147,518 research outputs found

    Big continuous data: dealing with velocity by composing event streams

    No full text
    International audienceThe rate at which we produce data is growing steadily, thus creating even larger streams of continuously evolving data. Online news, micro-blogs, search queries are just a few examples of these continuous streams of user activities. The value of these streams relies in their freshness and relatedness to on-going events. Modern applications consuming these streams need to extract behaviour patterns that can be obtained by aggregating and mining statically and dynamically huge event histories. An event is the notification that a happening of interest has occurred. Event streams must be combined or aggregated to produce more meaningful information. By combining and aggregating them either from multiple producers, or from a single one during a given period of time, a limited set of events describing meaningful situations may be notified to consumers. Event streams with their volume and continuous production cope mainly with two of the characteristics given to Big Data by the 5V’s model: volume & velocity. Techniques such as complex pattern detection, event correlation, event aggregation, event mining and stream processing, have been used for composing events. Nevertheless, to the best of our knowledge, few approaches integrate different composition techniques (online and post-mortem) for dealing with Big Data velocity. This chapter gives an analytical overview of event stream processing and composition approaches: complex event languages, services and event querying systems on distributed logs. Our analysis underlines the challenges introduced by Big Data velocity and volume and use them as reference for identifying the scope and limitations of results stemming from different disciplines: networks, distributed systems, stream databases, event composition services, and data mining on traces

    Event detection in location-based social networks

    Get PDF
    With the advent of social networks and the rise of mobile technologies, users have become ubiquitous sensors capable of monitoring various real-world events in a crowd-sourced manner. Location-based social networks have proven to be faster than traditional media channels in reporting and geo-locating breaking news, i.e. Osama Bin Laden’s death was first confirmed on Twitter even before the announcement from the communication department at the White House. However, the deluge of user-generated data on these networks requires intelligent systems capable of identifying and characterizing such events in a comprehensive manner. The data mining community coined the term, event detection , to refer to the task of uncovering emerging patterns in data streams . Nonetheless, most data mining techniques do not reproduce the underlying data generation process, hampering to self-adapt in fast-changing scenarios. Because of this, we propose a probabilistic machine learning approach to event detection which explicitly models the data generation process and enables reasoning about the discovered events. With the aim to set forth the differences between both approaches, we present two techniques for the problem of event detection in Twitter : a data mining technique called Tweet-SCAN and a machine learning technique called Warble. We assess and compare both techniques in a dataset of tweets geo-located in the city of Barcelona during its annual festivities. Last but not least, we present the algorithmic changes and data processing frameworks to scale up the proposed techniques to big data workloads.This work is partially supported by Obra Social “la Caixa”, by the Spanish Ministry of Science and Innovation under contract (TIN2015-65316), by the Severo Ochoa Program (SEV2015-0493), by SGR programs of the Catalan Government (2014-SGR-1051, 2014-SGR-118), Collectiveware (TIN2015-66863-C2-1-R) and BSC/UPC NVIDIA GPU Center of Excellence.We would also like to thank the reviewers for their constructive feedback.Peer ReviewedPostprint (author's final draft

    A schema conversion approach for constructing heterogeneous information networks from documents

    Get PDF
    Information networks with multi-typed nodes and edges with different semantics are called heterogenous information networks. Since heterogeneous information networks embed more complex information than homogeneous information networks due to their multi-typed nodes and edges, mining such networks has produced richer knowledge and insights. To extend the application of heterogeneous information network analysis to document analysis, it is necessary to build information networks from a collection of documents while preserving important information in the documents. This thesis describes a schema conversion approach to apply data mining techniques on the outcomes of natural language processing (NLP) tools to construct heterogeneous information networks. First, we utilize named entity recognition (NER) tools to explore networks over entities, topics, and words to demonstrate how a probabilistic model can convert the data schema of the NER tools. Second, we address a pat- tern mining method to construct a network with authors, documents, and writing styles by extracting discriminative writing styles from parse trees and converting them into nodes in a network. Third, we introduce a clustering method to merge redundant nodes in an information network with documents, claims, subjective, objective, and verbs. We use a semantic role labeling (SRL) tool to get initial network structures from news articles, and merge duplicated nodes using a similarity measure SynRank. Finally, we present a novel event mining framework for extracting high-quality structured event knowledge from large, redundant, and noisy news data. The proposed framework ProxiModel utilizes named entity recognition, time expression extraction, and phrase mining tools to get event information from documents

    Outlier detection techniques for wireless sensor networks: A survey

    Get PDF
    In the field of wireless sensor networks, those measurements that significantly deviate from the normal pattern of sensed data are considered as outliers. The potential sources of outliers include noise and errors, events, and malicious attacks on the network. Traditional outlier detection techniques are not directly applicable to wireless sensor networks due to the nature of sensor data and specific requirements and limitations of the wireless sensor networks. This survey provides a comprehensive overview of existing outlier detection techniques specifically developed for the wireless sensor networks. Additionally, it presents a technique-based taxonomy and a comparative table to be used as a guideline to select a technique suitable for the application at hand based on characteristics such as data type, outlier type, outlier identity, and outlier degree

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed
    corecore