
HAL Id: hal-00690604
https://hal.inria.fr/hal-00690604

Submitted on 24 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a Generic Trace for Rule Based Constraint
Reasoning

Armando Gonçalves da Silva Junior, Pierre Deransart, Luis-Carlos Menezes,
Marcos-Aurélio Almeida da Silva, Jacques Robin

To cite this version:
Armando Gonçalves da Silva Junior, Pierre Deransart, Luis-Carlos Menezes, Marcos-Aurélio Almeida
da Silva, Jacques Robin. Towards a Generic Trace for Rule Based Constraint Reasoning. [Research
Report] RR-7939, INRIA. 2012, pp.42. �hal-00690604�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49901888?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00690604
https://hal.archives-ouvertes.fr

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

7
9

3
9

--
F

R
+

E
N

G

RESEARCH

REPORT

N° 7939
April 2012

Project-Teams Contraintes

Towards a Generic Trace

for Rule Based

Constraint Reasoning

Armando Gonçalves da Silva Junior, Pierre Deransart, Luis Carlos

Menezes, Marcos Aurélio Almeida da Silva, Jacques Robin

RESEARCH CENTRE

PARIS – ROCQUENCOURT

Domaine de Voluceau, - Rocquencourt

B.P. 105 - 78153 Le Chesnay Cedex

Towards a Generic Trace for Rule Based
Constraint Reasoning

Armando Gonçalves da Silva Junior∗ †, Pierre Deransart‡, Luis

Carlos Menezes§, Marcos Aurélio Almeida da Silva¶, Jacques

Robin‖∗

Project-Teams Contraintes

Research Report n° 7939 — April 2012 — 39 pages

Abstract: CHR is a very versatile programming language that allows programmers to declara-
tively specify constraint solvers. An important part of the development of such solvers is in their
testing and debugging phases. Current CHR implementations support those phases by offering
tracing facilities with limited information.
In this report, we propose a new trace for CHR which contains enough information to analyze any
aspects of CHR∨ execution at some useful abstract level, common to several implementations.
This approach is based on the idea of generic trace. Such a trace is formally defined as an extension
of the ω∨

r semantics of CHR. We show that it can be derived form the SWI Prolog CHR trace.

Key-words: Trace, CHR, CHR∨, Tracer, Generic Trace, Analysis Tool, Observational Semantics,
Debugging, Programming Environment, Constraint Programming, Validation

∗ Federal University of Pernambuco, agsj@cin.ufpe.br
† Work done during internship of Armando Gonçalves da Silva Junior
‡ INRIA Paris-Rocquencourt, Pierre.Deransart@inria.fr
§ University of Pernambuco, Recife, lcsm@ecomp.poli.br
¶ Université Pierre-Marie Curie, Paris, France, maurelio1234@gmail.com
‖ Thalès, France, jacques@gmail.com

Vers une trace générique pour des solveurs de contraintes à
base de règles

Résumé : CHR (Constraint Handling Rules) est un langage de programmation adaptable
qui permet de spécifier très déclarativement des solveurs de contraintes. Un aspect important
de leur mise au point concerne leur débogage. Les implantations actuelles de CHR offrent des
possiblilités de traces avec relativement peu d’information.

Dans ce rapport, nous proposons une nouvelle trace CHR qui contient suffisamment d’information
pour analyser potentiellement tous les détails d’exécution de CHR∨, correspondant à un niveau
d’analyse abstrait et utile, commun à différentes implémentations.

Cette approche est fondée sur l’idée de trace générique. Une telle trace est définie comme une
extension de la sémantique ω∨

r de CHR. On montre qu’elle peut être dérivée de la trace CHR de
SWI Prolog.

Mots-clés : trace, CHR, CHR∨, traceur, trace générique, analyseur, sémantique observation-
nelle, déboggage, environnement de programmation, programmation par contraintes, validation

Towards a Generic Trace 3

1 Introduction

CHR (Constraint Handling Rules)[9] is a uniquely versatile and semantically well-founded pro-
gramming language. It allows programmers to specify constraint solvers in a very declarative
way. An important part of the development of such solvers is in their testing and debugging
phases. Current CHR implementations support those phases by offering tracing facilities with
limited information.

In this report, we propose a new trace for CHR which contains enough information, including
source code ones, to analyze any aspects of CHR∨ execution at some abstract level, general
enough to cover several implementations and source level analysis. Although the idea of formal
specification based tracer is not new (see for example [13]), the main novelty lies in the generic
aspect of the trace. Most of the existing implementations of CHR like in [11, 12, 2, 19] include a
tracer with specific CHR trace events, but without formal specification, nor consideration with
regards to different kind of usages other than debugging.

The notion of generic trace has been informally introduced and used for defining portable
CLP(FD) tracer and portable applications [1, 14]. We propose here to use this approach to specify
a tracer for rule based inference engine like CHR∨. A generic trace has three main characteristics:
it is “high level” in the sense that it is independent from particular implementations of CHR, it
has a specified semantics (Observational Semantics) and can be used to implement debugging
tools or applications. An important property of the proposed generic trace is that it contains
as many information on the solver behaviour as the one contained in the operational semantics.
This property is called “faithfulness” of the observational semantics.

In this report, we present a generic trace for CHR∨ based on its refined operational semantics
ω∨

r [5], and describe a first prototype developed for SWI-Prolog CHR∨ engine. The implemen-
tation consists of combining the original trace of the SWI engine with source code information
to get generic trace events, and then, allowing the user to filter these events using an SQL-based
language.

This report is organized as follows. Section 2 gives a short introduction to generic traces,
observational semantics and faithfulness. Section 3 presents CHR∨, the formal specification
of its operational semantics, based on the ω∨

r semantics, and the requirements for the generic
trace, as its syntax as well. Section 4 presents the observational semantics of CHR∨, OS-CHR∨,
defining formally the generic trace, and shows its faithfulness. Section 5 introduces an executable
operational semantics of CHR∨ defined in SWI Prolog (the code is in the annex) and used to test
its formal semantics. Section 6 describes the CHR-SWI-Prolog based prototype of the generic
trace. Section 7 presents some experimentation. Discussion and conclusions are in the two last
sections.

2 Generic Trace, Observational Semantics and Subtrace

The concept of generic trace has been first introduced in [14], formally defined in [6, 7], and a
first application to CHR presented in [17]. A generic trace is a trace with a specification based
on a partial operational semantics applicable to a family of processes. We give here its main
characteristics and the way to specify a generic trace.

2.1 Preliminaries

A trace consists of an initial state s0 followed by an ordered finite or infinite sequence of trace
events, denoted < s0, e >. T is a set of traces (finite or infinite). A prefix (finite, of size t) of a

RR n° 7939

4 Gonçalves & Deransart & others

Process

Obs. T^v T^w T^vRebuilderExtractor

E I

Figure 1: Extraction, Reconstruction, Faithfulness Property

trace T =< s0, en > (finite or infinite, here of size n ≥ t) is a partial trace Ut =< s0, et > which
corresponds to the t first events of T , with an initial state at the beginning. T may contain any
prefixes of its elements.

A trace can be decomposed into segments containing trace events only, except prefixes which
start with a state. An associative operator of concatenation will be used to denote sequences
concatenations (denoted ++). It will be omitted if there is no ambiguity. The neutral element
is [] (empty sequence). A segment (or prefix) of size 0 is either an empty sequence or a state.

Traces are used to represent the evolution of systems by describing the evolution of their state.
A state of the system is described by a given finite set of parameters and a state corresponds to
a set of values of parameters. Such states will be said virtual as they correspond to states of the
observed system, but they are not actually traced. We will thus distinguish between actual and
virtual traces.

• the actual traces (T w) are a way to observe the evolution of a system by generating traces.
The events of an actual trace have the form e = (a) where a is an actual state described by
a set of attributes values. An actual states is described by a finite set of attributes. Actual
traces corresponds to sequences of events produced by a tracer of an observed system. They
usually encode virtual states changes in a synthetic manner.

• the virtual traces (T v) corresponds to the sequence of the virtual states such that for each
transition in the system between two virtual states, it corresponds an actual trace event.
The virtual trace events have the form e = (r, s) where r is a type of action associated with
a state transition and s, called virtual state, the new state reached by the transition and
described by a set of parameters. Virtual traces correspond to sequences of virtual states
of the observed system which produced the actual trace, together with the kind of action
which produced the virtual state transition.

The correspondence between both kinds of traces is specified by two functions E : T v → T w

and I : T w → T v, respectively the extraction and the reconstruction function, as illustrated by
the figure 1.

The idea is that the actual generated trace contains as much information as possible in
such way that the virtual trace can be reconstructed from the actual one. In other words, the
extraction is done without loss of information. Such a property of the traces is called faithfulness
and, if we denote Idv (resp. Idw) the identity between virtual traces (resp. actual traces), it
states that E ◦ I = Idv (composition) or E = I−1, and I ◦ E = Idw (or I = E−1).

Finally, each trace event is numbered by a chrono, which is an integer incremented by 1 at
each new event. It will be ignored in formal presentations, but will be used as a unique identifier
of the trace events in the implementations.

2.2 Components in Trace Design

When designing a trace, several components must be taken into consideration. They are depicted
in the Figure 2.

Inria

Towards a Generic Trace 5

query

Process

Obs. T^v

Full

T^w

Full

T^v

PartialPartial

T^w
AnalyserDriver

Extractor Rebuilder

E I

Figure 2: Components in Trace Design

1. The observed process whose behavior is modeled by a virtual trace (sequence of successive
virtual states) T v.

2. An extractor component which encodes the virtual trace into the actual one Tw. This
component corresponds in practice to the tracer formalized by the extraction function E.

3. The driver which realizes the actual trace filtering according to some trace query. In this
report we limit its role to select a subtrace of the so called full trace.

4. The rebuilder which may reconstruct from a full or partial actual trace a full or partial
virtual trace. This is possible only if there is no loss of information (faithfulness property).
The rebuilder is formalized by the reconstruction function I.

5. The analyzer, which corresponds to some debugging tool or particular application, working
with the full trace or a partial one.

Notice that in practice the three first components may be interleaved in the sense that for a
given query the driver may select directly a subset of the virtual trace, thus avoiding to extract
and encode a full actual trace before selecting a subtrace.

In this report we focus on three components (observed process, extractor and rebuilder) and
a property. Their description consists in a faithful observational semantics.

2.3 Observational Semantics (OS)

The evolution of a system defined by its virtual traces and the production of the corresponding
actual trace can be described by a so called Observational Semantics as follows. More general
definitions can be found in [7].

Definition 1 (Observational Semantics) An observational semantics consists of < S,R,A, T,E, I, S0 >,
where

• S: domain of virtual states, a subset of the Cartesian product of domains of parameters.

• R: finite set of action types, set of identifiers labeling the transitions.

• A: domain of actual states, a subset of the Cartesian product of domains of attributes.

• Tr: state transition function1 Tr : R × S → S, characterized as Tr(ri, si−1) = si, where
(si−1, si) is the ith transition starting from an initial state s0, and labeled by ri.

1It can be a relation in case of a non deterministic transitions.

RR n° 7939

6 Gonçalves & Deransart & others

• El: local trace extraction function El : S×R×S×T w → A, which is defined for all r, s, s′

such that Tr(r, s) = s′ and characterized as
El(si−1, ri, si, T

w
i−1) = ai, where ai is the ith actual trace event generated after the initial

state s0. In this definition the extraction may use all information accumulated in the already
generated actual trace Tw

i−1.

• Il: local trace reconstruction function Il : S×T w → R×S is characterized as Il(si−1, T
w
i) =

(ri, si). The extraction function is “local” if it uses a terminal bounded subsequence of Tw
i .

Here it will use the last actual trace event only ai
2 (Tw

i = Tw
i−1ai).

• S0 ⊆ S, set of initial states.

The local extraction and reconstruction functions can be extended to obtain the functions E
(resp. I) between sets of virtual and actual traces, as follows:
E(T v

n) = s0El(s0, r1, s1, T
w
0)...El(si−1, ri, si, T

w
i−1)...El(sn−1, rn, sn, T

w
n−1) = Tw

n , as El(si−1, ri, si, T
w
i−1) =

ai and Tw
i = s0a1...ai. And

I(Tw
n) = s0Il(s0, T

w
1)...Il(si−1, T

w
i)...Il(sn−1, T

w
n) with Il(si−1, T

w
i) = (ri, si).

The Observational Semantics is faithful if E and I satisfy the faithfulness property, i.e. if
∀T v, Twfinite, E(T v) = Tw ∧ I(Tw) = T v.

Exemple 1

The figure 3 illustrates the following simple automaton (arrows are labeled by type of actions).

• S = {s0, s1, s2},

• R = {a, b},

• A = {a, b},

• ∀s, T (b, s) = s1, T (a, s1) = s2,

• El(s, r, s
′) = r (the generated actual trace is not used),

• ∀s, Il(s, b) = (b, s1), Il(s1, a) = (a, s2) (the last actual trace event only is used),

• S0 = {s0}.

The virtual traces are: s0(b, s1)
+{(a, s2)(b, s1)

+}∗. The actual traces are: s0b
+(ab+)∗.

s1s2
b

b
b

a

s0

Figure 3: Exemple 1: Finite State Automaton

It is straightforward to see that this OS is faithful, using the regular expression form of the
traces.

2In general a bounded number of element should be used, but also some forward elements like ai+1... For
more details see [7].

Inria

Towards a Generic Trace 7

2.4 Faithful Trace Specification

We first give a condition for an OS to be faithful.

Proposition 1

Given an OS < S,R,A, T r, El, Il, S0 >, E and I the extensions of El and Il as above, if the
following condition holds:

∀r, s, s′, a, Tw, T r(r, s) = s′ ⇒ (El(s, r, s
′, Tw) = a∧ Il(s, T

wa) = (r, s′)), where Tw is a finite
actual trace generated by successive applications of the transition function Tr from an initial
state s0 until an ultimate state s,

then the OS is faithful, i.e. ∀T v, Twfinite, E(T v) = Tw ∧ I(Tw) = T v, where T v is a virtual
trace corresponding to successive applications of the transition function Tr from an initial state
s0 until an ultimate state s.

Proof 1 The proof is by induction on the size of the traces. By definition with each new
transition actual and virtual traces are increased by one event only. Initially: (traces of size 0)
E(s0) = s0 ∧ I(s0) = s0.

Let us assume the property holds for a trace of size n:
(1) E(T v

n) = Tw
n ∧ I(Tw

n) = T v
n (2).

(1) means, according to the definition of E, that Tw
n is the actual trace generated by n suc-

cessive applications of Tr function from a state s0 until some ultimate state sn by using the local
extraction function El at each step.

(2) means, according to the definition of I, that T v
n is the virtual trace reconstructed from the

actual trace Tw
n . The holding conjunction means that the reconstructed virtual trace is the same

as the one used to produce the actual one, therefore I(Tw
n) ends in a state sn, the same as for

T v
n .

One shows that (++ concatenation and list constructor are omitted for singletons)
(1’) E(T v

n+1) = Tw
n+1 ∧ I(Tw

n+1) = T v
n+1 (2’) holds.

Assume that the ultimate state reached by T v
n is sn. Then by definition (if sn is not a final

state), ∃rn+1sn+1, T r(rn+1, sn, sn+1) holds, hence: T v
n+1 = T v

n(rn+1, sn+1), and, by definition
Tw
n+1 = Tw

n an+1.

(1’) holds:
E(T v

n+1) = E(T v
n (rn+1, sn+1)) = Tw

n El(sn, rn+1, sn+1, T
w
n) = Tw

n an+1 = Tw
n+1, by hypothesis (1)

and where the last argument of El, T
w
n , is the actual trace resulting from E(T v

n).
(2’) holds:
I(Tw

n+1) = I(Tw
n an+1) = T v

nIl(sn, T
w
n) = T v

n(rn+1, sn+1) = T v
n+1, by hypothesis (2) and the

definition of Il.

The proposition 1 shows how to design a faithful observational semantics: by specifying
together the local extraction and reconstruction functions, verifying at each step defined by the
transition function that the generated trace allows to reconstruct the same reached state as the
one specified by the transition function.

This results can be extended to actual subtraces (defined as traces obtained by considering a
subset of attributes of the actual traces), provided that there are sufficiently many attributes in
the subtrace to recompute parameters (then the corresponding virtual subtrace is a virtual trace
with a subset of parameters)3.

This is illustrated in the figure 2. A query applied to the actual trace selects a partial actual
trace in such a way that the resulting partial trace can be reconstructed as a partial virtual trace

3This implies some restrictions on the kind of queries (in case of dependencies between parameters or at-
tributes) which are not detailed here. For more details see [7].

RR n° 7939

8 Gonçalves & Deransart & others

(the one from which the partial actual trace could be extracted). In practice, the generic trace

specification consists of an operational semantics corresponding to some abstract level of process
observation, instrumented to produce an actual trace. The level of description (granularity of the
events) should be chosen in such a way that this abstract operational semantics can be abstracted
from each particular semantics of each process of the family. Symmetrically, it is requested that
the abstract operational semantics can be “implemented” in each process of the family.

The faithfulness property of the observational semantics guarantees that the generic actual
trace preserves the whole information concerning the process behavior, in such a way that all
desirable properties of the semantics can be studied just by looking at the trace.

3 Generic Trace for CHR∨

In this section we introduce the generic trace proposed for CHR∨. It is based on the refined
Theoretical Operational Semantics for CHR, ω∨

r , as defined in [5].
Such semantic is declarative enough to cover most of the CHR implementations. It is the

case for ECLiPSe Prolog [2] and SWI-Prolog [19] whose operational semantics can be viewed
as a refinement of ω∨

r (conversely ω∨

r can be viewed as an abstraction of the semantics of these
implementations).

3.1 Introducing CHR∨

Constraint Handling Rules emerges in the context of Constraint Logic Programming (CLP) as a
language for describing Constraint Solvers. In CLP, a problem is stated as a set of constraints,
a set of predicates and a set of logical rules. Problems in CLP are generally solved by the
interaction of a logical inference engine and constraint solving components. The logical rules
(written in a host language) are interpreted by the logical inference engine and the constraint
solving tasks are delegated to the constraint solvers. We borrow from [17] some elements of
presentation.

The following rule base handles the less-than-or-equal problem:

antisymmetry @ leq (X , Y) , leq (Y , X) <=> X = Y .
reflexivity @ leq (X , X) <=> true .
idempotence @ leq (X , Y) \ leq (X , Y) <=> true .
transitivity @ leq (X , Y) , leq (Y , Z) ==> leq (X , Z) .

This CHR program specifies how leq simplifies and propagates as a constraint. The rules
implement reflexivity, antisymmetry, idempotence and transitivity in a straightforward way. The
reflexivity rule states that leq(X,Y) simplifies to true, provided it is the case that X = Y . This
test forms the (optional) guard of a rule, a precondition on the applicability of the rule. Hence,
whenever we see a constraint of the form leq(X,X) we can simplify it to true.

The antisymmetry rule means that if we find leq(X,Y) as well as leq(Y,X) in the constraint
store, we can replace it by the logically equivalent X = Y . Note the different use of X = Y in
the two rules: in the reflexivity rule the equality is a precondition (test) on the rule, while in
the antisymmetry rule it is enforced when the rule fires. (The reflexivity rule could also have
been written as reflexivity@leq(X,X)<=> true.)

The rules reflexivity and antisymmetry are simplification rules. In such rules, the constraint
found are removed when the rule applies and fires. The rule idempotence is a simpagation rule,

Inria

Towards a Generic Trace 9

only the constraint in the right part of the head will be removed. The rule says that if we find
leq(X,Y) and another leq(X,Y) in the constraint store, we can remove one.

Finally, the transitivity rule states that the conjunction leq(X,Y), leq(Y, Z) implies leq(X,Z).
Operationally, we add leq(X,Z) as (redundant) constraint. without removing the constraints
leq(X,Y), leq(Y, Z). This kind of rule is called propagation rule.

The CHR rules are interpreted by a CHR inference engine by rewriting the initial set of
constraints by the iterative application of the rules. Its extension with disjunctive bodies, CHR∨

boosts its expressiveness power, turning it into a general programming language (with no need
of an host language).

Summarizing, there are three kinds of rules in CHR as in CHR∨: simplification, propagation
and simpagation.

The simpagation rules are the most general category of rules and they have the following
form r@Hk\Hr ⇔ G|B., where r is an identifier for the rule, Hr and Hk are the heads of the
rule (in the following they will be denoted respectively as keep and remove), G is the guard, and
B is the body. If the guard is true, it can be omitted.

The operational semantics of such rule is that if Hk and Hr are found in the constraint store
and the guard G is entailed by it, the constraints in Hr should be removed and the constraints
in the body B should be added to the constraint store. If Hk is empty, this rule is called a
Simplification Rule, and this part of the rule is omitted. On the other side, if Hr is empty, this
rule is called a Propagation Rule. In this case, the second part of the head of the rule is omitted
and the ⇔ is replaced by the symbol ⇒.

In CHR∨, we distinguish two kinds of constraints: Rule defined constraints (RDC), which
are declared in the current program and defined by CHR rules, and built-in constraints (BIC),
which are predefined in the host language or imported CHR constraints from some other module.
Furthermore, in CHR∨, bodies may contain disjunctions.

Exemple 2 The following CHR∨rule defines the append(X,Y,Z) constraint:

r1 @ append(X,Y,Z) <=> (X = [], Z = Y);

(X = [H|L1], Z = [H|L2], append(L1,Y,L2)).

In this rule, Z is a list composed by the elements of the list X followed by the elements of the
list Y. If append(X,Y,Z) holds, we have two options: (i) X=[] and, therefore, Z=Y; or (ii) X is
a list in the form [H|L1], and thus, Z is composed by H followed by L1 and then followed by the
elements in Y.

We illustrate the CHR∨solver behavior, by showing the effect of successive applications of the
CHR∨rules on the constraint store. Let us suppose the initial state of the constraint store is
append([1], [2], Z). The actual execution of this rule base is represented by the following set of
transitions. The notation 〈G0〉 ; . . . ; 〈Gn〉 represents the alternative stores. The transition 7→r1

represents the application of r1 and the transition 7→∗ the removal of failed stores. Notice that
from the final state we can conclude Z = [1, 2]:

〈append([1], [2], Z)〉 7→r1

〈[1] = [], Z = [2]〉 ; 〈[1] = [1|[]], Z = [1|L2], append([], [2], L2)〉 7→∗

〈[1] = [1|[]], Z = [1|L2], append([], [2], L2)〉 7→r1

〈[1] = [1|[]], Z = [1|L2], [] = [], L2 = [2]〉 ;

RR n° 7939

10 Gonçalves & Deransart & others

〈

[] = [H |L1], L2 = [H |L2′], append(L1, [2], L2′))
〉

7→∗

〈[1] = [1|[]], Z = [1|L2], [] = [], L2 = [2]〉

3.2 Operational Semantics ω∨r

The ω∨

r semantics given here is adapted from [9].

We define CT as the constraint theory which defines the semantic of the built-in constraints
and thus models the internal solver which is in charge of handling them. We assume it supports
at least the equality built-in. We use [H |T] to indicate the first (H) and the remaining (T)
terms in a list or stack, + for pushing elements into stack (there may be several pushed elements
represented as a list), ++ for sequence concatenation and [] for empty sequences. We use the
notation {a0, . . . , an} for both bags and sets. Bags are sets which allow repeats. We use ∪ for set
union and ⊎ for bag union, {} to represent both the empty bag and the empty set, and E−E′ to
remove all occurrences of elements of E′ from E. The identified constraints have the form c#i,
where c is a user-defined constraint and i a natural number. They differentiate among copies of
the same constraint in a bag. We also use the functions chr(c#i) = c and id(c#i) = i with their
natural extension to lists of constraints and of identifiers.

A CHR program is a sequence of rules, and the head and body of a rule are considered
sequences of atomic constraints. A number is associated with every atomic head constraint,
called the occurrence. Head constraints are numbered per functor, starting from 1,in top-down
order from the first rule to the last rule, and from left to right. However, removed head constraints
in a simpagation rule are numbered before kept head constraints. This numbers will be used to
show in witch position the active constraint is (the j indicator).

An execution state E is a tuple 〈A,S,B, T 〉n, where

• A is the execution stack;

• S is the UDCS (User Defined Constraint Store), a bag of identified user defined constraints;

• B is the BICS (Built-in Constraint Store), a conjunction of constraints;

• T is the Propagation History, a set of sequences for each recording the identities of the
user-defined constraints which fired a rule;

• n is the next free natural used to number an identified constraint.

Current alternatives are denoted as ordered sequence of execution states, L = [E1, E2, ...En]
where E1 is the active execution state and [E2, ..., En] the remaining alternatives.

The initial configuration is represented by L0 = [〈A, {}, true, {}〉
1
]. The top of execution

stack A is a “goal” constraint (the one corresponding to the initial goal of the program) that will
be processed.The transitions are applied non-deterministically until no transition is applicable
anymore.

The formal description of the transitions is done in the form of rules: for each type of action
r ∈ R there is a rule of the form r s 7→ s′, such that Tr(r, s) = s′.

Inria

Towards a Generic Trace 11

Solve+Wake [〈[c|A], S,B, T 〉
n
|L] 7→ [〈A′ + A,S, c ∧B, T 〉

n
|L], where c is built-in

and A′ = wakeup(S, c, B) where wakeup is a function that implements the
wake-up policy [9] whose result is a list of constraints of S woken by adding c
to B.

Activate [〈[c|A], S,B, T 〉
n
|L] 7→ [〈[c#n : 1|A], c ⊎ S,B, T 〉

n+1
|L], where c is user-

defined constraint.

Reactivate [〈[c#i|A], S,B, T 〉
n
|L] 7→ [〈[c#n : 1|A], S,B, T 〉

n
|L], where c is user-

defined constraint.

Apply.1 [〈[c#i : j|A], H1 ⊎H2 ⊎ S,B, T 〉
n
|L] 7→ [〈[c#i : j|A], H1 ⊎H2 ⊎ S,B, T 〉

n
|L]

where the jth occurrence of a constraint with same functor as c exists in
the head of a fresh variant of a rule r@H ′

1\H
′

2 ⇔ g|C and a matching
substitution modulo B, ea, such that chr(H1) = e(H ′

1), chr(H2) = e(H ′

2) and
{(r, id(H1)++id(H2))} /∈ T .

Apply.2 [〈[c#i : j|A], H1 ⊎H2 ⊎ S,B, T 〉
n
|L] 7→ [〈C +H +A,H1 ⊎ S, e ∧ B,T ′〉

n
|L]

where the jth occurrence of a constraint with same functor as c exists in
the head of a fresh variant of a rule r@H ′

1\H
′

2 ⇔ g|C and a matching
substitution moduloB, ea, such that chr(H1) = e(H ′

1), chr(H2) = e(H ′

2)
and {(r, id(H1)++id(H2))} /∈ T and CT |= ∃(B) ∧ ∀B ⊃ ∃(e ∧ g) and
T ′ = T ∪ {(r, id(H1)++id(H2))}, and H = c#i : j if c is in H1, H = [] if c is
in H2, and c ∈ H1∨H2.

Drop [〈[c#i : j|A], S,B, T 〉
n
|L] 7→ [〈A,S,B, T 〉

n
|L], where there is no occurrence j

for c in the program.

Default [〈[c#i : j|A], S,B, T 〉
n
|L] 7→ [〈[c#i : j + 1|A], S,B, T 〉

n
|L], if no other tran-

sition is possible in the current state.

Split [〈[c1 ∨ ... ∨ cm|A], S,B, T 〉
n
|L] 7→ [σ1, ..., σm|L], where σi = 〈[ci|A], S,B, T 〉

n
,

for 1 ≤ i ≤ m. This transition implements depth-first, other search strategies
can be implemented by easily changing this definition.

Fail [E|L] 7→ L, This transition is called automatically if E is a failed state. By
definition a failed state occurs when the Built-in store is false.

aThe matching substitution will record all Equalities in the Built-in Store

This semantics is adapted from [9], it differs mainly by two additional type of actions: Ap-
ply.1 (Apply.2 corresponds to the original Apply rule) and Fail. Apply.1 corresponds to an
attempt of using a CHR rule and will be applied only once for each j,H1, H2 occurrence. If the
transition Apply.2 is applied, there was an application of Apply.1 for the same occurrence j,
but the converse does not hold. The Fail case corresponds to a failed computation. In this case,
other alternatives are explored.

3.3 Generic Trace

We introduce here the generic actual trace of CHR∨ informally. Each transition in the ω∨

r

semantics should generate an actual trace event. Here are the expected types of actions together
with the other possible attributes. There are two categories of attributes: those coding the
virtual states which may serve for the reconstruction, some others may bring useful information
for potential applications.

Each transition corresponding to the type of action r generates an actual trace event whose
first attribute characterizes r uniquely. A subset of the attributes only is attached to a specific
type of event. Attributes are as follows:

RR n° 7939

12 Gonçalves & Deransart & others

• Port, or Event Name: p. It belongs to

{Wake,ActivateRDC,ReactivateRDC, T ryRule, ApplyRule,Drop,
Default, Split, Fail}.

There is an obvious bijection between R (the set of type of actions) of the OS and this set
of event names. It belongs to all events and is always the first attribute.

• Constraint instance of some type w where the constraint is a term c before the first
activation, or c#i : j in the other cases, where i and j are integers. A constraint will be
represented by a list of form [p, t1, t2, ..., tm] or [p, t1, t2, ..., tm, i, j]. w is cons in the former
case and cinst in the later.

• List of constraints instances of some type w: w-lc. It may be a list of terms or a list
of the form [w, [[c1], ..., [cm]]], each element represented by a list as above. w is the kind
of constraints. It may be woken, addrdc, addbic, keep, remove or guard constraints, or a
matching substitution match, represented by a list of equations.

• Reference to a previous trace event: ref, where ref has the form @i and i is an integer
identifying a previous actual trace event (a previous chrono).

• Rule name: r@, where r@ is the name of a rule in the source program.

• State number: n. An integer corresponding to the parameter numbering a solver virtual
state. It belongs to all events and is always the last attribute.

This is formalized in the following tables. The first table is a context free syntax of the generic
trace. Terminals are between brackets. Non terminals corresponding to attributes are names
of attributes. Optional items are between square brackets (those which are not in terminals),
options are separated by vertical bars. Brackets after ∈ denote a set (to avoid multiplicity of
rules).

Gen. traceT ::= Ev_1...Ev_m, m ≥ 0
Ev ::= {GT: [} Chrono {,} Port [Other] Spec_Attr {,}

StateNumber {]}
Chrono ::= {integer}
Port ∈ { Wake,ActivateRDC,RectivateRDC, T ryRule,

ApplyRule,Drop,Default, Split, Fail }
Other ::= Ref | RuleName | Indice | CT | CTIJ
Ref ::= {, @ integer}
RuleName ::= {, identifier @}
Indice ::= {, integer}
Spec_Attr ::= ǫ | {,} SpecAttr Spec_Attr
SpecAttr ::= {[} Attr ListCT {]}
Attr ∈ { Woken, Addrdc, Addbic, Keep, Remove,

Guard, Match }
ListCT ::= ǫ | {,} (CT | CTIJ) ListCT)
CT ::= {[predicate, t_1, ..., t_n]}
CTIJ ::= {[predicate, t_1, ..., t_n, i, j]}
StateNumber ::= {integer}

Table 1: Syntax of the Generic Trace Grammar

Inria

Towards a Generic Trace 13

The following table gives the list of the attributes other than Chrono, Port and StateNumber

for each type of event. The firts item is the transition name (∈ R), the second item the corre-
sponding port (value of the attribute Port) and the last item is the list of attributes.

r ∈ R Port Specific Attributes

Solve+Wake Wake Cons, Woken
Activate ActivateRDC Cinst

Reactivate ReactivateRDC Cinst, Ref
Apply.1 TryRule RuleName, Cinst, Keep, Remove, Guard
Apply.2 ApplyRule Ref, Addrdc, Addbic, Remove, Match, Cinst
Drop Drop Cinst

Default Default Index

Split Split Ref

Fail Fail Ref

Table 2: Specific Attributes for each type of event (except chrono and state number)

The following lists all attributes (specific or other) for each actual trace event corresponding
to some type of action. All examples4 are extracted from a generic trace of the section 6.3.

• Solve+Wake (port Wake): a built-in constraint (BIC) is solicited and some constraints
are woken
2 attributes (total 5):

– Cons: the built-in constraints being “executed”.

– Woken: the (possibly empty) list of the constraints woken by the wake-up policy.

Example: GT: [61,Wake,[=,C1,a0],[woken,[[node,r1,C1,359]]],360]

• Activate (port ActivateRDC): activate a Rule Defined Constraint (RDC) getting the
RDC c#i : j from the top of the execution stack and activating it.
1 attribute (total 4):

– Cinst: the user defined constraint which is “introduced” and “executed”. The attribute
value is the created instance of this constraint.

Example: GT: [3,ActivateRDC,[edge,r1,r9,332],333]

• Reactivate (port ReactivateRDC): Activate a Rule defined constraint with justification
2 attributes (total 5):

– Cinst: the user-defined constraints instance being “re-executed”, which became active.

– Ref: a reference to the Solve+Wake event where this constraint has been woken
(form of justification).

Example: GT:[62,Reactivate,[node,r1,a0,359],@61,360]

• Apply.1 (port TryRule): attempt to apply a Rule; it may be followed by an Apply.2 event
in case of successful application, or another event in case it cannot by applied.
5 attributes (total 8):

4The Prototype does not generate the j index of the constraint, therefore there isn’t any example with this
info.

RR n° 7939

14 Gonçalves & Deransart & others

– RuleName: the name of the tried rule in the source code.

– Cinst: the active user-defined constraint instance (the one at the top of the execution
stack).

– Keep: the keep constraints of the store used to match the head of the tried rule.

– Remove: the remove constraints of the store used to match the head of the tried rule.

– Guard: the guard constraints of the tried rule (as in the source program). This infor-
mation may be useful in case of failure.

Example: GT: [102,TryRule,wrong@,[node,r5,a0,375], [keep,[[node,r4,a0,371],

[edge,r4,r5,340], [node,r5,a0,375]]], [remove,[]],[guard,[[=,a0,a0]]],376]

• Apply.2 (port ApplyRule): applying the rule with success (true guard)
7 attributes (total 10):

– Ref: a refence to the previous Apply.1 event where the name of the applied rule, the
active constraint and some other information can be found.

– Addrdc: the user-defined constraints instances of the body of the applied rule, pushed
on the stack.

– Addbic: the built-in constraints instances of the body of the applied rule, pushed on
the stack.

– Keep: the keep constraints of the store used to match the head of the tried rule.

– Remove: the remove constraints of the store used to match the head of the tried rule.

– Match: the successful matching equations (a way to give the current substitution).

– Cinst: the active user-defined constraint instance (the one at the top of the execution
stack).

Example: GT: [103,ApplyRule,@102,[addrdc],[addbic,[fail,fail]], [keep,[[node,r4,a0,371],

[edge,r4,r5,340], [node,r5,a0,375]]], [remove,[]],[match,[edge(Ri,Rj)=node(,r4,a0)],

[node(Ri,Ci)=edge(,r4,r5)], [node(Rj,Cj)=node(,r5,a0)]], [node,r5,a0,375],376]

• Drop (port Drop): drop a constraint. The currently active constraint c#i : j is removed
from the stack. There is no more occurrences j for c in the program.
1 attribute (total 4):

– Cinst: the constraint which is popped from the execution stack.

Example: GT: [4,Drop,[edge,r1,r9,332],333]

• Default (port Default): The occurrence index j of the active constraint c#i : j is incre-
mented (proceed to the next occurrence of the constraint instances in the program). There
is no more occurrences j for c in the program.
2 attributes (total 5):

– Cinst: the last used constraint occurrence.

– Index: The occurrence Index j is incremented (proceed to the next occurrence of the
constraint instances in the program.

Example: GT: [28, Default, [node, r7, r, 5, 386], 6, 388]5

5It’s a hand-made example. Although, It’s not difficult to compute how many Default transitions was applied
before the Drop or Apply.2. For the prototype this transition is negligible.

Inria

Towards a Generic Trace 15

• Split (port Split): create a disjunction. Occurs when a rule is disjunctive.
1 attribute (total 4):

– Ref: a reference to the most recent Apply.2 event with the rule whose body contains
the disjunction.

Example: GT: [60,Split,@59,360]

• Fail (port Fail): the referred rule application fails. It Occurs when the Built-In store has
been tested false.
1 attribute (total 4):

– Ref: a reference to the most recent failed Apply.2 event.

Example: GT: [104,Fail,@103,376]

All the variables which occur in the initial goal will keep their original name in all their
occurrences in the generic trace. Each actual trace event has a unique identifier, called the
chrono, which is an integer incremented by 1 at each new event.

The formal definition of trace generation will be given in section 4.1.

4 Observational Semantics of CHR∨(OS-CHR∨)

We specify the observational semantics of CHR∨, OS-CHR∨, on the top of the operational
semantics of section 3.2, by specifying the transition function and the local functions of extraction
El and of reconstruction Il. The resulting OS, called OS-CHR∨, is faithful by construction (by
property 1).

According to the definition 1, the observational semantics consists of < S,R,A, T r, El, Il, S0 >.
The definition of the transition function Tr is given by the operational semantics. The definitions
of El, Il are given in the next two sections. The others elements are as follows.

• S: domain of virtual states. It the set of configurations defined as a list of execution states,
where an execution state E is defined by the 〈A,S,B, T 〉n as described in the section 3.2.

• R: finite set of action types: {Solve+Wake, Activate, Reactivate, Apply.1, Apply.2,
Drop, Default, Split, Fail}

• A: domain of actual states: each state consists of a tuple of values of a subset of the
attributes. All attributes are defined in the section 3.3.

• S0 ⊆ S, set of initial states, specified below.

In this presentations the chrono is omitted.

4.1 OS-CHR∨: Extraction (Tr, El)

This description is based on the transitions as described in the table 3.2. Each item corresponds
to a type of action and it specifies the new generated actual trace event, using the previous state,
the reaches state and the previously generated actual trace. The current generated actual trace
is denoted N , an ordered sequence of the trace events. It has the form, for each type of action r
and transition Tr(r, s) = s′: El(s, r, s

′, N) = a, which will be represented by a rule:

RR n° 7939

16 Gonçalves & Deransart & others

r s,N 7→ s′, N++a

The initial configuration will be represented as
L0 = [〈A, {}, true, {}〉

1
], N = []

Solve+Wake

[〈[c|A], S,B, T 〉
n
|L], N 7→ [〈A′ + A,S, c ∧B, T 〉

n
|L],

N++[Wake, c, wakeup(S, c,B), n], where SolveCond.

Activate [〈[c|A], S,B, T 〉
n
|L], N 7→ [〈[c#n : 1|A], c ⊎ S,B, T 〉

n+1
|L],

N++[ActivateRDC, c, n], where c is a rule-defined constraint

Reactivate [〈[c#i|A], S,B, T 〉
n
|L], N 7→ [〈[c#n : 1|A], {c#n} ⊎ S,B, T 〉

n
|L],

N++[ReactivateRDC, c, wake(c,N)], where CondReac (see below)

Apply.1 [〈[c#i : j|A], H1 ⊎H2 ⊎ S,B, T 〉
n
|L], N 7→

[〈[c#i : j|A], H1 ⊎H2 ⊎ S,B, T 〉
n
|L], N++[TryRule, r, c#i : j,H1,H2, g, n]

where CondApp1 (see below).

Apply.2 [〈[c#i : j|A], H1 ⊎H2 ⊎ S,B, T 〉
n
|L], N 7→

[〈C + [H |A],H1 ⊎ S, e ∧B, T ′〉
n
|L],

N++[ApplyRule, tryRule(N), addRDCs(C), addBICs(C),H1,H2, e,H,n]
where CondApp2 (see below).

Drop [〈[c#i : j|A], S,B, T 〉
n
|L], N 7→ [〈A,S,B, T 〉

n
|L], N++[Drop, c#i : j, n].

Where c is an active constraint.

Default [〈[c#i : j|A], S,B, T 〉
n
|L], N 7→ [〈[c#i : j + 1|A], S,B, T 〉

n
|L], N++

[Default, c#i : j, j + 1, n].

Split [〈[c1 ∨ ... ∨ cm|A], S,B, T 〉
n
|L], N 7→ [σ1, ..., σm|L], N++[Split, rule(N), n],

where CondSplit (see below).

Fail [E|L], N 7→ L, N++[Fail, rule(N), n], where CondFail (see below).

The conditions appearing in our observation semantics are defined as follows:
SolveCond: c is built-in, and A′ = wakeup(S, c, B) defines which CHR constraints of S are

woken by adding the constraint c to the built-in store B.
CondReac: the function wake : Constraint, T race 7→ Wake is responsible for selecting the

Wake event that justifies the Reactivate.
CondApp1: where the jth occurrence of a constraint with same functor as c exists in the

head of a fresh variant of a rule r@H ′

1\H
′

2 ⇔ g|C and a matching substitution e, such that
chr(H1) = e(H ′

1), chr(H2) = e(H ′

2) and {(r, id(H1)++id(H2))} /∈ T .
CondApp2: C is the body of the rule r@H ′

1\H
′

2 ⇔ g|C. The tryRule : Trace 7→ TryRule
will retrieve the TryRule event generated by Apply.1. It will search for the event in the trace
log, normally the event TryRule will be one step back. addRDCs : Body 7→ Sequence(RDC)
will select only the RDCs on the body; the function addBICs : Body 7→ Sequence(BIC) will
select the BICs on the body. Same conditions of Apply.1 plus CT |= ∃(B) ∧ ∀B ⊃ ∃(e ∧ g)
, T ′ = T ∪ {(r, id(H1)++id(H2))}, and H = c#i : j if c is in H1, H = [] if c is in H2, and
c ∈ H1∨H2.

CondSplit: where σi = 〈[Ai|A], S, B, T 〉n, for 1 ≤ i ≤ m, and rule : Trace 7→ ApplyRule is a
function that will retrieve the cause of the split, a disjunctive rule.

CondFail: n is the numbering of the failed state E , and rule(N) is a function that will
retrieve the cause of the failure.

Inria

Towards a Generic Trace 17

4.2 OS-CHR∨: Reconstruction (Il)

We show here, by specifying a local reconstruction function Il, that the observationa semantics
is faithful, i.e. that the extracted (actual) generic trace contains all information needed to
reconstruct the original virtual trace (the trace semantics equivalente to the given operational
semantics).

The local reconstruction function takes a current state s and the generated actual trace
including the last generated event a, N++a; it identifies the type of action r and produces the
new virtual state s′. It has the form, for each type of action r: Il(s,Na) = (r, s′), which will be
represented by a rule:

r s,N++a 7→ s′

with a = [r|a′].

The initial configuration will be represented as L0 = [〈A, {}, true, {}〉
1
], N = []

For each item corresponding to a type of action, the reconstructed state s′ is the same as the
new state obtained by the corresponding transition Tr(r, s) = s′ as described in the table 3.2.
This constitutes the proof of faithfulness of OS-CHR∨, by property 1.

The conditions consists of an optional condition part and a computation part. They are just
used here to express computations.

Solve+Wake

[〈A,S,B, T 〉
n
|L], N++[Wake, c, C, n′] 7→ [〈C + A′, S, c ∧B, T 〉

n′ |L], if
SolveCond.

Activate [〈A,S,B, T 〉
n
|L], N++[ActivateRDC, c, n′] 7→

[〈[c#n′ : 1|A′], c ⊎ S,B, T 〉
n+1

|L], if ActiCond.

Reactivate [〈A,S,B, T 〉
n
|L], N++[ReactivateRDC, c#i, wakeEvent, n′] 7→

[〈[c#n′ : 1|A′], {c#n′} ⊎ S,B, T 〉
n′ |L], if CondReac.

Apply.1 [〈A,S,B, T 〉
n
|L], N++[TryRule, r, c#i : j,H1,H2, g, n

′] 7→
[〈[c#i : j|A′],H1 ⊎H2 ⊎ S′, B, T 〉

n
|L], if CondApp1.

Apply.2 [〈A,S,B, T 〉
n
|L], N++[ApplyRule, r,RDCs, BICs,H1,H2, e,H, n′] 7→

[〈C + A,H1 ⊎ S′, e ∧B, T ′〉
n
|L], if CondApp2.

Drop [〈A,S,B, T 〉
n
|L], N++[Drop, c#i : j, n′] 7→ [〈A′, S,B, T 〉

n′ |L], if DropCond.

Default [〈A,S,B, T 〉
n
|L], N++[Default, c#i : j, j′, n′] 7→

[〈[c#i : j′|A′], S,B, T 〉
n′ |L], if DefCond.

Split [〈A,S,B, T 〉
n
|L], N++[Split, r, n′] 7→ [σ1, ..., σm|L′], if CondSplit.

Fail [〈A,S,B, T 〉
n
|L], N++[Fail, r, n′] 7→ L, if CondFail.

SolveCond: A = [c|A′] ∧ n = n′ ∧C = wakeup(S, c, B).

ActiCond: A = [c|A′] ∧ n = n′.

CondReac: A = [c#i|A′] ∧ wakeEvent = wake(c,N) ∧ n = n′.

CondApp1: A = [c#i : j|A′] ∧ S = H1 ⊎H2 ⊎ S′ ∧ n′ = n.

CondApp2: A = H+A′, C is the body of the rule 〈r@H ′

1\H
′

2 ⇔ g|C〉∧S = H1⊎H2⊎S
′∧T ′ =

T ∪ {(r, id(H1) + id(H2))} ∧ n′ = n, and H = c#i : j if c is in H1, H = [] if c is in H2 and

RR n° 7939

18 Gonçalves & Deransart & others

c ∈ H1∨H2..

DropCond: A = [c#i : j|A′] ∧ n′ = n.

DefCond: A = [c#i : j|A′] ∧ j′ = j + 1 ∧ n′ = n.

CondSplit: A = 〈[A1 ∨ ... ∨ Am|A′], S, B, T 〉n∧σi = 〈[Ai|A], S, B, T 〉n, for 1 ≤ i ≤ m∧n′ = n.

CondFail: n′ = n.

Notice that the local reconstruction function does not use the full generated trace, but the
last actual trace event only. This guarantees a better efficiency for analysis. However this is
obtained at the cost of including specific details into the generic trace. For example the attribute
n (state indicator) could be retrieved from the current virtual state; the fact to have it in the
current actual trace event avoids some computation.

5 Prototyping the Operational Semantics of CHR∨

The objective of building a prototype of the operational semantics described in the section 3.2 is
to produce tests of trace generation, in order to improve the quality of the design. In fact there is
no way to prove that the specification given in an algebraic style, with some implicit or informal
parts, is sound. Indeed the simple fact to implement in Prolog an executable specification with
which it is possible to simulate the extraction of the generic trace is a step towards a better
quality of the proposed formal specification.

The SWI-Prolog implementation of the operational semantics of CHR∨ is built with the
feature to produce the generic trace. The following subsections illustrate the architecture of the
proposed implementation. The full program is given in the annexe.

5.1 CHR∨ Syntax and Rule Compilation

Listing 1: CHR∨ Syntax

:− op (1100 , xfx , \) .
:− op (1180 , xfx ,==>) .
:− op (1180 , xfx ,<=>) .
:− op (1190 , xfy , @) .

The CHR∨ Syntax is represented Prolog infixed operators as presented in Listing 1. This syntax
accepts CHR∨ rules like in the following CHR program:

transitivity @ leq (vX , vY) , leq (vY , vZ) ==> leq (vX , vZ) .
idempotency @ leq (vX , vY) / leq (vX , vY) <==> true .
antisymmetry @ leq (vX , vY) , leq (vY , vX) <==> vX=vY .

However, the CHR∨ Operational Semantics does not search rules individually. It searches for
the i-th occurrence of some constraint operator in program. In order to provide the appropriate
information, the CHR∨ implementation generates a compiled version of this CHR∨ program as
presented below:

Inria

Towards a Generic Trace 19

rule (leq , 1 , transitivity , [vX , vY] ,
[] , [leq (vX , vY) , leq (vY , vZ)] , [] , [leq (vX , vZ)]) .

rule (leq , 2 , transitivity , [vY , vZ] ,
[] , [leq (vX , vY) , leq (vY , vZ))] , [] , [leq (vX , vZ)]) .

rule (leq , 3 , idempotency , [vX , vY] ,
[leq (vX , vY)] , [leq (vX , vY)] , [] , [true]) .

rule (leq , 4 , idempotency , [vX , vY] ,
[leq (vX , vY)] , [leq (vX , vY)] , [] , [true]) .

rule (leq , 5 , antisymmetry , [vX , vY] ,
[active , leq (vY , vX)] , [] , [] , [vX=vY])

rule (leq , 5 , antisymmetry ,
[vY , vX] , [leq (vX , vY) , leq (vY , vX)] , [] , [] , [vX=vY])

the predicate rule(Op,Ind,Rule,Args,Remove,Keep,Guard,Body) identifies the CHR∨ rule
that contains the Indth occurrence of Op in its head.

5.2 Auxiliary Functions

To implement CHR∨ Operational Semantics, it was necessary to define some auxiliary functions
responsible for variable management and built-ins implementation.

Variables

In the proposed CHR∨ implementation variables can be classified as local or global. Local
variables are used in CHR∨ Rules and should be replaced by global variables or constants when
the rule is executed. CHR∨ variables are not directly implemented using Prolog’s variables
because it was desirable to give more informations about variable names to trace and the search
method.

In the implementation, variable can be any Prolog’s atom. The predicates global_variable\1
and local_variable are used to decide if some term represents a global or local variable, re-
spectively. In the initial implementation local variables are atoms whose first letter is “v” and
the second is a upper-case letter. Global variables are terms in the form v(_) or atoms initiated
with “v”, followed by a lower-case letter.

Local variables should be replaced by constants or global variables when a CHR∨ is exe-
cuted. The predicate: instantiate_locals(T1,T2,Binds) replaces the local variables found
in T1 by other values, producing the term T2; the argument Binds contains the performed
substitutions. In T1 local variables are not replaced by a constant, the instantiable_locals

predicate replaces the local variable by an undefined prolog variable. The auxiliary predicate
allocate_unusedvars, instantiates these undefined variables with free global variables.

Built-ins Constraint

The equality constraint (=) is the only built-in constraint implemented. The built-in memory
contains a list of normalized equalities in the form:
GlobalVariable = (GlobalVariable | Constant).
To manipulate the built-in memory, two auxiliary functions are defined:

• solve_builtin(C,B1,B2,UDC1,UDC2): inserts the built-in constraint C in the built-in
memory B1, producing the built-in memory B2. If the memory becomes inconsistent, the
resultant memory produced is false. When the built-in constraint is inserted in memory,
the User Defined Constraints Memory UDC1 is analyzed and the constraints affected by
the built-in insertion are listed in UDC2.

RR n° 7939

20 Gonçalves & Deransart & others

• replace(T1,B,T2): replaces the global variables in T1 by their values (if they are defined),
producing the term T2.

5.3 CHR∨ Operational Semantics Implementation

The CHR∨ Operational Semantics implementation is similar to the semantics proposed in Section
3.2. To illustrate this implementation, Listing 2 presents the Prolog implementation of the rules
bf Solve+Wake and Activate.

Listing 2: Solver+Wake Rule

%Solve+Wake Rule
[([C | A] , UDC , B , H , N) | Tl]−−>[(A2 , UDC2 , B2 , H , N) | Tl] :−

is_builtin (C) ,
solve_builtin (C , B , B2 , UDC , Wokeup) ,
merge (Wokeup , A , A2) ,
remove (UDC , Wokeup , UDC2) .

%Activate Rule
[([C | Tl] , UDC , B , H , N) | T] −−−> ([([(C3#0) | Tl] , [C3 | UDC] , B←֓

, H , N2)] | T) :−
is_UDC (C) ,
replace (C , B , C2) ,
C3 = C2^N ,
N2 is N + 1 .

5.4 Generic Trace Extraction

To generate the generic trace in the executable operational semantics, the predicate: gentrace(Id,Data)
in added. It generates a trace with the information contained in Data. The Id represents the
ordering number of the generated trace. To illustrate this, Listing 3 contains the modified version
of the rules presented in Listing 2.

Listing 3: Solver+Wake Rule

%Solve+Wake Rule
[([C | A] , UDC , B , H , N) | Tl] −−−> ([(A2 , UDC2 , B2 , H , N) | Tl])) ←֓

:−
is_builtin (C) ,
solve_builtin (C , B , B2 , UDC , Wokeup) ,
insert_reference (Wokeup , Pos , RefWokeup) ,
merge (RefWokeup , A , A2) ,
remove (UDC , Wokeup , UDC2) ,
gentrace (Pos , [wake , C , [wokeup , Wokeup]]) .

%Activate Rule
[([C | Tl] , UDC , B , H , N) | T] −−−> ([([(C3#0) | Tl] , [C3 | UDC] , B←֓

, H , N2) | Tl]) :−
isUDC (C) ,
replace (C , B , C2) ,
C3 = C2^N ,
N2 is N + 1 ,
gentrace (_ , [activate , C , N]) .

Inria

Towards a Generic Trace 21

5.5 Executing a CHR∨ Program

The CHR∨ Operational Semantics is a small-step semantics: it describes a single computation
step in program execution. To execute a CHR∨ program, the implementation defines the operator
(--*->) that executes continuously the Operational Semantics Operator (--->).

6 Prototyping of the generic CHR∨ Trace Using SWI Prolog

A generic CHR∨tracer for SWI-Prolog was developed, as the default trace output contains most
of the necessary info to build the GT. In Section 6.1, we introduce the SWI Prolog debug output
trace produced when executing CHR rule bases. In the section 6.2, we explain the SWI CHR
trace; Section 6.3 presents the way to map the SWI produced trace into OS-CHR∨, the actual
generic trace.In the last two sections we present some trace queries and an example6.

6.1 Running Example

The generic trace will be illustrated on a simple disjunctive graph-coloring problem. The following
CHR∨rules define a graph coloring solution:

node1@ node(r1,C) ==> (C = r ; C = b ; C = g).

node2@ node(r2,C) ==> (C = b ; C = g).

node3@ node(r3,C) ==> (C = r ; C = b).

node4@ node(r4,C) ==> (C = r ; C = b).

node5@ node(r5,C) ==> (C = r ; C = g).

node6@ node(r6,C) ==> (C = r ; C = g; C = t).

node7@ node(r7,C) ==> (C = r ; C = b).

startGraph@ edges<=> edge(r1,r2), edge(r1,r3), edge(r1,r4),

edge(r1,r7), edge(r2,r6), edge(r3,r7), edge(r4,r5), edge(r4,r7),

edge(r5,r6), edge(r5,r7).

wrong@ edge(Ri,Rj), node(Ri,Ci), node(Rj,Cj) ==> Ci = Cj | false.

l1@ l([],[]) <=> true.

l2@ l([R|Rs],[C|Cs]) <=> node(R,C), l(Rs,Cs).

This CHR base handles a graph-coloring problem with at most 3 colors where any two nodes
connected by a common edge must not have the same color. The constrain node(r1,C) means
that node r1 has color C, the startGraph rule defines edges between nodes of a graph and the
wrong rule assures that two nodes will have different colors. A small part of the SWI trace of
the execution of the following goal “edges, l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6])." is
depicted here:

CHR: (1) Insert: node(r1,_G9234) # <384>

CHR: (2) Call: node(r1,_G9234) # <384>

CHR: (2) Try: node(r1,_G9234) # <384> ==> _G9234=r;_G9234=b;_G9234=g.

CHR: (2) Apply: node(r1,_G9234) # <384> ==> _G9234=r;_G9234=b;_G9234=g.

...

CHR: (2) Insert: node(r7,_G9235) # <386>

CHR: (3) Call: node(r7,_G9235) # <386>

CHR: (3) Try: node(r7,_G9235) # <386> ==> _G9235=r;_G9235=b.

6Source-code available on http://www.assembla.com/code/generic-tracer/subversion/nodes

RR n° 7939

http://www.assembla.com/code/generic-tracer/subversion/nodes

22 Gonçalves & Deransart & others

SwiTrace T ::= {P1...Pm},m ≥ 0
Ports P ::= C|E|F |R|W |I|RE|TY |A
Call C ::= ”CHR : (depth)Call : ”CT
Exit E ::= ”CHR : (depth)Exit : ”CT
Fail F ::= ”CHR : (depth)Fail : ”CT
Redo R ::= ”CHR : (depth)Redo : ”CT
Wake W ::= ”CHR : (depth)Wake : ”CT
Insert I ::= ”CHR : (depth)Insert : ”CT
Remove RE ::= ”CHR : (depth)Remove : ”CT
Constraint CT ::= constraintName(t1...tn)”# < id > ”
Try TY ::= TYpropagation|TYsimplification|TYsimpagation

Try2 TYpropagation ::= ”CHR : (depth)Try : ”Hk” ==> ”G”|”B|
Try3 TYsimplification ::= ”CHR : (depth)Try : ”Hr” <=> ”G”|”B|
Try4 TYsimpagation ::= ”CHR : (depth)Try : ”Hk\Hr” <=> ”G”|”B
Apply A ::= Apropagation|Asimplification|Asimpagation

Apply2 Apropagation ::= ”CHR : (depth)Apply : ”Hk” ==> ”G”|”B|
Apply3 Asimplification ::= ”CHR : (depth)Apply : ”H ′

r <=>′ G”|”B|
Apply4 Asimpagation ::= ”CHR : (depth)Apply : ”H ′

k\
′Hr” <=> ”G”|”B

Head H ::= CT | CT ”, ”H
Constraint2 CT2 ::= constraintName(t1...tn)
Body or BIC G,B ::= CT2 | CT2”, ”G

Table 3: Swi-Trace’s Grammar

CHR: (3) Apply: node(r7,_G9235) # <386> ==> _G9235=r;_G9235=b.

CHR: (4) Wake: node(r7,r) # <386>

CHR: (4) Try: node(r1,r) # <384>, edge(r1,r7) # <376>,

node(r7,r) # <386> ==> r=r | false.

CHR: (4) Apply: node(r1,r) # <384>, edge(r1,r7) # <376>,

node(r7,r) # <386> ==> r=r | false.

CHR: (3) Fail: node(r7,r) # <386>

CHR: (4) Wake: node(r7,b) # <386>

...

This subset of the execution is responsible for trying the value C1 and C7 as red then back-
tracking because C1 and C7 cannot have the same colors.

Informal definitions of the trace events of SWI-Prolog can be found here7. Some problems
occur when an analysis of the trace is needed: the try/apply transition has no rule name, it’s
very difficult to link the name of the generated var with the name of the variable passed as goal
since all vars were renamed and there isn’t an efficient way to query it.

6.2 Understanding SWI-Prolog Trace

The SWI-Prolog debugging output will produce a trace according to the following grammar
depicted in table 3.

SWI-Prolog’s default search strategy implemented is depth-first, the parameter depth indi-
cates the transaction’s actual level in the search tree and id is the constraint’s unique identifier.

7http://www.swi-prolog.org/pldoc/doc_for?object=section(2,’7.4’,swi(’/doc/Manual/debugging.html’))

Inria

http://www.swi-prolog.org/pldoc/doc_for?object=section(2,'7.4', swi('/doc/Manual/debugging.html'))

Towards a Generic Trace 23

Small parts of the trace will be shown and explained.

CHR: (0) Insert: edges # <372>

CHR: (1) Call: edges # <372>

The trace produced by these two ports are responsible for removing a constraint from the goal
and insert in execution stack. Notice that in SWI’s trace they always appear together.

CHR: (2) Exit: edge(r1,r2) # <373>

The computation over the active constraint is finished.

CHR: (3) Try: node(r7,_G9235) # <386> ==> _G9235=r;_G9235=b.

CHR: (3) Apply: node(r7,_G9235) # <386> ==> _G9235=r;_G9235=b.

The trace produced by Try and Apply ports only happens together and it means that a rule was
tried and applied respectively.

CHR: (4) Wake: node(r7,r) # <386>

The Wake port is traced when a built-in is solved, in this case the constraint was reactivated
because C7 = r.

6.3 Transforming SWI Tracer into OS-CHR∨

The SWI’s output is not enough to perform a translation to OS-CHR∨. We do need information
about what was the goal passed (to map all variables) and access to the source-code (get the
rule names). The inputs and outputs of the algorithm is illustrated by figure 4. The Translator’s
algorithm will be explained by example.

Figure 4: Translator structure

For the Wake port the we have to look to previous values of the trace and determine what BIC
solving fired this transition and also a Reactivate event will be produced. In this case C1 = a0

was the cause.

CHR: (3) Wake: node(r1,a0) # <359>

-> [61,Wake,[=,C1,a0],[woken,[[node,r1,C1,359]]],360]

++

[62,Reactivate,[node,r1,a0,359],@61,360]

Some ports have direct connection with OS-CHR∨: Call and Exit. All others ports will need
a computation using the generated SWI trace. The Insert port is ignored because is redundant
with the port Call.

CHR: (1) Call: edges # <330>

->

GT: [0,ActivateRDC,[edges,330],331]

RR n° 7939

24 Gonçalves & Deransart & others

For the tryRule map, we have to look the source code and try to find what is the rule name
for that transition, and while generating the trace we keep track of the active constraint.

CHR: (7) Try: node(r4,a0) # <371>, edge(r4,r5) # <340>,

node(r5,a0) # <375> ==> a0=a0 | fail.

->

GT: [102,TryRule,failure@,[node,r5,a0,375],[keep,[[node,r4,a0,371],

[edge,r4,r5,340], [node,r5,a0,375]]],[remove,[]],

[guard,[[=,a0,a0]]],376]

ApplyRule is the most complicated map, we have to link(@) with the tryRule and check if it
has a disjunctive body, if it is we have keep track to link correctly with a possible failure status;
it can generate a lot of trace event depending on how many constraints were added/removed and
possibly a split transition. The link function will recover the real name of the variable, in this
case _G9245 = C8

CHR: (9) Apply: node(r8,_G9245) # <390> ==> _G9245=a0;

_G9245=a1;_G9245=a2;_G9245=a3.

->

[141,ApplyRule,@140,[addrdc],[addbic,[=,C8,a0],[=,C8,a1],

[=,C8,a2],[=,C8,a3]],[keep,[[node,r8,C8,390]]],

[remove,[]],[match,[node(_,C)=node(r8,C8)]],

[node,r8,C8,390],391]

++

GT: [142,Split, @141, 391]

The Exit port has a direct map with OS-CHR∨.

CHR: (2) Exit: edge(r1,r9) # <332>

->

GT: [4,Drop,[edge,r1,r9,332],333]

The Fail port will produce a Fail event with its cause, a rule witch body contains the false
built-in.

CHR: (6) Fail: node(r5,a0) # <375>

->

[109,Fail,@108,376]

6.4 Trace Querying

The produced generic trace is represented by a sequence of java objects. The language we choose
for querying the trace is the SQL for Java Objects (JoSQL), its implementation can be found
here8.

These are some examples of query in JoSQL: (on a trace of example 6)

• SELECT * FROM trace WHERE type =’ApplyRule’ AND (name=’wrong@’ OR name=’node1@’
OR name=’node2@’) Will select the trace of the execution of rules: wrong, node1,node2.

• SELECT * FROM trace WHERE type =’Split’ OR type =’Fail’ Will select all split and
fail transition.

8http://josql.sourceforge.net/

Inria

http://josql.sourceforge.net/

Towards a Generic Trace 25

• SELECT addrdc,remove,addbic FROM trace WHERE type =’ApplyRule’

The last query is more general and can by used by any application which need to handle a
current state of the constraint store.

6.5 Trace Analyzer

A Pretty Printer Analyzer was developed. This analyzer has a JoSQL query as parameter and
prints the events that match the query. The OS-CHR∨trace for leq with the goal leq(A,B),leq(B,C),leq(C,A)
is depicted. All events and attributes were selected by JoSQL, they are listed in Section 3.3.

[0,ActivateRDC,[leq,A,B,201],202]

[1,Drop,[leq,A,B,201],202]

[2,ActivateRDC,[leq,B,C,202],203]

[3,TryRule,transitivity@,[leq,B,C,202],[keep,[[leq,A,B,201],

[leq,B,C,202]]], [remove,[]],[guard,[]],203]

[4,ApplyRule,@3,[addrdc,[leq,A,C]],[addbic],[keep,[[leq,A,B,201],

[leq,B,C,202]]],[remove,[]],[match,[leq(X,Y)=leq(A,B)],

[leq(Y,Z)=leq(B,C)]],[leq,B,C,202],203]

[5,ActivateRDC,[leq,A,C,204],205]

[6,Drop,[leq,A,C,204],205]

[7,Drop,[leq,B,C,202],205]

[8,ActivateRDC,[leq,C,A,205],206]

[9,TryRule,antisymmetry@,[leq,C,A,205],[keep,[]],

[remove,[[leq,C,A,205], [leq,A,C,204]]],[guard,[]],206]

[10,ApplyRule,@9,[addrdc],[addbic,[=,C,A]],[keep,[]],

[remove,[[leq,C,A,205], [leq,A,C,204]]],

[match,[leq(X,Y)=leq(C,A)],[leq(Y,X)=leq(A,C)]],[leq,C,A,205],206]

[11,Wake,[=,C,A],[woken,[leq,B,C,202],[leq,A,B,201]],206]

[12,Reactivate,[leq,B,A,202],@11,206]

[13,TryRule,antisymmetry@,[leq,B,A,202],[keep,[]],

[remove,[[leq,B,A,202], [leq,A,B,201]]],[guard,[]],206]

[14,ApplyRule,@13,[addrdc],[addbic,[=,B,A]],[keep,[]],

[remove,[[leq,B,A,202], [leq,A,B,201]]],

[match,[leq(X,Y)=leq(B,A)],[leq(Y,X)=leq(A,B)]],[leq,B,A,202],206]

[15,Drop,[leq,A,A,202],206]

[16,Drop,[leq,A,A,205],206]

7 Experimentation

To evaluate our approach 3 benchmarks were set: 10-Queens, primes9 and a compiled example
of scheduling from CHORD[4], available on its test folder, the reason for choosing a CHORD
example was the complexity, more than 100 rules. All results are shown in the following table.

All the experiments were performed on a PC with Pentium Core 2 Duo processor running
at 2,4 GHz, with 4 GB of RAM and 1.5GB were reserved to the Java heap. The Prolog trace
generator and the trace querying process are two different process as described by Langevine[15].

The results are depicted in the table 4. Each line corresponds to a program. The firts
column gives the execution time without tracing (trace off); the second, the execution time with

9http://people.cs.kuleuven.be/~tom.schrijvers/Research/CHR/chr_benchmarks/primes.chr

RR n° 7939

http://people.cs.kuleuven.be/~tom.schrijvers/Research/CHR/chr_benchmarks/primes.chr

26 Gonçalves & Deransart & others

production of the SWI trace (trace on), the third the time in generic trace mode, and the last
column gives the ratio between the sizes of both traces.

CHR∨tracing evaluation (time)
Problems No Trace Swi Trace OS-CHR∨ Size of the Trace

(SWI/OS-CHR∨)
scheduling 0.1s 0.2s 0.27s 0.5M / 0.5MB
primes 57s 1min 1min 05s 5.4MB / 6.3MB
10-Queens 7s 1 min 14s 1min 25s 59.7MB / 71.7MB
graphColoring 0.007s 0.025s 0.083s 14.5KB / 21KB

Table 4: Experiments

The following queries were done:

scheduling> g []. %starts chord computation

primes> candidates(8000). %calculates primes upto 8000

10-Queens> solveall(10,N,S). % give all solutions for 10 Queens.

graphColoring> edges, l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]).

%graph with 7 edges

We observe that there is an (expected) slowdown in debugging modes (SWI trace and generic
trace). It is slightly higher for the generic trace as it uses the SWI trace. Querying the generated
trace does not slowdown more, since it can be done in paralel with trace generation.

For the selection of subtraces, tests executed on JoSQL show that that a list of 1,000,000
generic trace events can be queried in about 1.5s.

It must be noted that we limit the queries to patterns attached to a single event, limiting
thus the complexity of the queries. Sophisticated queries envolving undetermined number of
trace events could speed up seriously the performances.

8 Discussion

Several aspects of such a generic trace were explored on [17], in particular its relations with
components software development, the use of the fluent calculus to prototype traces and the use
of object oriented specification methods. The generic trace presented in that work is thus limited
to the simple theoretical operational semantics ωt [10] and therefore is less precise than the one
given here.

Our approach of the observational semantics relies to abstract interpretation. The OS is
similar to the “Observable Semantics” of Lucas [16] or the partial trace semantics of Cousot
[3]. The parameters used to describe the execution states are, as expressed by Lucas, “syntactic
objects used to represent the conduct of operational mechanisms”. The traces are abstract
representations of CHR∨ semantics which allow to take into account the sole details we want to
consider as common to different implementations. The (abstraction) relations between a generic
trace and the traces of specific implementations of solvers are explored in [6], together with a
compliance proof method. Furthermore the generic trace contains a set of details considered as
useful in several debugging tasks with several levels of refinement or observation. It could be

Inria

Towards a Generic Trace 27

enriched according to different needs 10, or refined without changing the semantics of the already
existing one.

This way to proceed is opposite to the frequently adopted approach as, in particular, in [18],
where a set of (visual) debugging tools is defined together with their input data, which consists
of a restricted trace containing the minimal needed information. In our approach, we specify a
semantically rich trace which can be used as input data for a potentially larger set of tools. The
choice of the data to trace is made on the basis of a high level operational semantics, not on
the basis of some specific debugging need. However the generic trace is designed in such a way
that most of debugging tools devoted to the analysis of CHR resolution behavior may find in
this trace what they need. As a consequence, based on this observational semantics, the work
of implementation of the tracer and the work of designing debugging tools can be performed
independently.

One may however feel that implementing a full generic trace is too much work demanding
or that the resulting tracer performance will be considerably slow down. It has been shown
in [15] that a generic approach may have more advantages than drawbacks in the sense that
there may be a good trade-off between a very detailed generic trace (based on a more refined
operational semantics) and the use of a trace driver able to query efficiently the generic trace,
with a significant improvement in portability of debugging tools. We have shown here, that the
implementation of the CHR∨ generic trace in SWI-Prolog CHR implementation can easily be
performed on the top of an existing tracer, resulting in a generic tracer practically as efficient as
the original one on which it is based.

9 Conclusion

We have presented a first observational semantics of CHR∨(a formal specification of a CHR∨

generic tracer), and two prototypes; the first is an executable operational semantics in Prolog
which may produce a virtual generic trace; the second is a generic tracer of SWI CHR, based on
the CHR SWI Prolog trace. The first helped to improve the quality of the formal operational
semantics (in fact several corrections and/or improvements have been detected). The SWI CHR
generic trace prototype shows that the generic trace can be easily and efficiently implemented on
existing CHR∨ implementations. The interest of the “generic approach” leads in the portability
of analysis tools developed on the basis of this trace and the variety of possible trace based
applications.

We do not claim that the CHR∨ observational semantics which is presented here is the
ultimate one. More refined observational semantics could be considered, including several levels
of refinements (for example combining with Prolog semantics in Prolog based implementations);
we just have shown that this approach can be realistic and useful in a great variety of CHR based
software development.

Future work will concern more experimentation and improvements of the generic trace, OO
based CHR implementation including a generic trace, and generic trace for hybrid constraint
solvers.

10An extensive study about the needs for constraint debugging can be found in [8].

RR n° 7939

28 Gonçalves & Deransart & others

A ANNEX: Operational Semantics in Prolog

The following is an implementation of the refined operational semantics of CHR∨ in SWI-Prolog.
There are 6 files and 390 lines of Prolog’s code.

util.pl code:

:- dynamic(val/2).

counter(Name,C) :- val(Name,C), !, retract(val(Name,C)),

C2 is C + 1,

assert(val(Name,C2)).

counter(Name,0) :- assert(val(Name,1)).

% Auxiliary list functions

elem(E,[E|_]).

elem(E,[_|T]) :- elem(E,T).

subset([],_).

subset([H|T],L) :- elem(H,L),subset(T,L).

alldifferent([]).

alldifferent([H|T]) :- \+ elem(H,T), alldifferent(T).

remove([],_E,[]).

remove([X|T1],E,T2) :- (elem(X,E) -> T2=T3 ; T2=[X|T3]),

remove(T1,E,T3).

insert_end(E,X) :- var(X), !, X=[E|_].

insert_end(E,X) :- X=[_H|T], insert_end(E,T).

closelist(X) :- var(X), !, X=[].

closelist(X) :- X=[_H|T], closelist(T).

at(M,X,Y) :- var(M), M=[(X=Y)|_].

at(M,X,Y) :- nonvar(M),M=[(X=Y2)|_], !, Y=Y2.

at(M,X,Y) :- nonvar(M),M=[(X2=_)|M2], X2\=X, at(M2,X,Y).

%% replace(T1,K,Val, T2) replaces all occuorence of K in T1 by Vals

%% resulting in term T2

replace(T1,Key,Val,T2) :- Key==T1, T2=Val.

replace(T1,Key,Val,T2) :- T1=..[F|Arg1],

replace_list(Arg1,Key,Val,Arg2), T2=..[F|Arg2].

replace_list([],_Key,_Val,[]).

replace_list([H1|T1],Key,Val,[H2|T2]) :-

replace(H1,Key,Val,H2),replace_list(T1,Key,Val,T2).

Inria

Towards a Generic Trace 29

replace(T1,[],T1).

replace(T1,[(K=V)|M],T2) :- replace(T1,K,V,T_), replace(T_,M,T2).

%% For all local variables not initialized in the Head or Guard,

%% it creates a new global variable to replace this local one

allocate_unusedvars([]).

allocate_unusedvars([(_K=V)|TL]) :- var(V),

counter(lastGlobalAllocated,N), V=v(N), allocate_unusedvars(TL).

allocate_unusedvars([(_K=V)|TL]) :- nonvar(V),

allocate_unusedvars(TL).

% Creates a Map that assigns all local_variables of T1 to

% an undefined value and T1 is the term T1 with these replacements

% applied

instantiate_locals(T1,T2,Map) :- local_variable(T1), !,

at(Map,T1,T2).

instantiate_locals(T1,T2,Map) :- T1=..[F|Arg1],

instantiate_list_locals(Arg1,Arg2,Map), T2=..[F|Arg2].

instantiate_list_locals([],[],_).

instantiate_list_locals([H1|T1],[H2|T2],M) :-

instantiate_locals(H1,H2,M),instantiate_list_locals(T1,T2,M).

Compiler code (compiler.pl):

%% CHR Syntax

:- op(1100,xfx,\).

:- op(1180,xfx,==>).

:- op(1180,xfx,<=>).

:- op(1190,xfy,@).

% Transforms CHR sequences (A,B,C) in Prolog Lists [A,B,C]

makelist(true,[]) :- !.

makelist((X,Y),L) :- !,makelist(X,L1),makelist(Y,L2), merge(L1,L2,L).

makelist(L,[L]).

% testCase(ConstraintName,Index,Arguments,RuleName,Keep,Remove,

% Guard,Body,returnFlag)

:- dynamic(rule/9).

% A Global variable a term v(N) or vU where U is not a uppercase

% letter.

global_variable(v(_)) :- !.

global_variable(X) :- atom(X),atom_codes(X,[118,L|_]), (L<65 ; L>90).

% A Local variable a term vUxxx where U is an uppercase letter

local_variable(X) :- atom(X),atom_codes(X,[118,L|_]), L>=65, L=<90.

RR n° 7939

30 Gonçalves & Deransart & others

calculateGuardBody(G|B,G,B) :- !.

calculateGuardBody(B,true,B).

%dbg(P) :-P, writef(’DBG: %t\n’,[P]).

%dbg(P) :-writef(’start %t\n’,[P]), P.

%dbg(P) :-writef(’START: %t\n’,[P]), P,writef(’END: %t\n’,[P]),!.

%dbg(P) :-writef(’FAIL: %t\n’,[P]),false.

dbg(P) :-P.

removeE([],_,[]).

removeE([E|T],E,T2) :- !,remove(T,E,T2).

removeE([X|T],E,[X|T2]) :- remove(T,E,T2).

% loop(Var,List,Pred)

loop(_,[],_).

loop(Var,[H|_],P) :- Var=H, P.

loop(Var,[_|T],P) :- loop(Var,T,P).

simpagation(N,Keep,Remove,Guard,Body):-

(N @ K \ R <=> G | B) , makelist(K,Keep),

makelist(R,Remove), makelist(G,Guard), makelist(B,Body).

simpagation(N,Keep,Remove,[],Body) :- (N @ K \ R <=> B) ,

B\=(_|_), makelist(K,Keep), makelist(R,Remove), makelist(B,Body).

simpagation(N,[],Remove,Guard,Body) :- (N @ R <=> G | B) ,

R\=(__), makelist(R,Remove), makelist(G,Guard), makelist(B,Body).

simpagation(N,[],Remove,[],Body) :- (N @ R <=> B) ,

R\=(__), B\=(_|_), makelist(R,Remove), makelist(B,Body).

simpagation(N,Keep,[],Guard,Body) :- (N @ K ==> G | B),

makelist(K,Keep), makelist(G,Guard), makelist(B,Body).

simpagation(N,Keep,[],[],Body) :- (N @ K ==> B) ,

B\=(_|_), makelist(K,Keep), makelist(B,Body).

compile :- retractall(rule(_,_,_,_,_,_,_,_,_)),

retractall(val(_,_)), simpagation(N,Keep,Remove,Guard,Body),

((elem(Active,Keep), InRemove=false);

(elem(Active,Remove),InRemove=true)),

Active=..[Op|Args], counter(Op,Index),

assert(rule(Op,Index,Args,N,Keep,Remove,Guard,Body,InRemove)),

fail.

compile.

Code generator (codegenerator.pl):

optimize(if([],C),C2) :- !,optimize(C,C2).

optimize(if(true,C),C2) :- !,optimize(C,C2).

optimize(if([H|T],C),if(H,C2)) :- !,optimize(if(T,C),C2).

optimize(if(X,C),if(X,C2)) :- !,optimize(C,C2).

Inria

Towards a Generic Trace 31

optimize(while([],C),C2) :- !,optimize(C,C2).

optimize(while(true,C),C2) :- !,optimize(C,C2).

optimize(while([H|T],C),while(H,C2)) :- !,optimize(while(T,C),C2).

optimize(while(X,C),if(X,C2)) :- !,optimize(C,C2).

optimize(seq([],B),B2) :- !, optimize(B,B2).

optimize(seq(B,[]),B2) :- !, optimize(B,B2).

optimize(seq(A,B),seq(A2,B2)) :- !, optimize(A,A2),optimize(B,B2).

optimize([H],H2) :- !, optimize(H,H2).

optimize([H|T],seq(H2,T2)) :- !, optimize(H,H2), optimize(T,T2).

optimize(X,X).

pprinter(if(T,C),Spaces) :- !,write(Spaces),write(’if (’),

pprinter(T,’’), write(’) {\n’), concat(Spaces,’ ’,Spaces2),

pprinter(C,Spaces2), write(’\n’),write(Spaces),write(’}’).

pprinter(while(T,C),Spaces) :- !,write(Spaces),write(’while (’),

pprinter(T,’’), write(’) {\n’), concat(Spaces,’ ’,Spaces2),

pprinter(C,Spaces2), write(’\n’),write(Spaces),write(’}’).

pprinter(seq(X,Y),Spaces) :- !,pprinter(X,Spaces),nl,

pprinter(Y,Spaces).

pprinter(comentario(C),Spaces) :- !, writef(’%t//%t\n’,[Spaces,C]).

pprinter(X,Spaces) :- write(Spaces),write(X).

printprogram :-

forall(constraint(Op),

(

writef(’void %t() {\n’,[Op]),

forall(testCase(Op,Args,N,B,C,D,E,Ret),

(

(Ret=false -> Code = if(Args,while(B,while(C,if(D,E)))) ;

Code = if(Args,while(B,while(C,if(D,seq(E,return)))))

),

optimize(seq(comentario([’from ’,N]),Code),Code2),

pprinter(Code2,’ ’),write(’\n’)

)),

writef(’\n}\n\n’,[])

)).

printprogram.

Interpreter (interpreter.pl):

chr([],[]).

chr([(C^_)|T],[C|T2]) :- chr(T,T2).

id([],[]).

id([(_^I)|T],[I|T2]) :- id(T,T2).

RR n° 7939

32 Gonçalves & Deransart & others

chr_id(A,B,C) :- chr(A,B),id(A,C).

%

% Builtins Functions

%

%

% the only defined builtins is equality

is_builtin(_=_).

% uses prolog execution to evaluate guards.

check_guard([]).

check_guard([H|T]) :- H, check_guard(T).

dependon(X,X).

dependon(T,X) :- T=..[_|Args], some_depends(Args,X).

some_depends([],_X) :- fail.

some_depends([H|T],X) :- dependon(H,X) ; some_depends(T,X).

wakeup_policy([],_X,[]).

wakeup_policy([H1|T1],X,[H1|T2]) :- dependon(H1,X),!,

wakeup_policy(T1,X,T2).

wakeup_policy([_H1|T1],X,T2) :- wakeup_policy(T1,X,T2).

% naive union_find algorithm to solve builtins.

%

solve_builtin(X=Y,B,B2,UDC,Wokeup) :- at(B,X,X2),!,

solve_builtin(X2=Y,B,B2,UDC,Wokeup).

solve_builtin(X=Y,B,B2,UDC,Wokeup) :- at(B,Y,Y2),!,

solve_builtin(X=Y2,B,B2,UDC,Wokeup).

solve_builtin(X=Y,B,B2,UDC,Wokeup) :- global_variable(X),!,

B2=[(X=Y)|B], wakeup_policy(UDC,X,Wokeup).

solve_builtin(X=Y,B,B2,UDC,Wokeup) :- global_variable(Y),!,

B2=[(Y=X)|B], wakeup_policy(UDC,Y,Wokeup).

solve_builtin(X=Y,B,B,_UDC,Wokeup) :- X==Y,!, Wokeup = [].

solve_builtin(X=Y,_B,fail,_UDC,[]) :- X\=Y.

%mywrite(X) :- write(traces,X).

mywrite(X) :- write(X).

start_tracing :- open(’traces.txt’,write,_,[alias(traces)]).

trace(TraceIdx, wake, Constraint, Woken) :-

gentrace(TraceIdx,[wake,Constraint,[woken,Woken]]).

Inria

Towards a Generic Trace 33

gentrace(Idx,X) :- counter(trace_number,Idx),mywrite(’[’),

mywrite(Idx),

forall(elem(N,X),(mywrite(’,’),mywrite(N))),write(’]\n’).

trace(X) :- mywrite(X), mywrite(’\n’).

stop_tracing :- close(traces).

:- op(100,xfx,#).

:- op(1200,xfx,--->).

:- op(1200,xfx,-*->).

% Operator that calculate one CHR Action

% Syntax:

% State --> [State]

% State = (Goal,UDConstraints,Built_ins,History,Index)

% Based on paper.

%(([C|Tl],UDC,B,H,N) --->(reactivate(C), [(Tl,[C2|UDC],B,H,N)])) :-

% \+ is_builtin(C),

% C = _^_,

% replace(C,B,C2).

isUDC(X) :- (is_builtin(X); C=reactive(_,_); C=_#_),!,false.

isUDC(_).

insert_reference([],_R,[]).

insert_reference([H|T1],R,[reactive(H,R)|T2]) :-

insert_reference(T1,R,T2).

(([(T1;T2)|A],UDC,B,H,N) --->

[([T1|A],UDC,B,H,N), ([T2|A],UDC,B,H,N)]) :-

gentrace(_,[split,T1,T2]).

((_Goal,_UDC,fail,_H,_N) ---> []) :- gentrace(_,[reject]).

(([C|A],UDC,B,H,N) ---> ([(A2,UDC2,B2,H,N)])) :-

is_builtin(C),

solve_builtin(C,B,B2,UDC,Wokeup),

insert_reference(Wokeup,Pos,RefWokeup),

merge(RefWokeup,A,A2),

remove(UDC,Wokeup,UDC2),

gentrace(Pos,[wake,C,[wokeup,Wokeup]]).

(([C|Tl],UDC,B,H,N) ---> ([([(C3#0)|Tl],[C3|UDC],B,H,N2)])) :-

\+ is_builtin(C), \+ C=reactive(_,_), \+ C=_#_,

replace(C,B,C2),

C3 = C2^N,

RR n° 7939

34 Gonçalves & Deransart & others

N2 is N + 1,

gentrace(_,[activate,C,N]).

(([reactive(C,Ref)|Tl],UDC,B,H,N) --->

([([(C2#0)|Tl],[C2|UDC],B,H,N)])) :-

\+ is_builtin(C),

C = _^_,

replace(C,B,C2),

gentrace(_,[reactivate,C,Ref]).

(([((C^Id)#Index)|Goal],UDC,B,History,N) --->

([(Goal2,UDC2,B,H2,N)])) :-

B \= fail,

C=..[Op|Args1],

rule(Op,Index,Args2, RName1, K1, R1 ,G1,B1,ActiveInRemove),

instantiate_locals([Args2,K1,R1,G1,B1],

[Args1,K2,R2,G2,B2],Binds),closelist(Binds),

chr_id(K3,K2,IdKeep),chr_id(R3,R2,IdRem),

subset(K3,UDC),subset(R3,UDC),

merge(IdKeep,IdRem,IdHead), alldifferent(IdHead),

(IdRem=[] -> \+ elem((RName1,IdHead),History) ; true),

gentrace(IdTry,

[tryRule,RName1,C,Id,Index,Binds, (K2 / R2 <=> G2 | B2)]),

check_guard(G2),

allocate_unusedvars(Binds),

(IdRem=[] -> (merge([(RName1,IdHead)],History,H2)) ;

H2=History),

remove(UDC,R3,UDC2),

(ActiveInRemove -> merge(B2,Goal, Goal2) ;

merge(B2,[(C^Id)#Index|Goal],Goal2)),!,

gentrace(_,[applyRule,RName1,IdTry]).

(([((C^Id)#Index)|Goal],UDC,B,H,N) ---> ([(Goal,UDC,B,H,N)])) :-

C=..[Op|_], \+ rule(Op,Index,_,_,_,_,_,_,_),

gentrace(_,[drop,(C^Id)#Index]),!.

(([(C^Id)#Index|Goal],UDC,B,H,N) --->

([([((C^Id)#Index2)|Goal],UDC,B,H,N)])) :-

gentrace(_,[default,(C^Id)#Index,Index2]),

Index2 is Index + 1.

% Operator -*->

% Executes chains of ---> operator until no more execution is

% possible

([SH1|ST1] -*-> (S2)) :-

dbg((SH1 ---> (LS1))),!,

merge(LS1,ST1,STemp),

Inria

Towards a Generic Trace 35

(STemp -*-> (S2)).

([SH1|ST1] -*-> ([SH1|ST2])) :-

%trace(reject),

(ST1 -*-> (ST2)).

([] -*-> []).

prettyprinter_actions([]).

prettyprinter_actions([H|T]) :-

prettyprinter_action(H),prettyprinter_actions(T).

prettyprinter_action(apply2(N,B)) :-

(N @ C), instantiate_locals(C,C2,B),

writef("apply2 Rule-%t:\n %t\n %t\n",[N,C,C2]).

prettyprinter_action(activate(AC)) :-

writef("activate : %t\n",[AC]).

prettyprinter_action(reactivate(AC^_)) :-

writef("reactivate : %t\n",[AC]).

prettyprinter_action(solve(B,_)) :- writef("solve : %t\n",[B]).

prettyprinter_action(split(X,Y)) :-

writef("split : (%t,%t)\n",[X,Y]).

prettyprinter_action(fail) :- writef("fail\n").

prettyprinter_action(tryanother) :- write(’found solution\n’).

printstates([]).

printstates([(_,UDCS,BUILTS,_,_)|T]) :-

chr(UDCS,Constr),

writef("Solution:\n UDCS = %t\n Buitins= %t\n",

[Constr,BUILTS]), printstates(T).

%

% The predicate run(Goal) executes the Goal and

% printes the executed Actions and Memory.

%

run(Goal) :- ([(Goal,[],[],[],0)] -*-> (Sts)),

printstates(Sts).

Main (chr.pl):

:- [util].

:- [compiler].

:- [codegenerator].

:- [interpreter].

Test code (test.pl):

:- [chr].

RR n° 7939

36 Gonçalves & Deransart & others

r0 @ false <=> 1=0.

reflexivity @ leq(vX,vX) <=> true.

antisimetry @ leq(vX,vY), leq(vY,vX) <=> vX=vY.

idempotency @ leq(vX,vY) \ leq(vX,vY) <=> true.

transitivity @ leq(vX,vY), leq(vY,vZ) ==> leq(vX,vZ).

exemploLeq1 :- run([leq(v1,v2),leq(v2,v3),leq(v3,v1)]).

r3 @ candidate(vN) <=> vN>1, vM is vN - 1 |

prime(vN),candidate(vM).

r4 @ candidate(1) <=> true.

r5 @ prime(vX) \ prime(vY) <=> 0 is mod(vY,vX) | true.

exemploPrime1 :- run([candidate(50)]).

r6 @ color(vX) <=> vX=r ; vX=g ; vX=b .

r7 @ edge(vX,vY) ==> color(vY).

r8 @ edge(vX,vC1), edge(vY,vC2), link(vX,vY) ==> vC1=vC2 | false .

r9 @ graph <=> edge(1,vX), edge(2,vY), edge(3,vZ),link(1,2),

link(1,3),link(2,3).

exemploGraph1 :- run([graph]).

:- compile.

Inria

Towards a Generic Trace 37

References

[1] A. Aggoun, T. Baudel, P. Deransart, M. Ducassé, J.-D. Fekete, and N. Jussien.
Generic Trace Format for Constraint Programming, GenTra4CP, Version 2.1.
Technical report, INRIA Paris-Rocquencourt, École des Mines de Nantes,
INSA de Rennes, Université d’Orléans, Cosytec and ILOG, July 2004.
http://contraintes.inria.fr/OADymPPaC/Public/Trace/index.html.

[2] A. Aggoun & al. ECLiPSe User Manual. Release 5.3. 2001.

[3] P. Cousot and R. Cousot. Systematic design of program transformation frameworks by
abstract interpretation. In Proc. of POPL 2002, pages 178–190, 2002.

[4] Marcos Aurélio Almeida da Silva. CHORD: Constraint Handling Object-oriented Rules
with Disjunctions. Master’s thesis, Universidade Federal de Pernambuco, February 2009.
Universidade Federal de Pernambuco.

[5] L. De Koninck, T. Schrijvers, and B. Demoen. Search Strategies in CHR(Prolog). 2006.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.69.7359&rep=rep1&type=pdf.

[6] P. Deransart. Generic Traces and Constraints, GenTra4CP Revisited, May 2011.
http://hal.inria.fr/hal-00597033.

[7] P. Deransart. Towards a Trace Meta-Theory, July 2011. Working document
http://hal.inria.fr/inria-00443648 (almost in French).

[8] Pierre Deransart, Manuel V. Hermenegildo, and Jan Maluszynski, editors. Analysis and
Visualization Tools for Constraint Programming, Constraint Debugging (DiSCiPl project),
volume 1870 of Lecture Notes in Computer Science. Springer, 2000.

[9] Thom Fruehwirth. Constraint Handling Rules. Cambridge, 2009.

[10] T. Fruhwirth and S. Abdennadher. Essentials of constraint programming. Springer-Verlag
New York Inc, 2003.

[11] Thom Frühwirth and Pascal Brisset. High-level implementations of Constraint Handling
Rules. Technical Report ECRC-95-20, European Computer-Industry Research Centre,
Munchen, Germany, 1995.

[12] C. Holzbaur and Thom Frühwirth. Constraint Handling Rules Reference Manual for Sicstus
Prolog, July 1998. Technical Report TR-98-01.

[13] E. Jahier, M. Ducassé, and O. Ridoux. Specifying Prolog trace models with a continuation
semantics. In K.-K. Lau, editor, Proc. of LOgic-based Program Synthesis and TRansforma-
tion, London, July 2000. Technical Report Report Series, Department of Computer Science,
University of Manchester, ISSN 1361-6161. Report number UMCS-00-6-1.

[14] Ludovic Langevine, Pierre Deransart, and Mireille Ducassé. A Generic Trace Schema for
the Portability of CP(FD) Debugging Tools. In K.R. Apt, F. Fages, F. Rossi, P. Szeredi,
and Jozsef Vancza, editors, Recent Advances in Constraints, number 3010 in LNAI. Springer
Verlag, May 2004.

RR n° 7939

38 Gonçalves & Deransart & others

[15] Ludovic Langevine and Mireille Ducassé. Design and implementation of a tracer
driver: Easy and efficient dynamic analyses of constraint logic programs. Theory
and Practice of Logic Programming, Cambridge University Press, 8(5-6), Sep-Nov 2008.
http://arxiv.org/abs/0804.4116.

[16] Salvador Lucas. Observable Semantics and Dynamic Analysis of Computational Processes.
Technical Report LIX/RR/00/02, Laboratoire d’Informatique LIX, 2000.

[17] Rafael Oliveira and Pierre Deransart. Towards a Generic Framework to Generate Explana-
tory Traces of Constraint Solving and Rule-Based Reasoning. Technical Report RR-7165,
INRIA Paris-Rocquencourt, December 2009.

[18] Helmut Simonis, Paul Davern, Jacob Feldman, Deepak Mehta, Luis Quesada, and Mats
Carlsson. A Generic Visualization Platform for CP. In Karen Petrie, editor, Proceedings of
the 16th International Conference on Principles and Practice of Constraint Programming,
St Andrews, Scotland, September 2010.

[19] J. Wielemaker. SWI-Prolog 5.6 Reference Manual. Department of Social Science Informat-
ics, University of Amsterdam, Amsterdam, Marz, 2006.

Inria

Towards a Generic Trace 39

Contents

1 Introduction 3

2 Generic Trace, Observational Semantics and Subtrace 3
2.1 Preliminaries . 3
2.2 Components in Trace Design . 4
2.3 Observational Semantics (OS) . 5
2.4 Faithful Trace Specification . 7

3 Generic Trace for CHR∨ 8
3.1 Introducing CHR∨ . 8
3.2 Operational Semantics ω∨

r . 10
3.3 Generic Trace . 11

4 Observational Semantics of CHR∨(OS-CHR∨) 15
4.1 OS-CHR∨: Extraction (Tr,El) . 15
4.2 OS-CHR∨: Reconstruction (Il) . 17

5 Prototyping the Operational Semantics of CHR∨ 18
5.1 CHR∨ Syntax and Rule Compilation . 18
5.2 Auxiliary Functions . 19
5.3 CHR∨ Operational Semantics Implementation . 20
5.4 Generic Trace Extraction . 20
5.5 Executing a CHR∨ Program . 21

6 Prototyping of the generic CHR∨ Trace Using SWI Prolog 21
6.1 Running Example . 21
6.2 Understanding SWI-Prolog Trace . 22
6.3 Transforming SWI Tracer into OS-CHR∨ . 23
6.4 Trace Querying . 24
6.5 Trace Analyzer . 25

7 Experimentation 25

8 Discussion 26

9 Conclusion 27

A ANNEX: Operational Semantics in Prolog 28

Références 37

RR n° 7939

RESEARCH CENTRE

PARIS – ROCQUENCOURT

Domaine de Voluceau, - Rocquencourt

B.P. 105 - 78153 Le Chesnay Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt

BP 105 - 78153 Le Chesnay Cedex

inria.fr

ISSN 0249-6399

	Introduction
	Generic Trace, Observational Semantics and Subtrace
	Preliminaries
	Components in Trace Design
	Observational Semantics (OS)
	Faithful Trace Specification

	Generic Trace for CHR
	Introducing CHR
	Operational Semantics r
	Generic Trace

	Observational Semantics of CHR(OS-CHR)
	OS-CHR: Extraction (Tr, El)
	OS-CHR: Reconstruction (Il)

	Prototyping the Operational Semantics of CHR
	CHR Syntax and Rule Compilation
	Auxiliary Functions
	CHR Operational Semantics Implementation
	Generic Trace Extraction
	Executing a CHR Program

	Prototyping of the generic CHR Trace Using SWI Prolog
	Running Example
	Understanding SWI-Prolog Trace
	Transforming SWI Tracer into OS-CHR
	Trace Querying
	Trace Analyzer

	Experimentation
	Discussion
	Conclusion
	ANNEX: Operational Semantics in Prolog
	Références

