constructs of a formal actor-based model, thus providing an Actor semantics for uLarvaScript. We are also able to prove certain correctness properties of the denotational translation such as that the denoted Actors behave in a way which corresponds to the behaviour described by our implementation-independent model. We finally present distPolyLarva, a prototype implementation of the distributed polyLarva tool, which implements the new actor-based semantics over a language that can natively handle distribution and concurrency called Erlang.peer-reviewe
    • …
    corecore