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ABSTRACT

Information networks with multi-typed nodes and edges with different se-

mantics are called heterogenous information networks. Since heterogeneous

information networks embed more complex information than homogeneous

information networks due to their multi-typed nodes and edges, mining such

networks has produced richer knowledge and insights.

To extend the application of heterogeneous information network analysis

to document analysis, it is necessary to build information networks from a

collection of documents while preserving important information in the doc-

uments.

This thesis describes a schema conversion approach to apply data mining

techniques on the outcomes of natural language processing (NLP) tools to

construct heterogeneous information networks.

First, we utilize named entity recognition (NER) tools to explore networks

over entities, topics, and words to demonstrate how a probabilistic model

can convert the data schema of the NER tools. Second, we address a pat-

tern mining method to construct a network with authors, documents, and

writing styles by extracting discriminative writing styles from parse trees

and converting them into nodes in a network. Third, we introduce a clus-

tering method to merge redundant nodes in an information network with

documents, claims, subjective, objective, and verbs. We use a semantic role

labeling (SRL) tool to get initial network structures from news articles, and

merge duplicated nodes using a similarity measure SynRank. Finally, we

present a novel event mining framework for extracting high-quality struc-

tured event knowledge from large, redundant, and noisy news data. The

proposed framework ProxiModel utilizes named entity recognition, time ex-

pression extraction, and phrase mining tools to get event information from

documents.
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CHAPTER 1

INTRODUCTION

Information networks are one of very expressive forms to represent data.

Most of the data we have can be converted or naturally represented in infor-

mation networks. For example, web pages with hyperlinks, Facebook friend-

ships, research co-authorship, gene regulation networks, and interactions of

proteins are represented in information networks.

Among such networks, those with multi-typed nodes and edges with dif-

ferent semantics are called heterogenous information networks. Since het-

erogeneous information networks embed more complex information than ho-

mogeneous information networks due to their multi-typed nodes and edges,

mining such networks has produced richer knowledge and insights.

Several heterogeneous information network anlayses have outperformed

previous homogenous information network analysis in different tasks such as

clustering [1, 2], classification [3], trustworthiness analysis [4], relationship

prediction [5, 6], and similarity search [7, 8].

However, those studies are limited to structured data like movie, book,

and DBLP databases because it is easier to use existing networks than to

construct networks from unstructured data like documents.

Thank to the advance of natural language processing (NLP), documents

can be enriched with structural information like parsing trees, semantic role

labels, entities, and semantic meanings in vector space. Such NLP meth-

ods have opened up a new application domain of heterogenous information

network analysis.

My past and current research focus on utilizing NLP methods to construct

information networks from documents.

As the first step, I use news articles as the main data source because

1) they are well-written in terms of syntax and wording where NLP tools

perform well, 2) they convey information related to real stories or events that

are interests of most people, 3) there are many redundant information in a

1
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collection of news articles which lead to build stable and dense networks, and

4) they are easily accessible with other useful attributes like author names,

timestamps, topics, main entities, and publishers.

Moreover, in the age of information overload, we can easily collect or ac-

cess copora that cover the same topic such as multiple news reports on the

same or similar events from different news agencies, and reviews about the

same or similar products or services. Such a collection of documents is called

a monolingual comparable corpus. A monolingual comparable corpus is de-

fined as a collection of documents in the same language (e.g., English) that

overlap in the information they convey. Such a corpus is an important source

to construct an information networks because documents in the corpus com-

plement to each other, and redundancies of information in the corpus can

measure the popularity and confidence of the information.

Network construction methods differ, depending on a target information

network schema. When the output schema of a NLP method matches with a

target information network schema, it is straightforward to construct infor-

mation networks by the NLP method. When an information network schema

is different from the output schema of a NLP method, we need to convert or

extract nodes and relationships of the network schema from the output. This

process can be done by pattern mining or probabilistic models. Figure 1.1

summarizes the schema conversion process.

In this dissertation, we investigate the schema conversion problems in in-

formation network construction with different NLP tools: tree parsing, entity

annotation, semantic role labeling, and phrase mining. The main challenges

are 1) how to encode the information from documents in multi-typed nodes

and edges, and 2) how to remove redundancies and erroneous data.

In the first part of the dissertation, I propose a probabilistic graphical

2



model to construct a network with documents, words, topics, and entities in

order to demonstrate how a probabilistic model can convert the data schema.

We annotate news articles with associated entities using an entity extraction

tool, and build a network using a topic model. Experiments on real datasets

demonstrate the effectiveness of our approach over several state-of-the-art

baselines.

In the second part of the dissertation, I address a pattern mining method

to construct a network with authors, documents, and writing styles. Writ-

ing styles are abstract nodes which are not explicitly shown in sentences.

Using a pattern mining algorithm, we extract discriminative writing styles

from sentences and convert them into nodes in a network. We show that

this approach reduces the computational burden of using complex syntactic

structures. Comprehensive experiments on real-world datasets demonstrate

that our approach is reliable than previous studies.

In the third part of the dissertation, I introduce a clustering method to

merge redundant nodes in an information network with documents, claims,

subjective, objective, and verbs. We use a semantic role labeling (SRL) tool

to get initial network structures from news articles, and merge duplicated

nodes using a similarity measure SynRank.

In the fourth part of the dissertation, I present a novel event mining frame-

work for extracting high-quality structured event knowledge from large, re-

dundant, and noisy news data. The proposed framework jointly derives con-

nections between different events by modeling the event correlation within

each individual document as well as across the corpus. A proximity network-

based approach to event mining, ProxiModel, constructs proximity networks

as a data model to capture the corpus-level co-occurrence statistics for can-

didate event descriptors, attributes, as well as their connections.

The conclusion for the dissertation is discussed in the last section.

3



CHAPTER 2

RELATED WORK

My thesis explore three different approaches to construct information net-

works: pattern-based feature generation, topic models, and similarity mea-

sures in heterogenous information networks. A brief overview of these related

methods is discussed in this section.

2.1 Information Network Construction

Information network construction has been studied in various domains.

First, several endeavors have been to build knowledge bases from web

sources. Unlike unstructured data like documents, web pages are semi-

structured data, where formatted layouts and hyperlinks serve as the cues of

targeted information. DBpedia [9] and Freebase [10] are community efforts

to extract structured information from Wikipedia. Mostly, they utilize the

infobox in each Wikipedia webpage to get attributes and relationships of the

corresponding entity.

EntityCube [11], KnowItAll [12], and NELL [13] treat the web pages as

unstructured data and use NLP methods to extract entity relationships and

general knowledge represented by networks. Since their methods are web-

scale, they focus on the efficiency of their methods using simple NLP methods

and probabilistic models.

WINACS (Web-based Information Network Analysis for Computer Sci-

ence) [14], is a project that constructs a web-based compuster science infor-

mation network using hyperlinks in the webpages of the computer science de-

partments and professors. They use list finding, entity discovery, and record

linkage with databases to harvest necessary information from webpages to

build an information network.

Event extraction can be viewed as a process of constructing information

4



networks where events and their attributes are nodes and linked by edges.

For example, there are event extraction methods for a collection of docu-

ments [15] and tweets [16]. Similarly, in biology, there are biomedical event

extraction [17] and protein interaction network construction [18].

2.2 Topic Models for Network Construction

Starting with the great success of Probabilistic Latent Semantic Analysis

(PLSA) [19] and Latent Dirichlet Allocation (LDA) [20], there have been

numerous proposals for topic models that identify patterns of word occur-

rences in large collections of documents which reflect the underlying topics

represented in the collection, and can then be used to organize, search, index

and browse large collection of documents [21].

While traditional topic models treat each document as a bag of words,

documents are in fact associated with richer attributes: for example, news

articles are associated with people, organizations or locations, many tweets

are associated with geo-locations and timestamps, research articles are as-

sociated with authors, and webpages are associated with link information.

This has opened up interesting opportunities and challenges for document

analysis.

To deal with the different types of attributes associated with documents,

different topic models have been proposed: (1) Topic Over Time [22] and

Dynamic Topic Models [23] are designed for documents with timestamps, (2)

GeoFolk [24] and Latent Geographical Topic Analysis [25] are proposed for

documents with GPS information, (3) Author Models [26] and Autor Topic

Models [27] deal with documents with author lists, and (4) Link-LDA [28]

and Block-LDA [29] are designed for dealing with documents with hyperlinks,

citations, and other forms of link information.

As shown in NetClus [1], iTopic [30], and TMBP [30], documents can

be represented in information networks without any complicated conversion.

Figure 2.1 shows the schema of input documents and the schema of the

output of three topic models as examples: LDA, AM, and Link-LDA.

Latent Dirichlet Allocation (LDA) [20] is one of the most well-known topic

models. It assumes that a document is generated via a mixture of topics.

In its generative process, for each document d, a multinomial distribution θd

5
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over topics is drawn from a Dirichlet prior with α. Then for each word, a

topic zd,i is drawn from θd, and a word wd,i is generated by randomly sampling

from a topic-specific multinomial distribution φzd,i .

The Author Model (AM) [26] is originally proposed for multi-labeled doc-

uments, where each label could represent a class or an entity. In other words,

for each document d, the set of associated labels, Ed, is given. For each word,

a label ed,i is uniformly chosen from Ed, and wd,i is generated by randomly

sampling from a label-specific multinomial distribution ϕed,i . However, the

AM only captures term distributions for each entity without investigating

further the hidden patterns (topics) in documents.

Link-LDA [28] is proposed for scientific publication with citations. In this

model, documents consist of a bag of words and a bag of citations. For

each document d, a multinomial distribution θd over topics is drawn from a

Dirichlet prior with α. Then, for each word, a topic zd,i is drawn from θd,

and a word wd,i is generated from randomly choosing from a topic specific

multinomial distribution φzd,i over words. For each citation, a topic zd,j is

drawn from θd, and a citation ed,i is generated from randomly sampling from

a topic specific multinomial distribution ϕzd,j over citations.

2.3 Similarity Measures in Information Networks for

Identifying Duplicates

Duplicates or redundancies in information networks may degrade the perfor-

mance of information network analysis. Such redundant nodes in information

networks can be detected using similarity measures.
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There have been proposed several structural similarity measures includ-

ing Random walk with restart [31], Simrank [32], P-Rank [8], and DIS-

TINCT [33].

Random walk with restart [31] is an extension of the famous ranking algo-

rithm, PageRank, to measure similarity between nodes by assigning a small

probability to restart a current random walk at a pivot node. Simrank [32]

is recursively defined on a information network to capture the intuition that

two nodes are similar if they are referenced by similar entities. P-Rank [8]

further extends Simrank to differentiate in-link and out-link relationships

in information networks. DISTINCT [33] combines content similarity and

structural similarity of two nodes in information networks.

2.4 Event Extraction from Documents

Many attempts have been made to extract events from text corpora. These

approaches can be categorized into NLP-based contextual analysis approaches

and data mining approaches.

In the NLP literature, many approaches employ rich features to model

event extraction as a parsing problem. McClosky et al. perform event ex-

traction by creating a tree of event-argument relations and using this as a

representation for reranking of the dependency parser [34]. NLP event ex-

traction techniques have even been applied to extracting biomedical events

from text literature such as binding, regulation, and gene-protein interac-

tions; these techniques rely on a rich feature-set for classification [35]. Other

methods employ tagging and matching specified event patterns to perform

large-scale event extraction; redundancy is reduced by automatically gen-

erating rulesets for event merging [36]. While these NLP-based methods

often obtain high-quality results, their dependency on parsing, user-defined

patterns, and annotated data reduces effectiveness across multiple sources.

While these methods may show acceptable performance in a closed-domain

such as when the types of events are known before-hand, they suffer in an

open-domain scenario.

In the data mining literature, a variety of methods have been introduced

for extracting underlying events from news corpora. Using a probabilistic

model that incorporates both content, time, and location information, Li

7



et al. develop a unified generative model where, for each article, a single

latent event generates observable event descriptors such as location, people,

keywords and timestamps [37]. This HISCOVERY framework first applies

NLP entity recognition tools to extract persons, locations, and dates/times,

then uses this data in its generative model. However, it makes the strong

assumption that each news article references a single event, a requirement

we relax in our probabilistic model.

Other approaches in the data mining literature apply clustering and docu-

ment relevancy measures to organize documents into coherent events. These

methods often employ heuristic clustering approaches based on intra-cluster

similarity to agglomeratively form event clusters. Naughton et al. annotate

sentences with event labels then aggregate these sentences into a structured

form and create coherent event summaries [38]. They also apply machine

learning to extract event-containing sentences and propose two metrics for

event sentence clustering to identify, integrate, and summarize news events

from multiple sources [39]. Further clustering approaches agglomeratively

merge and prune event clusters to identify discriminative events [40]. Lam et

al. cluster documents into events and detect new events by first extracting

discriminative “concept terms”, named entities, and other identifying infor-

mation and using these features, cluster documents into existing and new

events [41]. These clustering approaches are document-level event analysis,

defining an event as a collection of topically related article. These works are

not suitable for fine-grained event analysis.
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CHAPTER 3

TOPIC MODELS FOR NETWORK

CONSTRUCTION

3.1 Overview

In this chapter, we are interested in topic analysis for collections of docu-

ments associated with sets of entities. The ability to capture the associa-

tion of documents with real-world entities or concepts holds great promise

over traditional keyword-based approaches (cf. Google’s “knowledge graph”,

which enhances search results by linking documents to entities1). In a simi-

lar vein, we argue that it is also highly desirable to build topic models that

can capture the complex patterns involving the entities associated with doc-

uments. Almost any document is associated with some set of real-worlds

entities. For instance, news articles may mention people, organizations or

locations, research papers are associated with authors, medical records are

associated with patients, doctors, diseases and so on. Many documents are

explicitly associated with entities such as authors or publications via meta-

data. But since we are now quite successful at wide-coverage named-entity

extraction from raw text [42, 43], we can also capture the implicit associations

of documents to the entities mentioned in them.

In addition to the term distributions for each topic, we may therefore also

wish to know the term distributions for each entity, or topic-entity pair.

Namely, letting z, e, and w denote a topic, an entity, and a word, respec-

tively, we want to design a topic model that can answer the following queries:

P (w|z), P (w|e), and P (w|e, z).

For example, in a collection of computer science research articles, we may

want to find a topic called data mining, and understand it by browsing its

word distribution P (w|Data Mining). If we want to identify the topics that a spe-

cific researcher, e.g. Judea Pearl, the 2011 winner of the A.M. Turing Award,

1http://www.google.com/insidesearch/features/search/knowledge.html
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has worked on, we may want to browse the word distribution P (w|Judea Pearl).

We can also have better understanding of his contribution to specific areas

such as data mining or artificial intelligence through P (w|Judea Pearl, Data Mining)

or P (w|Judea Pearl, A.I.), or the difference of focus of his data mining related

works from data mining in general by comparing P (w|Judea Pearl, Data Mining)

with P (w|Data Mining). We may also wish to compare his artificial intelligence

related works with another leading researcher in that field, e.g. Michael

Jordan, by comparing P (w|Judea Pearl, A.I.) with P (w|Michael Jordan, A.I.).

As another example, in a collection of news articles about Japan’s Tsunami

in 2011, we can find frequently mentioned words related to relief efforts

by P (w|Relief Efforts), related to the United States by P (w|United States), and

the term distribution related to the relief efforts of the United States by

P (w|United States, Relief Efforts). Also, we can learn about Naoto Kan who was

Japan’s Prime Minister at the time by P (w|Naoto Kan), his actions on the

tsunami disaster by P (w|Naoto Kan, Tsunami), and his actions on the economic

damages by P (w|Naoto Kan, Economic Damages).

To the best of our knowledge, there are no previous studies that have mod-

eled P (w|e, z) directly: they assume either P (w|e, z) = P (w|z) or P (w|e, z) =

P (w|e) by introducing different types of conditional dependency relations

among topics, entities, and words. In Figure 3.1, we summarize the depen-

dency structures among these variables in several well-known topic models.

In LDA (Figure 3.1(a)), words are drawn for a given topic, and entities are

not modeled. In the Author Model, words are drawn for a given author, and

topics are not modeled (Figure 3.1(b)). In the Author Topic Model, topics

are drawn for a given author, and words are drawn for a given topic (Fig-

ure 3.1(c)). In Link-LDA, entities are drawn for a given topic, and words

are drawn for a given topic (Figure 3.1(d)). In Figure 3.1(a), Figure 3.1(c),

and Figure 3.1(d), P (w|e, z) = P (w|z) is assumed whereas in Figure 3.1(b),

P (w|e, z) = P (w|e) is assumed.

However, in many documents collections, these independence assumptions

are not valid. For example, Judea Pearl published many papers in several

different domains, including artificial intelligence and data mining. On the

one hand, with the assumption of P (w|e, z) = P (w|e), P (w|Judea Pearl, A.I.) =

P (w|Judea Pearl, Data Mining)2, but obviously papers from different topics may not

2This problem cannot be solved by simple counting, as we are not sure who has con-
tributed to a particular term when a paper is written by multiple authors.
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Figure 3.1: Different dependencies among topic, entity, and word

use the same terms. On the other hand, with the assumption of P (w|e, z) =

P (w|z), P (w|Judea Pearl, A.I.) = P (w|Michael Jordan, A.I.), but different authors usu-

ally use different terms even in the same research area. Therefore there is a

necessity for us to model the correlation of words between a pair of an entity

and a topic by directly modeling P (w|e, z) as shown in Figure 3.1(e). In

order to solve this problem, we propose a novel topic model named Entity

Topic Model (ETM) for analyzing a given collection of documents with given

entities. ETM not only models the generative process of a term given its

topic and entity information, but also models the correlation of entity-term

and topic-term distributions. We show that LDA and the Author Model

are special cases of our model with different parameter settings. A Gibbs

sampling-based algorithm is proposed to learn the model. Experiments on

real datesets demonstrate the effectiveness of our approach over several state-

of-the-art baselines.

The major contributions of this chapter are summarized in the following.

1. We identify a general type of task for topic modeling, i.e. designing

topic models for documents with entity information.

2. We propose a novel Entity Topic Model (ETM) which solve this task

by explicitly modeling the term correlation between entities and topics.

We also define a Gibbs sampling-based algorithm to learn the model.

3. We demonstrate the power of our new model over several state-of-the-

art baselines by using two real-world datasets.
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Figure 3.2: Four related models with different dependencies among
topics(z), entities(e), and words(w)

3.2 Problem Statement

The input to the ETM model is a collection of documents in which each

document has a set of associated entities. A document d is associated with

a term vector, wd, where each wd,i is chosen from the vocabulary of W , and

an entity vector Ed, chosen from a set of entities of size E. A collection of

D documents is defined by D = {〈w1,E1〉, . . . , 〈wD,ED〉}. (The notation

used in this chapter is summarized in Table 3.1). The goal is to discover

word patterns for each pair of an entity and a topic. In other words, we

want to discover the hidden topics in the documents, as well as the word

distributions for a given entity e and a topic z, P (w|e, z), which follows a

multinomial distribution with parameter ψe,z.

The biggest challenge is that there are too many parameters to be esti-

mated when modeling P (w|e, z) directly. With E entities, T topics, and W

words in a given collection, we need to estimate O(ETW ) parameters, which

will most likely cause overfitting. In order to solve this problem, we propose
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Table 3.1: Notation used in this chapter

Symbol Description

D number of documents
T number of topics
W number of words
E number of entities
Nd number of word tokens in document d
θd multinomial distribution of topics specific to document d
ϑd multinomial distribution of entities specific to document d
wd bag of words associated with document d
Ed list of entities associated with document d
zd,i topic associated with the ith token in document d
ed,i entity associated with the ith token in document d
wd,i ith token in document d
φz asymmetric Dirichlet prior for topic t
ϕe asymmetric Dirichlet prior for entity e
ψe,z multinomial distribution of words specific to entity e and topic

t

D set of all documents
Z set of all topic assignments {ed,i}
E set of all entity assignments {ed,i}
Φ set of all parameters in the model

a novel parameter smoothing method by designing hierarchical Dirichlet pri-

ors for the multinomial distribution of P (w|e, z), where intuitively P (w|e, z)

is determined by the term distribution for the entity P (w|e) and the term

distribution for the topic P (w|z). In particular, we use a weighted linear

combination of φz and ϕe as the Dirichlet prior for ψe,z, where φz is an asym-

metric Dirichlet parameter vector for each topic z, and ϕe is an asymmetric

Dirichlet parameter vector for each entity e.

In the ETM model, we design a process for generating all the terms in a

document that is associated with a given set of entities. Note that the entities

that a document is associated with are not generated, but are assumed to be

given. This assumption is also used in the author model and author topic

model. However, in contrast to these models, we no longer assume entities

are generated uniformly, but follow a multinomial distribution ϑd.
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3.3 Entity Topic Model

In this section, we formally define our problem, introduce our topic model,

and finally provide a Gibbs sampling-based learning algorithm. The graphical

representation for ETM is shown in Figure 3.3, and the detailed explanations

are given in the following.

3.3.1 Generative Process

The hypothesis at the heart of our model is that different entities are de-

scribed with different word patterns or word distributions, and that the

words used to describe an entity can change with the topic. In other words,

P (w|ei, z) 6= P (w|ej, z) if ei 6= ej and P (w|e, zi) 6= P (w|e, zj) if zi 6= zj.

As shown in Algorithm 1, for each document d, a multinomial distri-

bution θd over topics is drawn from a Dirichlet prior with α0, and another

multinomial distribution ϑd over the associated entity set Ed is drawn from

a Dirichlet prior with α1. Note that instead of selecting an entity uniformly

from Ed as in the author model and author topic model [26, 27], we draw it

from a document-specific multinomial distribution ϑd over Ed. This is due to

the assumption that each entity in Ed has a different weight in generating a

document d. For example, when writing a research article, different authors

make different contributions. Then, to generate each word, a topic zd,i is

drawn from θd, an entity ed,i is drawn from ϑd, and word wd,i is generated

by randomly sampling from an entity and topic specific multinomial distri-

bution ψed,i,zd,i . That is, each term is associated with a entity-topic pair, and

the generation of term is dependent on both factors.

3.3.2 Shared Asymmetric Dirichlet Priors

In this section, we will explain how to model the word distributions P (w|e, z)

for each entity-topic pair (e, z). As addressed in Section 3.3.1, our model uses

two contexts, entity e and topic z, to generate word w. One of the impor-

tant issues for statistical language models and topic models is data sparsity,

which is the phenomenon of not observing enough data in a corpus to learn

accurate model parameters. Effective smoothing techniques [44] are required
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Figure 3.3: A graphical representation of ETM

to alleviate this problem. A well-known smoothing technique is to use sym-

metric Dirichlet priors with fixed, uniform concentration parameters. This

allows any topic to generate any word with non-zero probability. However,

recent studies [45] have shown that the quality of topic models can be sig-

nificantly enhanced by considering asymmetric Dirichlet priors, an idea we

adopt in ETM. We use the intuition that the word distribution for (e, z)

pair should be dependent on word distributions for both entity e and topic

z, and share some similarity with both of them. For example, the word

distribution for Judea Pearl in Data Mining should be similar to the word

distribution for Judea Pearl and the word distribution for Data Mining sep-

arately. Therefore, the prior for ψe,z could be designed as some function of

word distributions for e and z. More specifically, suppose that we have some

common word patterns ϕe for an entity e across topics, and φz for a topic z

across entities. We use a linear combination of ϕe and φz as Dirichlet prior

of ψe,z:

ψe,z ∼ Dir(β1φz + γ1ϕe)

Since such common word patterns are not necessary symmetric, their linear

combination is asymmetric. By sharing common word patterns as priors, we

can get better word smoothing, and with a much smaller parameter space,

i.e., EW for ϕe and TW for φz.
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Algorithm 1 Entity Topic Models

1: for each topic z do
2: Draw φz ∼ Dir(β0)
3: end for
4: for each entity e do
5: Draw ϕe ∼ Dir(γ0)
6: end for
7: for each (e, z) do
8: Draw ψe,z ∼ Dir(β1φz + γ1ϕe)
9: end for

10: for each document d do
11: Draw θd ∼ Dir(α0)
12: Draw ϑd ∼ Dir(α1;Ed)
13: for each i ∈ 1, . . . , Nd do
14: Draw zd,i ∼Multi(θd)
15: Draw ed,i ∼Multi(ϑd)
16: Draw wd,i ∼Multi(ψed,i,zd,i)
17: end for
18: end for

3.3.3 Model Learning

We use Gibbs sampling to learn the model. Specifically, we repeatedly sample

the entity-topic pair for each word in the document collection, given the

entity-pair of assignment to all the rest words (Z, E) as well as the priors

(Φ). This conditional posterior of assignment (ed,i, zd,i) to the ith word wd,i

in document d is:

P (zd,i, ed,i|wd,i,Z\d,i, E\d,i,Φ)

∝ P (wd,i|zd,i, ed,i,Z\d,i, E\d,i,Φ) (3.1)

P (zd,i|Z\d,i,Φ)

P (ed,i|E\d,i,Φ)

where sub- or super-script “\d, i” denotes a quantity excluding data from

position i in document d.

The second and third terms on the right-hand side are straightforward:

P (zd,i|Z\d,i,Φ) ∝
N

\d,i
zd,i|d

+ α0

T

Nd − 1 + α0

(3.2)
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P (ed,i|E ,Φ) ∝
N

\d,i
ed,i|d

+ α1

|Ed|

Nd − 1 + α1

(3.3)

where N
\d,i
zd,i|d

is the number of word tokens assigned with topic zd,i except ith

token in document d, and N
\d,i
ed,i|d

is the number of word tokens assigned with

entity ed,i except ith token in document d.

In order to better understand the first term on the right-hand side, we

describe its generative process3. Figure 3.4 depicts the process of drawing

nine words from the Dirichlet-multinomial ψe,z that has β1φz + γ1ϕe as its

prior. This process introduces a set of internal draws {σ1, σ2, . . . }. Those

internal draws are chosen when a word is generated from ψe,z. When drawing

the first word, there are no previous internal draws, and σ1 is drawn from

either φz with probability β1

β1+γ1
or ϕe with probability γ1

β1+γ1
. In the example

of Figure 3.4, σ1 is drawn from φz. The second word is drawn by selecting

σ1 with probability proportional to the number of previous words that are

from σ1, a new draw from φz with probability proportional to β1, or a new

draw from ϕe with probability proportional to γ1. In the case of Figure 3.4,

the second word is drawn by the new draw σ2 from φz. The next words are

drawn with the same procedure.

LetNw|e,z denote the number of word-w tokens assigned with the pair (e, z),

N̂w|z denote the number of internal draws in {σ1, σ2, . . . } whose values are w

drawn from φz, and N̂w|e denote the number of internal draws in {σ1, σ2, . . . }

whose values are w drawn from ϕe. Also, let N·|e,z =
∑

w∈W Nw|e,z, N̂·|z =

3Our word generative process is an extension of the generative process described in [45],
where they have only one base measure while ours has two base measures.
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∑

w∈W N̂w|z, and N̂·|e =
∑

w∈W N̂w|e. Then, the predictive probability of

word w in given z, e, Z, E , and Φ is:

P (w|z, e,Z, E ,Φ)

=
Nw|e,z + β1

N̂w|z+
β0
W

N̂·|z+β0
+ γ1

N̂w|e+
γ0
W

N̂·|e+γ0

N·|e,z + β1 + γ1
(3.4)

By combining Equation 2, 3, and 4, we can compute Equation 1.

Once we obtain entity-topic pair assignments for each word, we can esti-

mate the parameters in the model accordingly.

3.3.4 Discussions on Special Cases

Another advantage of our model is that it has connections to previous topic

models, and it turns out that LDA and the Author Model are both special

(limiting) cases of our model.

If the concentration parameter β1 is large and γ1 is small relative to Ne,z,

then counts Ne,z are effectively ignored, and lead to have P (w|z, e,Z, E ,Φ) ≈

P (w|z,Z, E ,Φ). As β1 → ∞ and γ1 → 0, the role of entities in the model

becomes ignored, and our model approaches to LDA.

By contrast, if concentration parameter γ1 is large and β1 is small relative

to Ne,z, our model will have P (w|z, e,Z, E ,Φ) ≈ P (w|e,Z, E ,Φ). As β1 → ∞

and γ1 → 0, the role of topics in the model becomes ignored, and our model

approaches to Author Model.

3.4 Experiments

We have two types of datasets to evaluate our model: a news article dataset

and a DBLP dataset. In the news article datasets, we collected articles about

Japan’s Tsunami(2011) and London’s Riot(2011) from NewsBank4.

In Japan’s tsunami disaster, a massive 8.9-magnitude earthquake shook

Japan on March 11, 2011, causing a devastating tsunami to the coast of

Japan. Due to the tsunami, the nuclear power plants in Fukushima were

damaged, and one of the reactors in the Fukushima No. 1 nuclear plant

4http://www.newsbank.com/
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partially melted down in the following day. As a result, the nuclear accident

caused the exposure of nuclear radiation near the plant. We searched articles

with “Japan Tsunami” keywords, and collected 2,000 articles published from

Mar. 11, 2011 to Apr. 11, 2011.

In London’s riot, Mark Duggan, a 29-year-old Tottenham resident, was

shot and killed by a police. His death was followed by a protest against police

and disturbances began on August 6, 2011. The violence spread across several

cities, including Birmingham, Bristol Liverpool, and Manchester. More than

3,000 people were arrested and £200 million worth of property damage was

incurred. We searched articles with “London Riot” keywords, and collected

2,000 articles published from Aug. 6, 2011 to Sep. 6, 2011.

Since news articles do not contain associated entity sets explicitly, we

extracted entities mentioned in the articles. We used Zemanta5, a high-

performance online entity extraction and disambiguation service that links

extracted entities to Wikipedia entries. Despite of many other available entity

annotation tools, Zemanta was chosen because it has very high throughput

and high precision [46]. After extracting entities, we discarded infrequent

entities that appear in less than 5 documents. We also removed stop words

and infrequent words that appear less than 5 documents.

The Digital Bibliography and Library Project (DBLP)6 is a collection of

bibliographic information on major computer science journals and proceed-

ings. Each paper is represented by a bag of words that appear in the abstract

and title of the paper. Also, its associated entity set is defined as the set

of authors. In this experiment, we use a subset of the DBLP records that

belongs to four areas: databases, data mining, information retrieval and ar-

tificial intelligence. We discard authors with less than 5 publications in our

corpus. We again removed stop words and infrequent words that appear less

than 5 documents. The three datasets are summarized in Table 3.2.

Our main claim is that word distributions should depend on associated

entities as well as topics. For each dataset, as a case study, we show how

word distributions change over topics with a fixed entity, and over entities

with a fixed topic. In addition, we show rankings of entities for each topic as

by-products of our model.

Finally, we compare our model with several baselines in terms of perplexity,

5http://zemanta.com
6http://www.informatik.uni-trier.de/~ley/db/
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Table 3.2: Three Datasets with Statistics

Dataset Name D E W avg(|Ed|) avg(Nd)

Japan Tsunami 2,000 596 10,104 11.49 243.30

London Riot 2,000 585 11,016 11.57 233.68

DBLP 20,860 3,251 11,609 1.79 96.51

and investigate the parameters of our model.

For Japan’s Tsunami and London’s Riot datasets, we used T = 20, β1 =

100, γ1 = 10, and set other hyperparameters to 0.1. For the DBLP dataset,

we used T = 50, β1 = 1000, γ1 = 1, and set other hyperparameters to 0.1.

We used a relatively small number of topics when visually investigating word

distributions from ETM. The evaluation of our model for different number

of topics will be addressed in Section 3.4.1. The hyperparameters will be

addressed in Section 3.4.2.

3.4.1 Perplexity Analysis

We compare our model with several baselines: LDA [20], Link-LDA [28],

AM [26], and ATM [27]. Their hyperparameters are set to 0.1 except ATM,

where the author suggested its hyperparameter settings: α = 50
T
and β = 0.01

in Figure 3.2(d). Perplexity is a standard measure for estimating the perfor-

mance of a probabilistic model. We evaluate our model and compare with the

baselines by estimating the perplexity of unseen held-out documents given

some training documents. A better model will have a lower perplexity of held-

out documents, on average. Perplexity is defined as exp(− logP (Dtest|Dtrain)
∑

d∈Dtest Nd
).

Let Φ denote the set of all parameters in a topic model. Then,

P (Dtest|Dtrain) =

∫

P (Dtest|Φ)P (Φ|Dtrain)dΦ

This integral can be approximated by averaging P (Dtest|Φ) under samples

from P (Φ|Dtrain). We used a Gibbs sampling to get 20 samples of Φ and

left-to-right evaluation algorithm [47] to approximate P (Dtest|Φ). Note that

AM, ATM, and ETM have generative processes of words for a given set of

entities. Thus, P (Dtest|Φ) is defined as follows:

P (Dtest|Φ) =
∏

d∈Dtest

P (wd|Ed,Φ)
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Figure 3.5: Perplexity values for different number of topics
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Figure 3.6: Perplexity values for different β1 and γ1. The size of circle at
each data point is proportional to its perplexity value.

We randomly sample 80% of the data as Dtraining and use the remaining

20% as Dtest. Figure 3.5 shows the perplexity values of our model and the

baselines for different number of topics. Note that because AM does not have

topics in its model, it has the same value regardless of the number of topics.

Also, because LDA does not have entities in its model, LDA cannot take

advantage of given associated entity sets. Generally, Link-LDA is slightly

better than LDA because it uses the given associated entity sets as extra

information to learn topic distributions in documents. Since ATM models a

document generative process for a given set of entities, it is expected to have

lower perplexity values than LDA. However, their experiments [27] with the

corpus of NIPS papers showed that ATM has higher perplexity values than

LDA because ATM model has large number of parameters to be estimated,
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Figure 3.7: The changes of the sampled parameters β1 and γ1 over the
number of documents

limiting its generalization performance. For DBLP dataset, ATM also has

higher perplexity values than LDA as shown in Figure 3.5(b).

In Japan’s Tsuanmi dataset, the perplexity values of LDA and Link-LDA

decrease until they reach the lowest values at T = 50, and then begin to

increase. When T > 50, LDA and Link-LDA have too many parameters in

their models, causing an overfitting problem. The perplexity value of ETM

decrease until it reaches to the lowest value at T = 20, and then begin

to increase due to the overfitting problem like LDA and Link-LDA. Until

T = 20, ETM outperforms the four baselines, and its lowest perplexity value

is lower than the lowest perplexity values of the other models.

In the DBLP dataset, ETM has similar perplexity values as LDA and Link-

LDA. The main reason is that most of the words in the research articles

are related to research topics, and entity-specific topic-independent words

are relatively rare in the corpus. For example, some coined words by an

author can be entity-specific and topic-independent words, but such words

are relatively rare unless the terms become popular in their related research

communities. ETM, however, is still the best among all the models when

the number of topics is small, and comparative to LDA and Link-LDA when

number of topics is increasing, and much better than ATM for all the settings.

3.4.2 Parameter Studies

Among the six hyperparameters in our model, β1 and γ1 play the most im-

portant role. Depending on their values, our model slides between LDA and

22



1 10 100

Number of Topics

0

100

200

300

400

H
y
p

e
rp

a
ra

m
e

te
r 

V
a

lu
e

s

�
1

β
1

(a) For different number of topics

1 10 100

Number of Topics

0

50

100

150

200

H
y
p

e
rp

a
ra

m
e

te
r 

V
a

lu
e

s

�
1

β
1

(b) For different number of topics

Figure 3.8: The changes of the sampled parameters β1 and γ1 over the
number of documents and the number of topics in DBLP dataset

AM. For a given collection of documents, these parameters can be tuned by

the perplexity analysis. Figure 3.6 shows the perplexity values for different

values of β1 and γ1. For each pair of β1 and γ1, the size of circle is pro-

portional to its perplexity value (smaller is better). For Japan’s Tsunami

dataset, ETM has the lowest perplexity value at β1 = 100 and γ1 = 10.

For DBLP dataset, ETM has the lowest perplexity value at β1 = 1000 and

γ1 = 1. With Figure 3.6, we can find appropriate parameter values for β1, and

γ1. In addition, we can understand the characteristics of the corpus: topic-

related words are dominant in DBLP dataset, while topic-related words and

entity-related words are relatively balanced in Japan’s Tsunami dataset.

Instead of enumerating parameter values and evaluating to find appropri-

ate values, we can estimate them directly from a given corpus by sampling.

As many studies suggested [45, 48], concentration parameters like β1 and γ1

can be given broad Gamma priors and inferred using slice sampling [49].

For Japan’s Tsunami dataset, we sampled β1 and γ1. First, we sample

them for different number of documents. In Figure 3.7, when training doc-

uments are very few, the sampled hyperparameters β1 and γ1 become large,

leading to reduce its parameter space by weighting more on priors. Next, we

sampled β1 and γ1 for different number of topics. As shown in Figure 3.8(a),

β1 increases as the number of topics increases. This is due to the quality of

topics. When the model has better quality of topics, the word distributions

P (w|e, z) depend more on the topic z than the entity e. However, in Fig-

ure 3.8(b), β1 and γ1 are steady because in DBLP dataset words depend on

topics more than authors when enough documents are given to model topics,
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Table 3.3: Naoto Kan’s Entity Prior (ϕe) and Word Distributions (ψe,z) of
his Related Topics

Naoto Kan Relief Nuclear Economic
Efforts Accident Effects

kan bodies kan prime
minister search minister rule
prime kan prime bill
naoto people naoto kan
government troops nuclear powerful
tokyo car radiation business
crisis crisis plant minister
troops prime evacuated naoto
friday confirmed yukio mind
party business reactors term
assistance told urged starting
democratic minister time past
asked lost televised march
kans concrete complex loans
house coastal situation financing
situation centers cabinet economic
mr center fears disaster
efforts soldiers crippled april
conference naoto indoors kans
spokeswoman leaks statement yen

and such dependencies do not change even when we increase the number of

topics.

3.4.3 Case Study 1: Japan’s Tsunami

Since T is set to 20, we get 20 topics, including Tsunami, Nuclear Accident, Nu-

clear Radiation, Economic Effects, Industrial Effects, Relief Efforts, Tsunami Rescue,

and so on7.

Naoto Kan, who was the prime minister of Japan during the incident, was

frequently mentioned in the corpus. He was involved in many topics like

Relief Efforts, Nuclear Accident, and Economic Effects.

First, the top 20 words in the entity prior ϕe of Naoto Kan are shown in

the first column in Table 3.38. The entity prior can be interpreted as entity-

7The topics are manually named based on their word distributions.
8For simplicity, we omitted parameter values, and listed the top words
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related and topic-independent word distribution for Naoto Kan. Combining

with topic priors, the entity prior helps to shape the word distributions (ψe,z)

of Naoto Kan in different contexts.

To support our main claim, we compare the word distributions (ψe,z) for

Naoto Kan across different topics. Here, we show Naoto Kan in three different

topics – Relief Efforts, Nuclear Accident, and Economic Effects. The top words are

listed in the rest of columns in Table 3.3 based on their ψe,z values. Note that

there are “troops”, “soldiers”, “bodies”, and “search” in Relief Efforts since

the Japanese government had sent 50,000 troops for the rescue and recovery

efforts, and “yukio” in Nuclear Accident refers to Yukio Edano who was the

chief secretary of Japan’s cabinet, leading the government to combat the

aftermath of Nuclear Accident. As shown in Table 3.3, the word distributions

(ψe,z) related to Naoto Kan vary significantly across the topics.

In the first column in Table 3.4, the top 20 words of the topic prior φz of

Relief Efforts are listed. The topic prior can be interpreted as topic-related

and entity-independent word distribution for Relief Efforts. The topic prior

help to learn the word distributions (ψe,z) related to the entities involved in

Relief Efforts.

We compare the word distributions (ψe,z) of three entities in the context of

Relief Efforts – American Red Cross, Korea, and Tokyo. Even though American Red

Cross and Korea are entities that had supported the Japanese people, their

word distributions (ψe,z) are different: Korea has “sympathy” and “personal”

in the top 20 words, and American Red Cross has “efforts” and “raise”. Tokyo

has the words “family”, “friend”, “home”, and “email” because many articles

mentioned that many people contacted with their family or friends in Tokyo

via phone and e-mail. As shown in Table 3.4, the word distributions (ψe,z)

related to Relief Efforts also change over the related entities and fit more to

the entities.

As by-products, we can rank entities for each topic and rank topics for

each entity. In contrast to ATM [27], our model does not model the relation-

ship between entities and topics directly. Our model, however, can get their

relationship indirectly for a given assignments E and Z. Let N·|e,z denote the

number of words that are assigned with (e, z). Also, let N·|·,z =
∑

eN·|e,z and

N·|e,· =
∑

z N·|e,z. Then, P (e|z, E ,Z,Φ) =
N·|e,z

N·|·,z
, and P (z|e, E ,Z,Φ) =

N·|e,z

N·|e,·
.

Based on P (e|z, E ,Z,Φ) and P (z|e, E ,Z,Φ), we can rank entities for each

topic, and rank topics for each entity.
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Table 3.4: Relief Effort’s Topic Prior (φz) and Word Distributions (ψe,z) of
Its Related Entities

Relief American Korea Tokyo
Efforts Red Cross
japan cross japan people
japanese red japanese japan
people japan korea friends
tsunami american korean japanese
earthquake relief donations tokyo
disaster support koreans tsunami
world donations sympathy back
relief donation march earthquake
money disaster earthquake home
time raise helping email
country march hard devastating
damage efforts victims family
friends affected support earthquakes
information tsunami collected student
aid victims quake miles
week earthquake personal concerned
affected money people watch
nation thursday news live
march people money concern
devastation located important close

Table 3.5 shows two topics and their entity rankings. Nuclear Accident and

Nuclear Radiation have three entities in common in the top entities: Tokyo Elec-

tric Power Company, Fukushima Nuclear Power Plant, and Potassium iodide. Tokyo

Electric Power Company is the operating company of Fukushima Nuclear Power

Plant, and one of the nuclear reactors in Fukushima Nuclear Power Plant had

been damaged and started to melt down. Potassium iodide is an inorganic com-

pound that is used as drugs to prevent Thyroid cancer caused by radioactive

chemicals. However, the rest of entities are very different. Note that there

are Nuclear Regulatory Commission, U.S. Environmental Protection Agency, and

Seawater in the top entities of Nuclear Accident: Nuclear Regulatory Commission

oversees nuclear reactor safety, U.S. Environmental Protection Agency protects

human health and the environment by enforcing related regulations, and Sea-

water was used to cool down the nuclear reactor. On the other hand, there

are Iodine-131, Caesium, Thyroid, and Tap Water in the top entities of Nuclear

Radiation: Iodine-131 and Caesium are the emitters of strong gamma radiation
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Table 3.5: Entity Rankings for Different Topics in Japan Tsunami Dataset

Nuclear Accident Nuclear Radiation
Nuclear Regulatory Commission Tokyo Electric Power Company
Nuclear power plant Fukushima Nuclear Power Plant
Chernobyl disaster Electrical grid
Japan Tap water
Tokyo Electric Power Company Caesium
Libya Iodine-131
Potassium iodide Thyroid
U.S. Environmental Protection Agency Radiation
Seawater Yukio Edano
Fukushima Nuclear Power Plant Raw Milk
Barack Obama Potassium iodide
Automotive industry Thyroid cancer

that causes cancers and even death. Those radioactive chemicals can dis-

solve in water, and people may get exposed to the radioactive chemicals by

drinking Tap Water.

Similarly, it is possible to analyze topic rankings for each entity.

3.4.4 Case Study 2: DBLP – Research Articles

In this section, we performed a similar analysis with the DBLP corpus. As

introduced in Section 3.1, Judea Pearl is the 2011 winner of the A.M. Turing

Award for “for fundamental contributions to artificial intelligence through

the development of a calculus for probabilistic and causal reasoning.”9 He

is credited for inventing Bayesian networks, and several inference methods

in the models. He later developed a theory of causal and counterfactual

inference based on structural models.

First, the top 20 words in the entity prior ϕe of Judea Pearl are shown in

the first column in Table 3.6. The entity prior can be interpreted as the word

distribution of his general methodologies, approaches, or research interests

for Judea Pearl. There are “casual” and “counterfactual” in his entity prior

ϕe, indicating his research interests are casual and counterfactual inference

across his research topics. Combining with topic priors, his entity prior helps

to shape the word distributions ψe,z of Judea Pearl in different research topics.

9http://amturing.acm.org/award_winners/pearl_2658896.cfm
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Table 3.6: Judea Pearl’s Entity Prior (ϕe) and Word Distributions (ψe,z) of
His Related Research Topics

Judea Pearl Knowledge Reasoning Bayesian
Representation Network

causal reasoning logic causal
revisited default dependencies distributions
optimality causal probabilistic models
markovian formal graphs markovian
counterfactual systems directed semi
explanations computational representing identification
symbolic specificity dags characterization
independence causality programs recursive
path diagnostic reasoning joint
specificity inheritance conditional variables
scout representation bases data
independencies model based effects
dependence knowledge efficient algorithm
proven system networks based
embracing inference programming clustering
dags common probability network
tolerating rule undirected arbitrary
economy embracing causal graph
states coherence inference bayesian
counterfactuals belief belief networks

Based on P (z|Judea Pearl, E ,Z), we selected his top 3 research topics: Knowl-

edge Represetation (KR), Reasoning, and Bayesian Network10. With his general

approaches “casual” and “counterfactual”, he has involved in these research

topics. The top words of the word distributions (ψe,z) are listed in the rest of

the columns in Table 3.6, indicating how his approach is applied in different

research topics.

For KR, we select the top three authors based on P (e|KR, E ,Z). Even

though they have published papers on KR, their approaches are very differ-

ent from each other. Pedro Domingos has focused on learning Markov logic

networks, Benjamin Kuipers has developed qualitative models to express states

of incomplete knowledge about continuous mechanisms and QSIM algorithm

for qualitative simulation. Marzena Kryszkiewicz has taken very different ap-

proaches that use frequent patterns to generate rules as knowledge. Even

10These topics are manually named based on their topic priors.
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Table 3.7: Knowledege Represetntation’s Topic Prior (φz) and Word
Distributions (ψe,z) of Its Related Entities

Knowledge Pedro Benjamin Marzena
Representation Domingos Kuipers Kryszkiewicz
knowledge logic qualitative frequent
reasoning markov simulation patterns
system networks reasoning representation
representation learning knowledge free
based world quantitative disjunction
design mlns systems generalized
systems knowledge incomplete concise
qualitative order mechanism based
logic structure abstraction generators
theory logical envisionment representations
learning real physical negations
domain models behavior oriented
planning unifying causal support
problem ilp system knowledge
agent systems description sets
expert purely expert condensed
model representation process reasoning
approach reasoning behaviors survey
models viewing logic system
support mln model borders

though the three authors have very different approaches for the same research

topic, and thus have very different word distributions, our model aligns them

under KR topic to make them comparable. This comparison is not possible

without modeling P (w|e, z).

As we did for Japan’s Tsunami dataset, we can rank entities for each topic,

and topics for each entity, as shown in other studies [27, 1]. Due to the space

limit, we will not show them in this study.

3.4.5 Case Study 3: London’s Riot

In this section, we show the power of ETM in document retrieval. Since we

have topics and entities for organizing documents, we can use a pair of an

entity e and a topic z as a query to retrieve relevant documents. For a given

query 〈e, z〉, we rank the documents by a score function as follows:
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Table 3.8: Entity Rankings for Different Topics in DBLP Dataset

Text Classification Web Search
Andrew McCallum Barry Smyth
Haym Hirsh Bing Liu
Rong Jin Ryen W. White
Doina Precup Marius Pasca
Wenyuan Dai Wei-Ying Ma
Aidong Zhang Hongkun Zhao
Rayid Ghani Marc Najork
Qiang Yang Yannis Papakonstantinou
Kotagiri Ramamohanarao Krithi Ramamritham
Alexandru Niculescu-Mizil Qiang Yang
Vikas Sindhwani Ji-Rong Wen
Massih-Reza Amini Hua-Jun Zeng

Score(〈e, z〉, d) =

∑

i I(ed,i = e ∧ zd,i = z)

Nd

We first ranked and listed top 5 documents using three different queries

that have the same topic but different entities. The three queries and the

corresponding top 5 documents are shown in Table 3.9. We fixed topics as

Violence and used the three entities Mark Duggan, Olympic Game, and Water

Cannon to see the difference between the top ranked documents with the

queries.

With the query 〈Mark Duggan,Violence〉, we found news articles that explain

how the death of Mark Duggan caused a protest and spread the violence. Us-

ing the query 〈Olympic Game,Violence〉, we searched news articles that explain

how the violence affected the preparation of London Olympics that was less

than a year away. In addition, using the query 〈Water Cannon,Violence〉, we

found news articles about the riot control tactics by police including using

water cannons.

Likewise, we fixed entities as Police and used different topics. We used

three different topics Riot Control, Society, and Sporting Fixtures as queries.

Table 3.10 shows the top ranked documents.

As shown in this section, we can use ETM to organize and retrieve doc-

uments in two different dimensions or aspects – topics and entities – for a

given corpus.
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Table 3.9: Queries of 〈∗,Violence〉 and Titles of Relevant News Articles

Query: 〈Mark Duggan,Violence〉

1. As trouble spreads, did police fire the bullet that sparked
riots ? - As trouble spreads, did police fire first shots in gun
drama?
2. Police apologise to Duggan family for failing to keep them
informed
3. The truf war that fuelled riots
4. A dead man and a crucial question: should police have shot
Mark Duggan? - News Cahal Milmo and Rob Hastings recon-
struct the fateful events of Thursday evening that sparked three
days of rioting
5. How fatal shooting of mini-cab driver sparked protests

Query: 〈Olympic Game,Violence〉

1. Burning rings of fire - Olympic organisers feel the strain as
riots sweep across London
2. Lawless London a worry for Games organisers, says Shirving-
ton
3. Riots in London a concern with Olympics looming
4. London deploys extra officers to quiet riots
5. Three die as riots flare up again

Query: 〈Water Cannon,Violence〉

1. Plastic bullets authorised for use on British mainland: 16,000
officers flood capital as authorities change tactics: Trouble flares
up again in Manchester and Birmingham
2. The fightback is under way: PM’s pledge to battered cities
3. Sporadic nature of violence complicates challenge for police
4. Residents demand tougher policing after third night of burn-
ing, looting
5. Cameron allows water cannon to crush riots
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Table 3.10: Queries of 〈Police, ∗〉 and Titles of Relevant News Articles

Query: 〈Police,Riot Control〉

1. Police strength crucial for a strong community
2. Western Morning News: Police officers cover for striking
control room staff
3. Keep your water cannon: What police most need to quell
riots isn’t fancy new weapons but unequivocal support from the
public
4. PM defends bid for police “figurehead”
5. More police, not less - your letters

Query: 〈Police, Society〉

1. Many flaws in policing plan
2. The Daily Telegraph: We have the chance to recover Britain’s
streets for civilisation
3. Met police are being spread too thinly
4. Another perspective on London riots - London’s raging riots
spread north, Aug. 9
5. Britain’s August riots - Civil disorder and looting hits Britain

Query: 〈Police, Sporting Fixtures〉

1. Cheltenham’s game called off because of violence
2. Broadcasters forced to hand over riot footage to the police
3. Riots force Tottenham postponement
4. Riots were “disgusting”, says assistant chief constable
5. U.K. police don’t take aim, but critics open fire
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CHAPTER 4

PATTERN MINING FOR FEATURE NODE

GENERATION

4.1 Overview

In computational linguistics and text mining domains, there are three classi-

cal classification problems: topic classification, genre classification, and au-

thorship classification. Among these three problems, arguably the most diffi-

cult is the classification of documents in terms of their authorship (known as

authorship classification, authorship attribution and/or authorship discrim-

ination). This problem can be thought of as classifying documents based

on the writing styles of the authors. This is a nontrivial problem even for

humans: while a human can easily identify the topic and genre of a given

document, identifying its authorship is harder. If the documents are in the

same topic and genre, the task becomes much harder.

In the era of excessive electronic texts, authorship classification has become

more important than ever before with a wide variety of applications. Besides

the early works of analyzing the disputed plays of Shakespeare(1887) [50] or

anonymous documents of The Federalist Papers(1964) [51], it could also be

used to identify authors of short ‘for sale’ messages in a newsgroup [52] and

even for forensic investigations by identifying authorship of e-mail messages

[53]. Detecting plagiarism or copyright infringement of unauthorized reuse of

source code by establishing a profile of an author’s style is another important

application of authorship classification [54].

Existing approaches to authorship classification use various methods to

extract effective features, the most common of which include style markers

such as function words [55, 56, 57, 58] and grammatical elements such as part

of speech (POS ) tags [59, 60, 61]. Function words are common words (e.g.

articles, prepositions, pronouns) that have little semantic content of their

own but usually indicate a grammatical relationship or generic property.
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Recently, there have been several papers that claimed function words are

more effective than other types of style markers [56, 61, 62].

S

S – simple declarative clause
NP – noun phrase
PP – prepositional phrase
IN – preposition
VP – verb phrase
VBD ‐ verb, past tense 

Example. The major indexes fell more than 2 percent, and the surge that had lifted the troubled indexes by more than 20 
percent in the last month showed signs of stalling as the reporting period for the first fiscal quarter of the year began.

Pattern t Syntactic Tree S

NP VP

PP

IN NP

VBD PP

NPIN

Figure 4.1: A 2-ee subtree t is mined from two The New York Times
journalists Jack Healy and Eric Dash who worked in the same business
department. On average, 21.2% of Jack’s sentences contained t while only
7.2% of Eric’s sentences contained t.

Unfortunately, research on more complex syntactic structures has not been

practical because of the lack of a reliable, automatic tool which retrieves

syntactic structures, and because of the high computational cost associated

with syntactic structure-based algorithms. Instead, several variations of POS

tags [55, 60, 63] and rather simple syntactic structures like rewrite rules

[59, 60, 63] have been proposed. Among them, bigram POS tags and rewrite

rules showed reliable performance in various dataset configurations.

Recently, several advanced techniques have been developed which greatly

improved the performance of Natural Language Processing(NLP) tools1 en-

abling reliable, highly accurate sentence parsing into a syntactic tree of POS

tags. A syntactic tree is a rooted and ordered tree that is labeled with POS

tags that represent the syntactic structure of a sentence. Based on the syn-

tactic trees parsed by these tools, we propose a novel syntactic feature set of

tree fragments allowing at most k-embedded edges (in short, a k-ee subtree).

We say there is an embedded edge between two nodes if and only if they

are in an ancestor-descendant relationship but not in a parent-child relation-

ship. Compared with previous feature sets that consist of parts of distinct

connected subtree components, our new feature set captures the relationship

1We used Stanford Parser (http://nlp.stanford.edu/software/lex-parser.
shtml), but there are more tools available like Natural Language ToolKit (NLTK) pack-
age (http://www.nltk.org).
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between k+1 connected subtree components of a syntactic tree, which leads

to a better representation of datasets consisting of long and complex sen-

tences. Figure 4.1 gives an example of a k-ee subtree t for k = 2. Pattern t is

composed of three smaller subtrees, which are connected by two embedded

edges (S,NP) and (VP,PP). The differences in pattern distributions between

two authors suggest that a set of k-ee subtrees can be utilized as a good

feature set for authorship classification.

To reduce the number of features, we only mine a set of frequent and

discriminative k-ee subtrees, which results in higher accuracy by avoiding

overfitting to the training data and by not generating non-discriminative

features that often degrade the performance. This task is commonly referred

to as pattern-based classification. The original pattern-based classification

technique employed a two-step procedure called generate-and-test which gen-

erates all frequent and closed candidate patterns and then selects the discrim-

inative patterns among them [64]. Unfortunately, it is still intractable to use

this generate-and-test methodology to get discriminative patterns because

there are simply too many candidate patterns.

For this reason, there have been quite a few works which directly mine dis-

criminative patterns without generating all candidates [65, 66, 67]. Yet, these

existing works cannot be directly applied to our problem setting because they

require the feature values to be binary. Instead, we require numeric feature

values because a (syntactic) feature can occur multiple times in a document

and usually the number of occurrences implies its importance. Existing works

are all based on binary-valued features and their theorems and proofs are not

easily extendable to numeric-valued features. A recent work ([68]) showed

that it has more gain to use numeric values than to discretize them into

binary values. It also proposed a new way to directly mining discriminative

numeric features by solving a linear programming optimization problem. But

all these previous works mine top-1 pattern iteratively until the mined pat-

terns cover the entire data. To cope with this issue, we derive an upper

bound of a discriminative score of numeric-valued features, and develop an

efficient algorithm that mines in one iteration a set of discriminative patterns

to be used for classification purpose.

To validate the utility of our new feature set compared to others, for fair

comparisons, we apply the same SVM classification algorithm using various

feature sets on several real data collections. Because of its high and reliable

35



performance, SVM has commonly been used to compare the effectiveness of

feature sets [60, 61, 63]. Experimental results demonstrate the effectiveness of

the proposed k-ee subtree features in comparison to the well-known existing

feature sets of function words, POS tags, and rewrite rules. We demonstrate

that by using k-ee subtrees as the feature set we outperform the existing

feature sets by 8.23% on average and show that it is significantly better from

other approaches by t-test with 95% confidence level.

In summary, the contributions of this chapter are as follows:

• We propose a new feature set of k-ee subtrees for authorship classifica-

tion.

• We develop an efficient algorithm to directly mine discriminative k-

ee subtrees, which are not binary but numeric valued features, in one

iteration.

• Through comprehensive experiments on various datasets, we demon-

strate the utility of our proposed framework to provide an effective

solution for the authorship classification problem.

The rest of the chapter is organized as follows. In Section 4.2, we introduce

various preliminary concepts and define our new feature set of k-ee subtrees.

Section 4.3 explains a branch-and-bound framework of discriminative k-ee

subtree mining. We report experimental results in Section 4.4.

4.2 k-Embedded-Edge Subtree

Previous authorship attribution approaches adopted function words, POS

tags, and rewrite rules as a feature set to build a classification model. Even

though they achieved good accuracy, there still exists room for a more mean-

ingful feature set to improve the performance. In this section, we describe

rewrite rules which are somewhat complex syntactic structures that hold

more syntactic information than the other two feature sets. Also, we define

our new feature set of k-ee subtree patterns.
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4.2.1 Rewrite Rule

In [59], rewrite rules were considered to be building blocks of a syntactic

tree, just as words are building blocks of a sentence. Here, a syntactic tree

is a rooted and ordered tree which is labeled with POS tags that represents

the syntactic structure of a sentence. Its interior nodes are labeled by non-

terminals of the grammar, and the leaf nodes are labeled by terminals.

Compared to previous approaches that utilized function words and POS

tags, rewrite rules can hold functional structure information of the sentence.

In linguistics, a rewrite rule is in the form of “X → Y ” where X is a syntactic

category label and Y is a sequence of such labels such that X can be replaced

by Y in generating the constituent structure of a sentence. For example,

“NP → DT+JJ+JJ+NN ” means that a noun phrase (NP) consists of a

determiner (DT ) followed by two adjectives (JJ) and a noun (NN ).

There is a limit when using rewrite rules as features of a classification

model. First, because of the restriction that the entire rule cannot be bro-

ken into smaller parts, no similarity between rules are considered. A large

number of slightly different rules are all counted as independent features.

For instance, a rewrite rule “NP → DT+JJ+NN ”, missing one JJ from

the above example, becomes a separate rewrite rule. Second, the express-

ibility of rewrite rules is limited because they must adhere to a very strict

two-level tree structure, which does not allow the entire rule to be broken

into smaller parts. For example, the relationships between rewrite rules are

missing, which can hold more refined syntactic information. For these rea-

sons, we developed a new feature set of k-ee tree patterns that are flexible

and complex enough to represent the syntactic structure information of a

sentence.

4.2.2 k-Embedded-Edge Subtree

To overcome the drawbacks of simple syntactic feature sets used in previous

approaches, we explore more complex syntactic features. Induced subtrees

of a syntactic tree are one of the candidate feature sets whose features are

multi-level tree fragments used to model the complex syntactic structure of a

sentence. Here, we define a tree t to be an induced subtree of a tree s if there

exists an identity mapping from t to s preserving all parent-child relationships
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Figure 4.2: Example of overcounting overlapped k-ee subtree occurrences

between the nodes of t. Our pilot experiments showed that a small number of

combinations of those induced subtrees could achieve even higher accuracy,

which motivated us to define k-ee subtrees for our new feature set. Based

on this motivation, we designed a new tree pattern that can capture this

phenomenon.

Definition 1. We define an embedded edge e of a tree s to be a pair of two

nodes with an ancestor-descendant relationship. We define a k-embedded-

edge subtree (shortly, k-ee subtree) t of a tree s to be a set of induced

subtrees of s that can be connected by at most k embedded edges (not with

parent-child relationships) for a user specified value k.

The number of k-ee subtrees would be exponential on the number of trees

and their sizes. We define a minimum support θ to ensure we only mine

general common patterns that will be applicable to test data thus avoiding

overfitting. We define the support of a feature t (denoted by sup(t)) to be

the total number of sentences in training data that contains t. We say t

is frequent if and only if sup(t) ≥ θ for a user-specified minimum support

threshold θ.

4.2.3 Document Representation based on Discriminative k-ee
Patterns

The frequency of a pattern in a document (or a set of syntactic trees) is

quite important in the sense that it can be a good measure to discriminate

the writing styles of different authors. Well-known features like function

words, and the POS tag-adapted bag-of-words approach use the number

of occurrences in a document as their frequency measure. However, unlike

function words and POS tags, k-ee subtrees cannot simply adapt the same

frequency measure because it generates overlapped occurrences, which would
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lead to an exaggerated frequency value. Figure 4.2 is an illustration of this

overcounting problem. The syntactic tree S has only one A and four Bs, but

the number of occurrences of pattern t becomes 6. More generally, if A has

n Bs as its children in S, then the occurrence count of pattern t becomes

O(n2). Since we allow k embedded edges for a k-ee subtree, this overcounting

problem will be even more amplified.

Our observation that a document is parsed into a set of syntactic trees

(of sentences) gave us an insight to define the frequency measure of a k-ee

subtree in a more natural way by counting the number of syntactic trees of

a document that contain the pattern.

Definition 2. We define the frequency of a k-ee subtree t in a document

d (denoted by freq(t, d)) to be the number of syntactic trees (i.e., parsed

sentences) in d that contain t over the total number of sentences in d.

We will discuss how to mine discriminative k-ee subtree patterns in the

following section (Section 4.3). For here, suppose we already have them in a

set P = {t1, · · · , tn}. Then, we can express a document d as a vector of their

frequencies as d = (freq(t1, d), · · · , freq(tn, d)).

4.3 Discriminative k-ee Subtree Mining

In the previous section, we introduced k-ee subtrees as a new feature set

for authorship classification. These patterns hold more expressive syntactic

information than other features and are flexible enough to consider partial

matchings of syntactic trees, but the number of k-ee subtrees is above our

control. Therefore, we need to directly mine a small number of discriminative

patterns not only to reduce the number of features but also to mine significant

patterns which has been shown to improve classification accuracy [69]. In

this section, we present a branch-and-bound framework to solve this problem.

4.3.1 Mining Frequent k-ee Subtrees: Pattern-Growth
Approach

We do not generate candidate k-ee subtrees and check for frequent attributes.

Instead, we find a frequent k-ee subtree and extend it by adding a node that
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Figure 4.3: Database D and its frequent k-ee subtrees

is guaranteed to be frequent in a depth-first manner, which enables several

pruning techniques for frequent and discriminative pattern mining. We first

introduce how to efficiently mine frequent patterns based on pattern-growth

approach by using projected database [70, 71], and then explain pruning

techniques to mine discriminative patterns.

We illustrate the procedure for pattern-growth approach as follows. First,

find a size-1 frequent k-ee subtree t in the training dataset D. Second,

project the postfix of each occurrence of t in the syntactic trees of D into

a new database Dt. A postfix of an occurrence of t in a syntactic tree s is

a forest of the nodes of s appearing after the occurrence of t in a pre-order

scan of s. Third, find a frequent node v in Dt that can be attached to the

rightmost path of t that forms a k-ee subtree. Once v is frequent in Dt,

it ensures that the extended pattern is also frequent, so we do not need to

scan the whole database D again. Note that, in this study, we consider a

node v attached to t by an (induced) edge different from the one attached by

an embedded edge. Fourth, recursively go back to the second step with the

extended pattern for every frequent node we find. Note that the projected

database of a pattern t keeps shrinking as the mining process moves on and

t becomes a bigger superpattern.

Example 1. Figure 4.3 shows an example of the pattern-growth approach to

mine 0-ee subtrees from a database D of four syntactic trees when minimum
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support threshold is 0.5. Each pattern is indexed in pattern-generation order.

We first search for size-1 frequent patterns, which are t1, t5 and t6. We

choose t1 as a starting point, and find frequent nodes that can be attached to

t1 from its projected database. We find that nodes B and C are frequent, and

we extend t1 to t2 by adding a node B. Similar procedures are recursively

performed until we mine all frequent patterns.

4.3.2 Binned Information Gain Score

In previous subsections, we presented a pattern-growth method to mine fre-

quent patterns, but the resulted patterns may still be too many. Based on

the study that the patterns with high discriminative score can improve the

classification performance [69], we first evaluate the discriminative power of

a k-ee subtree. Note that most of the well-known discriminative scores (e.g.

information gain, fisher score) have upper bound on binary feature values

not on numeric feature values [69, 65, 67, 72]. In this subsection, we de-

fine a new discriminativeness score, binned information gain, and derive its

upper bound on the numeric feature values to enable a branch-and-bound

framework to mine discriminative patterns on numeric feature values.

Definition 3. For a user specified number n, we divide range [0, 1] of the

relative sentence frequency per document of t into a partition p of equi-width

n bins: p1 = [0, 1
n
), p2 = [ 1

n
, 2
n
), · · · , pn−1 = [n−2

n
, n−1

n
), pn = [n−1

n
, 1]. For a

given partition p and m classes C1, · · · , Cm, we define the binned conditional

entropy of t by

H(C|X) = −
n
∑

i=1

P (X ∈ pi)
m
∑

k=1

P (Ck|X ∈ pi) log p(Ck|X ∈ pi)

and binned information Gain of t by IG(C|X) = H(C) − H(C|X) where

H(C) = −
∑m

k=1 p(Ck) log p(Ck).

A pattern t will have a large binned information gain score if the frequency

distribution imbalance between the classes becomes bigger for each bin, which

means t is significant to discriminate classes.

Figure 4.4 presents binned information gain score distributions of various

feature sets such as function words (FW), POS tags (POS), bigram POS

tags (BPOS), rewrite rules (RR), and k-ee subtrees for k=0, 1, and 2 (0-ee,
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Figure 4.4: Binned information gain score distribution of various feature
sets

1-ee, and 2-ee, respectively). We can easily see that the highest scores are

mostly from k-ee subtrees, which implies that they can be more meaningful

than other features – an assertion we later test in the experiments section.

For a tree pattern t, we denote binned information gain of t by IG(t) and

information gain upper bound of t and its superpatterns by IGub(t). Given

a k-ee subtree t and a partition p, we define (A,B, p) to be a frequency

distribution of t where A = (A1, . . . , An) and B = (B1, . . . , Bn) with Ai and

Bi being the number of documents in class C1 and C2 respectively for each

bin pi of a partition p. Denote (A′, B′, p) as a frequency distribution of a

super pattern t′ of t. The following two lemmas describe the properties of

(A,B, p) and (A′, B′, p) that will be used to prove the main theorem to derive

the upper bound of binned information gain.

Lemma 1. For any k = 2, . . . , n, the following four inequalities hold for a k-

ee subtree t and its superpattern t′:
∑n

i=k A
′
i ≤

∑n
i=k Ai,

∑k−1
i=1 A

′
i ≥

∑k−1
i=1 Ai,

∑n
i=k B

′
i ≤

∑n
i=k Bi, and

∑k−1
i=1 B

′
i ≥

∑k−1
i=1 Bi.

Proof. Since t′ is a superpattern of t,
∑n

i=k A
′
i ≤

∑n
i=k Ai for k ≥ 2. There-

fore,
∑k−1

i=1 Ai = |C1| −
∑n

i=k Ai ≤ |C1| −
∑n

i=k A
′
i =

∑k−1
i=1 A

′
i where |Ci| is

the number of documents in class Ci. Similar proof for Bi.

The following lemma shows the condition to get the upper bound of binned

information gain for a special case when only the first two bins of frequency

distribution are different.

Lemma 2. For a given frequency distribution (A,B, p), let (A′, B′, p) be a

frequency distribution with A′
1 = A1 + x, A′

2 = A2 − x (0 ≤ x ≤ A2) and
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the rest unchanged. If A1

A1+B1
≥ A2

A2+B2
, then (A′, B′, p) achieves its mini-

mum conditional entropy when x = A2. Otherwise, it achieves its minimum

conditional entropy when x = 0.

Proof. Let f(x) be the conditional entropy of (A′,B′,p) and N be the total

number of documents. Then,

T f(x) =
A1 +B1 + x

N

(

−
A1 + x

A1 +B1 + x
log

A1 + x

A1 +B1 + x

−
B1

A1 +B1 + x
log

B1

A1 +B1 + x

)

+
A2 +B2 − x

N

(

−
A2 − x

A2 +B2 − x
log

A2 − x

A2 +B2 − x

−
B2

A2 +B2 − x
log

B2

A2 +B2 − x

)

+
n
∑

i=3

P (X ∈ pi)
2

∑

k=1

P (Ck|X ∈ pi) log p(Ck|X ∈ pi)

f ′(x) =
1

N
log

(

A1 +B1 + x

A1 + x
·

A2 − x

A2 +B2 − x

)

If A1

A1+B1
≥ A2

A2+B2
, f ′ (x) ≤ 0. Otherwise, f ′ (x) > 0.

The following theorem describes that the binned information gain upper

bound exists and is determined by the frequency distribution of the first two

bins.

Theorem 1. Given a tree pattern t, its super patterns including itself have

a conditional entropy lower bound in the frequency distribution (A′, B′, p) of

one of the following two forms: (1) A′
1 = A1 + A2, B

′
2 =

∑n
i=2Bi, B

′
1 = B1,

B′
i = 0 (i = 2, . . . , n) and A′

i = Ai (i = 3, . . . , n) (2) B′
1 = B1 + B2,

A′
2 =

∑n
i=2Ai, A

′
1 = A1, A

′
i = 0 (i = 2, . . . , n) and B′

i = Bi (i = 3, . . . , n).

Proof. Suppose (Ā, B̄, p) is a frequency distribution of a superpattern t̄ of t

with minimum conditional entropy whose form is in neither cases. Denote

Pi =
Āi

Āi+B̄i
and Qi =

B̄i

Āi+B̄i
(i = 1, . . . , n). By generalizing Lemma 2, either

Pi < Pi+1 or Pi+1 = 0 (i = 1, . . . , n − 1). Symmetrically, either Qi < Qi+1

or Qi+1 = 0 (i = 1, . . . , n − 1). Then, for all i = 2, . . . , n, either Pi = 0 or

Qi = 0. (∵ Assume Pi 6= 0 and Qi 6= 0 for some i. Then, Pi−1 < Pi and

Qi−1 < Qi. But, 1 − Pi−1 = Qi−1 < Qi = 1 − Pi which is a contradiction.)

Therefore, either P2 = 0 or Q2 = 0. Without loss of generality, say P2 = 0.

Then, we can get another distribution (Ā′,B̄′,p) where B̄′
2 =

∑n
i=2 B̄i, B̄

′
i = 0

for (i = 3, . . . , n), and the rest unchanged from (Ā,B̄,p). Since its conditional
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entropy at each bin pi (i = 2, . . . , n) becomes 0, it has smaller or the same

conditional entropy with (Ā,B̄,p). By the assumption that (Ā,B̄,p) has the

minimum conditional entropy, their conditional entropy are the same. By

Lemma 1, Ā′
1 ≥ A1 + A2 and B̄′

1 ≥ B1 (∵ Ā′
2 = 0 since P2 = 0). If

either Ā′
1 > A1 + A2 or B̄′

1 > B1, then the conditional entropy of (Ā′,B̄′,p)

becomes higher than the conditional entropy of (A′,B′,p) in the first form of

the theorem which is a contradiction to our assumption that the conditional

entropy of (Ā,B̄,p) is minimum. Similar contradiction can be derived when

Q2 = 0.

4.3.3 Modified Sequential Coverage Method

The binned information gain measure and its upper bound described in Sec-

tion 4.3.2 enables a branch-and-bound framework, and we can simply perform

the feature selection procedure in a traditional sequential coverage way as fol-

lows ([65, 67]). First, we mine the most discriminative k-ee subtree and add

it to the feature set. Second, we remove trees that contain the extracted

pattern and compute binned information gain scores of the remaining pat-

terns on the updated database. In this way, redundant patterns will have a

small chance to be selected. Third, we go back to the first step until either

the dataset becomes empty or no more patterns are mined. Once the feature

selection procedure is complete, we get a small number of discriminative k-ee

subtrees. Based on the feature set F of these patterns, we use the document

representation described in Section 4.2.3 to train a classification model.

But this procedure is inefficient when many discriminative patterns need to

be mined because the sequential coverage method described above is based on

iteratively mining one discriminative pattern for each iteration. We observe

that the object of iterative approach is to find non-repetitive discrimina-

tive patterns. For this purpose, previous works simply applied the decision

tree scheme of feature selection either (1) to a sequential coverage method

to be used for SVM classification model [65, 67] or (2) to a decision tree

classification model directly [73]. The difference between them is that the

former recursively mines the dataset that does not contain the pattern, and

the latter recursively mines both datasets containing and not containing the

pattern. But both approaches need to recompute discriminativeness scores
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of the patterns on the updated database paying an expensive computational

cost, which does not really involve removing repetitive patterns. We propose

to use a modified sequential coverage method which does not recompute the

binned information gain scores at step 2 of the traditional sequential coverage

method described above.

4.3.4 Direct Discriminative k-ee Subtree Mining

In this section, we design a novel algorithm to efficiently mine discriminative

patterns in a single iteration. We compute the binned information gain score

only once, and apply the sequential coverage method without recomputing

the binned information gain scores. Moreover, we propose an efficient way

of mining the discriminative patterns in one iteration.

Here, we define some terms and symbols that will be used for the rest of the

section. We denote t |= s when a k-ee subtree t is contained in a tree s. We

define St = {s ∈ D|t |= s} to be a set of trees in a tree dataset D that contain

t. Also, we define At = {p : k-ee subtree|∃s ∈ St, p = argmaxp|=sIG(p)} to

be a set of patterns that achieve the highest discriminative score among all

patterns in some trees that contain t, and Bt to be a set of arbitrary patterns

from each tree of St. We denote F to be a set of discriminative k-ee subtrees

in D mined by the modified sequential coverage method.

The following lemma characterizes discriminative patterns mined by se-

quential coverage.

Lemma 3. For a given tree dataset D,

F = {t|∃s ∈ D such that t = argmaxp|=sIG(p)}.

Proof. By the definition of the modified sequential coverage method men-

tioned in Section 4.3.3.

Lemma 3 explains that the discriminative patterns mined by the modified

sequential coverage method are indeed the most discriminative patterns for

some trees of D. Based on this observation, we derive a pruning method by

branch-and-bound approach in the following proposition.

Proposition 1. (Branch-and-Bound (BB) Pruning)

If IGub(t) < minp∈At
IG(p), then no superpattern t′ of t is in F .
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Proof. Since St ⊇ St′ , IGub(t) < minp∈At
IG(p) ≤ minp∈At′

IG(p). That is,

t′ cannot be the most discriminative pattern for any tree in St′ .

Corollary 1. If IGub(t) < minp∈Bt
IG(p), then no superpattern t′ of t is in

F .

Proof. By definition of At, IGub(t) < minp∈Bt
IG(p) ≤ minp∈At

IG(p).

In case IGub(t) = minp∈Bt
IG(p), we also skip mining Dt since any tree

containing a superpattern t′ of t will also contain another pattern that has

higher or the same discriminative score.

Once we know an upper bound of the discriminative score of t’s super-

patterns, we can use the BB pruning method described in Proposition 1.

Unfortunately, as alluded to earlier, this is a nontrivial task because the fea-

ture values are numeric instead of binary. In Section 4.3.2, we partitioned

the numeric range [0, 1] into a finite number of bins and derived the upper

bound of binned information gain score by checking a constant number of

cases (at most 2 cases) regardless to the number of bins.

In the mining process, since we do not know At, we set Bt to be the set of

current best patterns of St and apply Corollary 1 as a BB pruning condition.

For that reason, we maintain current best patterns for each tree.

Example 2. Consider the example from Figure 4.3. Suppose class c1 has

a document d1 and class c2 has a document d2 from a database D. Let the

number of bins for binned information gain be 3 (i.e. n = 3). We first

mine t1, compute its discriminative score (IG(t1) = 0) and update current

Bt1 (Bt1 = ∅) by checking t1. Now, Bt1 = {t1}. Since IGub(t1) = 1 >

minp∈Bt1
IG(p) = 0, we move on to next pattern t2 without pruning. We

compute t2’s discriminative score (IG(t2) = 1), and update Bt2 = {t1} to be

Bt2 = {t2}. Since IGub(t2) = 1 = minp∈Bt
IG(p), we can skip generating t3.

Following the original sequential coverage methodology mentioned in Sec-

tion 4.3.3, when a k-ee subtree t is generated the trees containing t are

removed. But in real classification tasks, we may want to generate multiple

patterns to represent a tree to improve accuracy. To address this issue, we

use a minimum feature coverage threshold δ introduced in [65], i.e., a tree

is removed when it is covered by at least δ discriminative patterns. Lemma
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3 and Proposition 1 can easily be adapted with the feature coverage param-

eter δ by maintaining top-δ patterns for each tree and using δ-th highest

discriminative score as a cut-off threshold for each tree.

In summary, we proposed a branch-and-bound framework of authorship

classification. During the process, the algorithm retains and updates the

most discriminative patterns Opt(s) of each tree input, and at the end they

become F . The basic framework is to expand the patterns from small to large

sizes in pattern-growth approach. Before we expand current pattern t into a

larger one, we compute the upper bound of the binned information gain of

all superpatterns of t. Based on BB pruning described in Corollary 1, if the

upper bound value is not greater than the current minimum Opt(s) from all

trees (s) containing t, then we can safely skip exploring superpatterns of t.

4.4 Experiments

In this section, we present an empirical evaluation in order to validate the

performance of our k-ee subtree based authorship classification. We also

analyze the effect of the parameters of k-ee subtree patterns presented in

this chapter. The experiments are designed to test the usefulness of k-ee

subtrees, as a new feature set, for authorship classification.

We first show accuracy comparison on various feature sets and then ana-

lyze the effect of the parameters of k-ee subtree approach. For the accuracy

comparison with other feature sets, we conducted binary authorship classifi-

cation as well as multiple authorship classification tasks. By default, we used

the number of embedded edge k = 1, minimum support threshold θ = 0, the

number of bins n = 10, and minimum feature threshold δ = 3 for discrimi-

native k-ee subtree mining. In Tables 4.3 and 4.4, boldface denotes the best

result for each dataset.

4.4.1 Datasets

For the following experiments, we used public data collections extracted from

the TREC corpus [74] and The New York Times2.

2http://www.nytimes.com
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Table 4.1: Characteristics of data collections

Data # Authors Doc Doc/Author Sentence Word

NTNews 4 400 100 19,161 381,450

Movie 4 2,177 415 – 598 51,086 1,299,682

TREC 7 6,336 804 – 1,003 169,767 3,964,865

From The New York Times we collected two different types of datasets:

news articles and movie reviews. For the news articles, we randomly selected

two journalists from the business department, and two other journalists from

the health department who were the main contributors in their departments.3

We collected datasets assuming that the journalists in the same department

are likely to write articles on the same topic and genre using similar words.

For the movie reviews, we used four movie critics from the The New York

Times. It has three main critics whom we used. We added another randomly

selected critic who is one of the major contributors.4 We collected this data

because most of the movies reviewed by the critics overlapped. We assumed

movie reviews of the same movie will be on the same topic and genre using

similar words.

We also used news articles from the Associated Press (AP) subcollection

of the public TREC corpus. The AP collection has over 200,000 documents

by more than 2,380 distinct authors. We followed the same experimental

configurations as previous works [56, 61] did by using the same datasets from

the same seven authors5 they used. The statistics of each data collection are

described in Table 4.1. Note that the class distributions (or the number of

documents per author) are mostly balanced, and in this way we do not have

to consider the effect of skewed data.

4.4.2 Evaluation Methodology

To evaluate the performance, we performed multiclass classification on each

data collection using SVM with linear kernel. Specifically, we decomposed

3Eric Dash and Jack Healy from the business department, and Denise Grady and Gina
Kolata from the health department.

4The three main critics of The New York Times are A. O. Scott, Manohla Dargis, and
Stephen Holden. The other critic we used is Jeannette Catsoulis.

5The authors are Barry Schweid, Chet Currier, Dave Skidmore, David Dishneau, Don
Kendall, Martin Crutsinger, and Rita Beamish.
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Table 4.2: Number of features for FW, POS, RR and k-ee feature sets

Data FW POS BPOS RR 0-ee 1-ee 2-ee

NTNews 308 74 1088 3929 119.2 257.8 453.1

Movie 308 74 1088 9029.2 306.2 575.1 1015.6

TREC 308 74 1088 8278 254.4 570.5 1107

the multiclass problem into binary problems via one-versus-one method, and

paired the authors of each data collection and conducted binary classifica-

tion on these pairwise datasets. For each dataset, we conducted 5-fold cross

validation, and averaged the accuracy as a measure of the performance. For

each fold, training data was used to mine the syntactic features and to get

a classification model while test data was only used for evaluation purposes.

For each training data, we used another 5-fold cross validation to determine

appropriate parameter values for the classification model (linear SVM). In

this way, our evaluation ensured that there is no information leak from the

test data for the classification task.

We used the number of occurrences of each feature as a feature value for the

syntactic features except k-ee subtrees which used a new frequency measure

defined in Definition 2. For the fair comparison, we used the same classifier.

In [55, 61], it is shown that SVM achieves reliable performance with high

accuracy for authorship classification and the choice of the SVM kernel has

little or no effect on the performance.

4.4.3 Comparison Feature Sets

To show how effectively our new feature set of k-ee subtrees works, we com-

pared the authorship classification performance with other syntactic features

such as function words (FW), unigram POS tags (POS), bigram POS tags

(BPOS), and rewrite rules (RR). As for function words, we took the list of

308 function words from [75]. We used 74 POS tags from from the stanford

parser. 1,088 Bigram POS tags were identified from the leaves of syntac-

tic trees. Rewrite rules and k-ee subtrees were generated by mining parsed

sentences of syntactic POS -tagged trees.

In the table 4.2, we show the average sizes of feature sets for each data

collection. To get the number of features of rewrite rules and k-ee subtrees,

we computed the average value of the number of distinct features of 5-fold
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Table 4.3: Accuracy Comparison on Different Number of Authors and
Various Data Collections

Data # Authors FW POS BPOS RR k-ee

NTNews
2 92.25 86.67 90.42 89.75 94.25

3 87.08 78.17 83.97 82.17 90.83

4 82.75 71.25 79.45 75.25 87.75

Movie
2 93.18 88.99 84.17 92.88 95.62

3 88.03 81.77 82.17 88.45 92.89

4 84.00 76.23 80.25 85.11 91.30

TREC

2 93.33 92.43 93.95 95.07 96.04

3 88.63 87.12 89.64 91.49 93.43

4 85.10 83.03 86.30 88.67 91.50

5 82.24 79.71 83.51 86.31 89.95

6 79.80 76.87 81.10 84.26 88.56

7 77.62 74.53 78.92 82.46 87.37

Average 86.14 81.40 84.45 86.87 91.62

training data for each feature set and dataset. As expected, rewrite rules

generated much larger number of features than all the other feature sets. It

is noticeable that the number of k-ee subtrees are far less than the number

of bigram POS tags and rewrite rules, and sometimes even less than the

number of function words. For the rest of the section, we will show that our

small sized new feature set of k-ee subtrees outperforms all the other feature

sets.

4.4.4 Overall Effectiveness

Based on the accuracy results in Table 4.3, our new feature set of k-ee sub-

trees achieved the highest performance of the comparison feature sets. Over-

all, most feature sets showed high accuracy on binary authorship classifica-

tion tasks. But when the number of authors was increased, the performance

gaps between k-ee subtree feature set and all the others became larger.

It is true that bigram POS tags and rewrite rules catch deeper insights

of an author’s writing style since they are more complex and have much

larger number of features than POS tags. But we conclude that a feature

set of k-ee subtrees can characterize an author’s writing style even better

since (1) it allows even more complex syntactic structures than rewrite rules

as features, (2) its size is much smaller than the feature set of bigram POS
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Table 4.4: Accuracy Comparison on binary authorship classification of The
New York Times news articles. Two journalists Dash and Healy from the
business department are denoted by B1 and B2, and two journalists Grady
and Kolata from the health department are denoted by H1 and H2

Author Pair FW POS BPOS RR k-ee

(B1,B2) 91.5 87 95 94 94
(B1,H1) 94 85 92 91 95
(B1,H2) 95.5 92.5 95 96 94
(B2,H1) 95 92.5 94.5 92.5 97.5
(B2,H2) 97 95.5 96.5 97.5 98
(H1,H2) 80.5 67.5 69.5 67.5 87

Average 92.25 86.67 90.42 89.75 94.25

tags and rewrite rules, and (3) it achieved better accuracies. Note that

the feature set of function words reliably showed reasonable accuracies as

previous works mentioned [56, 61, 62]. It achieved better than POS tags

and sometimes even better than bigram POS tags and rewrite rules. This

is because function words have two different aspects together (syntactic and

lexical) while POS tags only have a syntactic aspect. But complex syntactic

structures can complement the lack of lexical aspect of the features, since

the feature sets of rewrite rules and k-ee subtrees showed higher accuracies

than function words.

On average, the feature set of k-ee subtrees improved performance over

the other feature sets about 8.23% (overall), 6.36% (function word), 12.56%

(POS ), 8.49% (bigram POS ) and 5.50% (rewrite rule).

We also performed a significance test on the feature sets over k-ee sub-

trees. We used two-tailed t-test on the accuracy results in Table 4.3, and

all their t values (FW:3.18, POS:5.02, BPOS: 4.49, RR: 2.69) indicated that

the performance of k-ee subtree patterns are significantly different from (or,

better than) all the others (95% confidence interval, threshold:2.07).

Note that we could mine k-ee subtrees even for minimum support θ = 0, a

task rarely done in previous works because too many patterns were generated

from the mining process.
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Figure 4.5: Performance Comparisons on Different Parameter Settings

4.4.5 Problem Difficulty Analysis

As we explained in Section 4.4.1, the datasets of The New York Times news

articles were collected to identify the difficulty of classification problem. We

assumed that the journalists from the same departments will be hard to clas-

sify because they might use similar terms on the same topic and genre. As

expected, classification results in Table 4.4 show that classifying journalists

from different departments was easier than journalists from same depart-

ments.

Note that the last row of Table 4.4 shows extremely worse performance

than other cases. We manually analyzed the news articles of H1 and H2, and

found that their writing styles were quite informal using several quotations

which made it the hardest dataset. Even for this hard task, our approach

got the highest accuracy with a big gap.
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4.4.6 Parameter Analysis

In Figure 4.5, we analyze the role of each parameter used to mine discrimina-

tive k-ee subtrees. All experiments were conducted for binary classification

of two movie critics Stephen Holden and Jeannette Catsoulis. Similar trends

could be found from other datasets. For default values, we used θ = 0.3,

n = 10, and δ = 3. Overall, we found that 1-ee subtree feature set showed

the best performance. It could be mined with almost in a constant time even

with no minimum support threshold. But, when the number of embedded

edges increased (e.g. k = 2), k-ee feature set showed worse accuracies be-

cause it tended to overfit to the training data. Moreover, it took exponential

time to run when minimum support threshold gets smaller. It is good to

know that we do not need too complicated syntactic structures (with a high

k), because the computation would be too expensive to make our proposed

feature set useful.

There are two parameters, n and δ, which are related to our binned in-

formation gain score. Based on Figure 4.5, they did not significantly affect

the running time, but somehow affected the accuracy. However, since they

achieved the peak within a small range, it was not difficult to optimize their

values in our experiments.
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CHAPTER 5

CLUSTERING REDUNDANT NODES

5.1 Overview

Document representation is a fundamental problem for user comprehension

and understanding [76, 77, 78], and is also critical to various text processing

tasks like text categorization [79] and retrieval [80]. Because of its simplicity

and effectiveness, the bag-of-words representation is widely adopted in most

of document processing tasks, especially in text categorization [81]. However,

there are several areas that other representations outperform the bag-of-

words where it is needed to capture complex semantics of text, including

phrasal, syntactic and more sophisticated linguistic structures [82, 83, 84].

Analyzing monolingual comparable corpora is one of the areas where the

bag-of-words representation has limitations. Monolingual comparable cor-

pora is defined as a collection of documents in the same language (e.g.,

English) that overlap in the information they convey. In the age of infor-

mation overload, we can easily collect or access such corpora that cover the

same topic such as multiple news reports on the same or similar events from

different news agencies, and reviews about the same or similar products or

services.

Beyond several studies on monolingual comparable corpora, which study

sentence alignments [85] and paraphrasing rules [86], analyzing monolingual

comparable corpora has many potential applications. First, the analysis

can give a comprehensive summary about one event, fact, or entity because

documents in a comparable corpus cover different perspectives of the topic.

Second, the analysis can derive a set of consistent information across doc-

uments, which helps remove some trivial or misleading information. This

application is close related to trustworthiness analysis, where many studies

on structured data like movie databases [4] and sensor data [87] have been
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Figure 5.1: 5 different representations for information and their trend plots

done, but not in unstructured data like documents. Third, analyzing mono-

lingual comparable corpora can track the trend of information when each

document has timestamp.

As the first step toward the analysis of monolingual comparable corpora,

we propose the use of frame, a high-level semantic feature derived by se-

mantic role labeling (SRL) [88], as the basic unit for document represent in

comparable corpora. In Figure 5.1, we demonstrate the power of semantic

frame. Specifically, a collection of news articles about Japan’s 2011 Tsunami

(which caused radiation leaked from two crippled nuclear reactors in March

19th) is used as a comparable corpora. We use 5 different kinds of represen-

tations for this particular information, and measure the popularity using the

occurrences of the representations within the corpus, and draw the trends in

Figure 5.1. As shown in the figure, the semantic frame is the only one that

isolates the information and detect the peak in March 19th. We will further

discuss on this aspect in Section 5.4.

Semantic frame has proved its superiority in various applications including

information extraction [89] and question answering [90]. Each frame is a

verb-argument structure from a sentence, and is arranged as a subject-verb-

object triplet where each part is associated with a set of words. By extracting

triplets we can find the most important semantic information from a set of

documents, and can serve as a better representation for other tasks like event

tracking.

However, a higher level document representation usually results in a higher
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complexity feature space, which leads to sparser document model due to the

variational forms. For example, “radiation leaked” in one news article can

appear as “the level of radiation increased” in another article. In this chap-

ter, we try to resolve the sparsity challenge when dealing with frame-based

document representation, by grouping semantically similar frames together.

An information network-based approach is developed to define similarity

between frames, by which similar frames can be better grouped together

due to the propagation of similarity along different types of network links.

We first construct a syntactic structure between each frame-derived triplet

and its words. Then, a bi-typed information network is built for a corpus by

extracting all the nodes and links from different documents, where nodes rep-

resent words and triplets, and links exist between them if they are connected

in their original syntactic structure. We further propose a link-based similar-

ity measure, called SynRank, to calculate the similarity between triplets in an

iterative way, where we design different iterative formulas for different types

of objects by considering their semantic meanings. Then we can cluster

similar frames together according to the obtained similarity. One represen-

tative triplet will be selected for one cluster, and documents are represented

by the corresponding frames (see Figure 5.2).

Finally, we validate the effectiveness of our similarity measure comparing

with other baselines on several real-world datasets. The results show that

the frame-based document representation is more interpretable and compre-

hensive than baseline methods.

We summarize our contributions of this work as follows:

1. We propose a novel frame-based document representation method which
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can capture the document semantics and represent comparable corpora

in a comprehensive and concise way.

2. We propose to construct an information network from the corpus, and

develop a link-based similarity measure called SynRank to capture the

similarity between frames and similarity between words jointly, in an

iterative and global way.

3. Experiments on real-world datasets show the power of the new docu-

ment representation method, compared with several baseline approaches.

5.2 Problem Statement

In this section, we introduce preliminary knowledge about semantic frame

and provide an overview of our proposed frame-based document representa-

tion method.

5.2.1 Raw Semantic Frame Extraction

Different from bag-of-words representation, which misses the semantic rela-

tionships among words, semantic frames aim at capturing the most important

elements such as entities and their relationships from a sentence, defined as

follows.

Definition 4. A semantic frame f ∈ F is a verb-argument structure in a

sentence that describes a type of event, relation, or entity and the participants

in it [91].

This definition is based on the semantic role formalism of PropBank [92].

As seen from Figure 5.3, extracted frames contain richer information than

word and less information (usually single fact, statement, or proposition)

than sentences. Notice that, there could be several frames derived from one

sentence, and the number of semantic frames in a sentence equals to the

number of verbs in the sentence. In this work, we use SRL tool SENNA

parser [93] for raw frame extraction, which is reported to have about 74% F1

measure on CoNLL 2005 benchmark dataset.
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  A major 7.3-magnitude offshore earthquake rattled Japan yesterday, 
  swaying Tokyo buildings, triggering a small tsunami and reminding the 
  nation of the threat of seismic disaster ...

      A0      A major 7.3-magnitude
                offshore earthquake
      V        rattle
      A1      Japan
AM-TMP  yesterday

    A0    A major 7.3-magnitude
            offshore earthquake
    V      sway
    A1    Tokyo buildings

    A0    A major 7.3-magnitude
            offshore earthquake
    V      trigger
    A1    a small tsunami

A0    A major 7.3-magnitude
        offshore earthquake
V      remind
A1    the threat of seismic disaster
A2    the nation

Document
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             offshore earthquake
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A major 7.3-magnitude
offshore earthquake
remind the nation
the threat of seismic disaster

Semantic Role Labeling

Rearrange Arguments

A0 → S

A1 → O

V + Others → V

Figure 5.3: An Illustrative Example for Process of Extracting Triplets from
Document.

We further formulate each semantic frame into a triplet of subjective,

verb and objective (see Figure 5.3), to preserve semantic roles and content

in an effective and concise way.

Definition 5. We denote the semantic triplet as t = (s, v, o), where s is

subjective word set consisting of words with A0 SRL tags in frame f , o is

objective word set consisting of words with A1 SRL tags in frame f , and v is

verb word set containing verb and all the other arguments such as A2, AM-

TMP and AM-LOC, where A0 represents the subjective, A1 represents the

objective, A2 represents indirect objective, AM-TMP represents temporal

modifier, and AM-LOC represents the location modifier.

By re-structuring frames into triplets, we have a much clearer structure

of each frame. However, these raw triplets cannot be directly used as fea-

tures to represent documents because there still exists many semantically

similar variations (e.g., “earthquake hit Japan” and “quake struck Japan”),

leading to a high-complexity feature space and thus sparse document rep-

resentation. To resolve this, we first construct a semantic text information

network among words and triplets, and then propose a link-based similarity

function to measure their similarity. Similar triplets are grouped into clus-

ters based on the similarity and the frame corresponding to representative

triplet in each cluster will be selected as the final representation feature for

documents.

The overall framework of the process can be summarized into the following

three steps (see also Figure 5.2).

1. Raw semantic frame extraction. In this step, raw semantic frames

and corresponding semantic triplets are first extracted from sentences
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in documents through semantic role labeling tool (see Figure 5.3).

2. Semantic text information network construction. We construct

a semantic information network for words and triplets extracted from

corpus (see Figure 5.4 and 5.5), which provides a novel view that dif-

ferent text objects are connected by semantic links.

3. Link-based triplet clustering for document representation. Fi-

nally, we propose a link-based similarity measure, and cluster triplets

into different groups based on it. We select the most representative one

in each cluster for final representation of the documents.

The first step is easily done by semantic role labeling tool, we now introduce

Step 2 and 3 in following sections.

5.2.2 Semantic Text Information Network Construction

In order to merge similar triplets, we need a way to measure similarities be-

tween them, which is a problem related to the paraphrase detection task. One

of the paraphrase detection methods is leveraging synonyms from a knowl-

edge base such as WordNet [94] to improve the detection performance [95].

However, this kind of approaches are limited for the synonyms in the general

usages. For example, the word “threat” is frequently used to refer the word

“radiation” in the Japan’s tsunami corpus1, but their similarity in Wordnet

is 1.7432, which is lower than the similarity score of 1.897 between “build-

ings” and “cars.” Thus, it is important to derive a corpus-based similarity

measure for words in order to measure the similarities of triplet.

To meet this need, we propose to cluster similar triplets using an informa-

tion network approach, where various text objects and their connections are

captured by a semantic text information network. As we will show in Sec-

tion 5.4, it is much more effective to compute the word similarity and frame

similarity jointly and globally in a unified framework instead of computing

them separately by utilizing links in this text information network.

Definition 6. A semantic text information network is a bi-typed undi-

rected graph containing two types of object sets T (triplets) and W (words).

1There was a nuclear accident and radiation leaks following the tsunami.
2This similarity is computed using Leacock & Chodorow [96].
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For each triplet t ∈ T , it has links to a set of words in W , as well as links

to its neighbor triplets as its context. The link types are defined by their

relations: links from triplet to its contextual triplets belong to triplet-triplet

(TT) relation; links between triplets and its words belong to triplet-word

TW relation.

The network schema of the information network is shown in Figure 5.4.

Notice that words are distinguished by different semantic roles (S,V,O) such

as “S: earthquake” and “O: tsunami” in Figure 5.4.

For a triplet node t in the network, the neighbors of t are denoted by NR(t),

where R ∈ {TT, TW} represents the link type. We denote the context of

triplet t as NTTσ
(t), where σ is the size of the context window, i.e., the

number of nearby triplets that are considered as its context in a document.

For simplicity, we denote it by NTT (t).

Based on the semantic text information network, we derive a semantic

similarity measure for triplets by analyzing triplet-triplet and triplet-word

links. The intuition behind this measure is that similar text objects share

similar context around them and similar content within them. The details

will be introduced in Section 5.3.

5.3 SynRank: A Link-Based Semantic Similarity

Measure

In this section, we explain in details how link information in the semantic

text information network can be leveraged to cluster triplets, where differ-

ent types of relations, i.e., triplet-triplet relation and triplet-word relation,

are considered simultaneously. We first introduce a novel similarity mea-

sure, called SynRank, then show how to compute SynRank, and finally the

clustering algorithm for triplets based on this similarity measure.

Similar to SimRank [32], which measures the similarity between objects in

a network based on the assumption that “two objects are similar if they share

similar neighbors,” we propose our link-based similarity measure, following

the intuition that “similar triplets share similar context around them and

similar content within them.” In particular, a triplet is most similar to itself,

with maximum score 1.
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SynRank deals with different types of relations (i.e., triplet-triplet context

relation and triplet-word content relation) simultaneously with different up-

dating mechanisms, which distinguishes itself from other link-based measures

such as SimRank [32] and P-Rank [8]. Iteratively computing SynRank func-

tion can propagate similarities between object pairs in a global manner, i.e.,

word similarity and triplet similarity are mutually adjusted according to the

whole corpus (see Figure 5.9).

We formulate above intuition into a link-based similarity measure function,

called SynRank, which takes the recursive form as follows. For two triplets

nodes ti and tj, at the k-th iteration of SynRank, if ti = tj, then s
(k)
T (ti, tj)

is set to be 1; otherwise,

s
(k)
T (ti, tj) = C ·

[

(1− λ) · s
(k)
TW (ti, tj) + λ · s

(k)
TT (ti, tj)

]

, (5.1)

where s
(k)
TW (ti, tj) and s

(k)
TT (ti, tj) denote content similarity based on triplet-

word (TW) relation and contextual similarity based on triplet-triplet (TT)

relation at k-th iteration, respectively. λ is a trade-off parameter, and con-

stant C ∈ [0, 1] is a damping factor similar as the one in SimRank [32].

Note that for a semantic text information network with |T | triplets, a set

of |T |2 SynRank equations needs to be computed. We use ST ∈ R
|T |×|T | to

denote the triplet similarity matrix, where ST (i, j) = sT (ti, tj).

Other essential updating formula, including content-based triplet similarity

sTW (ti, tj), context-based triplet similarity sTT (ti, tj), and word similarity

SW , are further introduced as follows.
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5.3.1 Content-based Triplet Similarity

Given a pair of triplets ti and tj, their content-based similarity, sTW (ti, tj), is

defined according to the similarity between their content neighbors NTW (ti)

and NTW (tj).

Example 1 (Similar triplets with similar content).

t1 = (S:{An earthquake},V:{unleashed},O:{7.3m waves});

t2 = (S:{A 8.9 quake},V:{unleashed},O:{a tsunami wave})

Just like above example, triplets are thought to be similar if they have

same/synonymous terms in subjectives, verbs, and objectives, respectively.

Assumption 1. In semantic text information network, two triplet nodes ti

and tj are said to be content-based similar if many of their linked words

a ∈ NTW (ti) and b ∈ NTW (tj) are similar.

Following the assumption, a recursive equation for updating sTW (ti, tj) can

be derived. If ti = tj, then s
(k)
TW (ti, tj) = 1; otherwise,

s
(k)
TW (ti, tj) =

∑

a∈NTW (ti)

∑

b∈NTW (tj)

fti,a · ftj ,b · s
(k−1)
W (a, b)

FTW (ti)FTW (tj)
, (5.2)

where fti,a denotes the occurrence frequency of word a in triplet ti, and

FTW (ti) denotes total word occurrence in ti, i.e., FTW (ti) =
∑

a∈NTW (ti)
fti,a.

Here, sW (·, ·) is the similarity between words, which will be introduced in

Section 5.3.3. We rewrite Equation (5.2) into matrix form

S
(k)
TW = D · S

(k−1)
W ·DT , (5.3)

where we define matrices D ∈ R
|T |×|W |, STW ∈ R

|T |×|T |, and SW ∈ R
|W |×|W |

asD(i, j) = fti,wj
/FTW (ti), STW (i, j) = sTW (ti, tj), and SW (i, j) = sW (wi, wj),

respectively. |W | denotes number of unique words in the corpus. The compu-

tational complexity of Equation (5.3) is O(|T |2L2), where L is the maximum

number of words in a triplet.
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Figure 5.5: An Example of Semantic Text Information Network on Three
Documents and with Context Window Size 1 (σ = 1).

5.3.2 Context-based Triplet Similarity

It is not sufficient to fully measure semantic similarity between two triplets by

only their contents. In some cases, there could be only a few words inside the

two triplets that are same/synonymous. We then propose to evaluate con-

textual similarity between two triplets, sTT (ti, tj), based on their contextual

neighbors NTT (ti) and NTT (tj).

Example 2 (Similar triplets with similar context).

t1 = (S:{The first wave},V:{hit},O:{coasts in Japan});

t2 = (S:{A wave over 5 feet},V:{struck},O:{there})

Many articles in our Japan Tsunami news dataset reported not only the

tsunamis in Japan, but also the Hawaii’s tsunamis. Thus, by merely looking

at t2, we have no idea about where the wave struck. Intuitively, we can seek

context of t1 and t2 as complementary reference. More specifically, context of

a triplet is defined by neighbor triplets within a size σ window in its document

(see Figure 5.5). For example, if the contexts of t1 and t2 are both about

“Japan coasts,” t1 and t2 become similar to each other.

Assumption 2. In semantic text information network, two triplet nodes

ti and tj are said to be context-based similar if their linked triplets in the

context windows a ∈ NTT (ti) and b ∈ NTT (tj) are similar.

Remind that for content-based measure of Equation (5.2), each word in

triplet ti will be compared with each word in tj. However, in context-based

measure, it may be meaningless to compare ti’s neighbor that talks about

current fact with tj’s neighbor which can be a quotation. Our method in
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Equation (5.4) is to compare each of ti’s neighbor a only with the neighbor

of tj that is most similar to a. With above intuition, we derive a recursive

equation for sTT (ti, tj) by iterating over neighbors of ti and tj. At k-th

iteration,

s
(k)
TT (ti, tj) = η(ti, tj) ·





∑

a∈NTT (ti)

max
b∈NTT (tj)

s
(k−1)
T (a, b)

+
∑

a∈NTT (tj)

max
b∈NTT (ti)

s
(k−1)
T (a, b)



 , (5.4)

where η(ti, tj) =
1

|NTT (ti)|+|NTT (tj)|
denotes the number of triplet pairs in sum-

mation, which will scale the final similarity score into [0, 1].

The computational complexity for calculating Equation (5.4) for all triplets

is O(|T |2σ2). Note that by using some pruning strategy, we actually do no

have to compute pairwise similarity for triplets. Due to space limit, we do

not discuss the pruning issue in details here.

5.3.3 Corpus-based Word Similarity

Recall that in Equation (5.2), content-based triplet similarity STW is mea-

sured based on word similarity SW . In this section, we will address the

problem of how to define a good word similarity SW .

The most straightforward way to calculate SW is simply using the iden-

tity matrix, which only leverages the fact that a word is only similar to

itself. A better strategy might be using some predefined thesaurus such

as WordNet [94] to capture more sophisticated similarity structure between

words. However, these methods are not able to capture the corpus-specific

information. For example, “Japan” and “Tsunami” should be treated more

similar in a news corpus about Japan Tsunami than in a corpus about the

study of Tsunami’s nature. Also, words in semantic text information network

are distinguished by different semantic roles (S,V,O) denoting different se-

mantic information, which cannot be well distinguished by knowledge-based

approaches.

To address this problem, we propose to adaptively and iteratively update

word similarity so that SW and ST can mutually enhance each other. Intu-
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itively, a good word similarity should generate content-based triplet similarity

STW = DSWDT consistent with triplet similarity ST .

Assumption 3. In semantic text information network, corpus-specific infor-

mation (i.e., context of triplet) is well embedded into word similarity SW if

content-based triplet similarity STW is consistent with triplet similarity ST .

Suppose at the k-th iteration of SynRank, the triplet similarity S
(k)
T is

derived by Equation (5.1), based on above assumption, we update SW by

approximately solving the optimization problem as follows:

S
(k)
W = argminSW

L(SW ) = ‖S
(k)
T −DSWDT‖2F , (5.5)

where ‖X‖F = (
∑

i,j X
2
ij)

1
2 is matrix Frobenius norm for measuring how

consistent the two matrices are. Objective function L(SW ) in Equation (5.5)

measures the difference between content-based triplet similarityDSWDT and

current triplet similarity S
(k)
T . By minimizing it, we have the optimal solution

as follows:

Ŝ
(k)
W = (DTD)−1DTS

(k)
T D(DTD)−1, (5.6)

whose computational complexity is O(|W ||T |2).

In order to enforce word similarity to fall in the range of [0, 1], post-

processing ŜW
(k)

is further performed by

s
(k)
W (ti, tj) =















1, if ti = tj.

max(
Ŝ
(k+1)
W

(ti,tj)

‖Ŝ
(k)
W

‖2
F

, 0), otherwise;

(5.7)

If DTD is not invertible, SW can be updated approximately based on

gradient descent method

S
(k)
W = S

(k−1)
W − α ·

{

(DTD)S
(k−1)
W (DTD)−DTS

(k)
T D

}

(5.8)

where α is the step size. In our experimental setting, we have |T | ≫ |W |,

and thus DTD is in practice of full rank and invertible.
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Algorithm 2 SynRank

1: Input: tuning parameters C and λ, frequency matrix D.

2: Initialize S
(0)
W = I|W | and S

(0)
T = I|T |.

3: for k = 1 → maxIter do

4: Compute content-based similarity matrix S
(k)
TW based on S

(k−1)
W by Equation

(5.2);

5: Compute context-based similarity matrix S
(k)
TT based on S

(k−1)
T by Equation

(5.4);

6: Calculate triplet similarity matrix S
(k)
T based on S

(k)
TW and S

(k)
TT using Equa-

tion (2);

7: Update S
(k)
W based on S

(k)
T by Equation (5.6) and post-process it following

Equation (5.7).
8: end for

9: Output: Converged matrices S
(∞)
T and S

(∞)
W .

5.3.4 Algorithm for SynRank

Similar to SimRank, solution to the SynRank equations can be derived by

iterations leading to a fixed-point. Starting with S
(0)
W = I|W | and S

(0)
T = I|T | as

lower bounds of the actual SynRank scores, we successively and alternatively

compute S
(k)
T based on S

(k−1)
TW and S

(k−1)
TT by Equation (5.1), and S

(k)
W based

on S
(k)
T by Equation (5.6), respectively.

Algorithm 2 summarizes the iterative procedure for computing SynRank.

Based on each of the similarity computation procedures in previous sections,

computational cost for SynRank is O(K · |T |2|W |), where typically |T | ≫

|W |, and K is the number of iterations needed for SynRank.

5.3.5 Triplet Clustering for Representative Frame

Once we compute triplet similarity ST by SynRank, various off-the-shelf clus-

tering algorithms (e.g. DBSCAN [97] and Affinity Propagation [98]) can

then be applied to group these triplets together into clusters. From each

cluster, we select one triplet which best summarizes the cluster and use its

corresponding frame as the representative frame. Finally, each document is

described by the corresponding representative frames derived from all triplet

clusters.

More precisely, given triplet similarity matrix ST (i, j), and suppose there

is totally K frame clusters C = {C1, ..., CK} derived from the triplet clustering
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algorithm, we calculate the K representative frames {f̂1, ..., f̂K} correspond-

ing to the K clusters as follows:

f̂k = argmin
fi∈Ck

∑

fj∈Ck

(ST (i, j))
2 , k = 1, ..., K. (5.9)

Each document d is then summarized by a bag of representative frames

d = {f̂1, ..., f̂Kd
}, where Kd is the total number of clusters involved by frames

of d.

We choose to use DBSCAN as our triplet clustering algorithm because it

has the notion of noise objects, and does not require the number of clusters

as an input. Like many other cluster algorithms, DBSCAN have tuning

parameters for a given dataset. The two parameters MinPts and Eps [97]

are tuned in our experiments so that each news article has at most 100

different frames, and at most 3 same frames. The assumption is that each

news article has at most 100 different statements or facts, and should not

repeat to mention the same information more than 3 times because they are

well-written articles. These constraints can be relaxed for different types of

documents like blog posts.

5.4 Experiments

In this section, we first explain how we obtain three real-world monolingual

comparable corpora.

As we addressed in Section 5.1, it is important to make the document

representation space dense by clustering redundant features. We evaluate

our information network-based similarity computation algorithm, SynRank,

on labeled datasets. Since better similarity measures lead to better clus-

tering, we demonstrate the effectiveness of SynRank by evaluating semantic

similarities using the precision at K measure.

Then, we demonstrate the effectiveness of the frame-based document repre-

sentation by the event tracking analysis of monolingual comparable corpora.
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Table 5.1: Description of Three Datasets in Our Experiments

Name Docs Sentences Triplets Words
Japan’s Tsunami 22,108 608,723 402,601 13,114,356
London Riot 6,812 186,394 1,390,960 4,022,380
Egypt Revolution 1,759 70,211 140,348 1,493,745

5.4.1 Datasets

We use three different comparable corpora, collected from NewsBank
3, as

datasets in the experiments. These corpora consist of news articles published

by different news agencies about three news events: Japan’s Tsunami (started

from 3/11/2011), Egypt Revolution (started from 1/24/2011), and London

Riot (started from 8/4/2011), respectively. Overview of the news events are

provided as follows

• Japan’s Tsunami4: A massive 8.9-magnitude earthquake shook Japan on

March 11, 2011, causing a devastating tsunami to the coast of Japan. Due

to the tsunami, the nuclear power plants in Fukushima were damaged, and

one of the reactors in the Fukushima No. 1 nuclear plant partially melted

down on the following day. As a result, the nuclear accident caused the

exposure of nuclear radiation near the plant.

• Egypt Revolution5: Protests started on January 25, 2011, and thousands of

people began taking to the streets to protest poverty, rampant unemploy-

ment, government corruption, and autocratic governance of President Hosni

Mubarak, who has ruled the country for thirty years.

• London Riot6: Started from August 6, 2011, thousands of people took to

the streets in several London boroughs as well as in cities and towns across

England. Resulting chaos generated looting, arson, and mass deployment

of police. The disturbances began after a protest in Tottenham, following a

death of Mark Duggan, a local who was shot dead by police on August 4,

2011.

We searched news articles in NewsBank with keywords: “Japan Tsunami”,

“Egypt Revolution”, and “London Riot”, respectively, and collected articles

3http://www.newsbank.com
4http://en.wikipedia.org/wiki/2011_Tohoku_earthquake_and_tsunami
5http://en.wikipedia.org/wiki/2011_Egyptian_revolution
6http://en.wikipedia.org/wiki/2011_England_riots
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for 11 days after the corresponding start date of each event. The statistics for

the three datasets, and the statistics of semantic text information network

constructed from them are shown in Table 5.1.

These datasets are available upon request.

5.4.2 Data Labeling

In order to quantitatively conduct empirical evaluations, we generated three

labeled datasets (subsets of original ones in Table 5.1). Since getting pairwise

labels for large datasets is very expensive, we sampled the datasets as follows:

We first chose one specific date from each dataset to increase the chance

of having similar documents. Then, we randomly sampled 800 news articles

published in the selected date. We performed a labeling procedure as follows:

1) randomly select a triplet t (called a query); 2) from each of our method

and our baselines, generate the top 20 similar triplets to t; 3) combine the

top 20 triplets of the all methods; 4) label the triplets. Repeating the steps

1-4, we can generate queries with its labeled pairs on which Precision at 20

(P@20) can be calculated.

We asked two participants to label the pairs of triplets with two labels

“same” and “different”.

After eliminating pairs with different labels from two labelers (the inter-

judge agreement rate was 86%), and rejecting queries with all positive and

all negative cases, we have 650 queries for Japan corpus, 1,784 queries for

London corpus, and 752 queries for Egypt corpus.

5.4.3 Quantitative Comparison with Baselines

In this section, we conduct a quantitative comparison between SynRank and

other similarity measuring methods to demonstrate the effectiveness of our

method on capturing semantic similarity between triplets. Methods based

on unstructured text (non-link-based), and based on our semantic text infor-

mation network are both considered as follows:

• Content (TF-IDF Based Cosine Similarity): This content-based baseline first

indexes triplets into tf-idf vectors, and then computes their similarity by

cosine similarity measure.
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Figure 5.8: Parameter Studies of σ and λ by P@10 on Japan’s Tsunami
Labeled Dataset: window size σ controls range of contexual information and
λ controls the information trade-off between context and content of triplets.

• Corpus (Corpus-Based Distributional Similarity) [99]: This method computes

distributional (corpus-based) similarity between words and compose them

to get triplet similarity.

• WordNet (Knowledge-Based Similarity) [95]: It computes word similarity based

on word synonym information from WordNet and compose them to calculate

similarity of triplets.

• SimRank (Homogeneous Link-Based Similarity) [32]: Bipartite SimRank is

applied on modified text information network where contextual links are

removed since SimRank can only handle homogeneous links.

• P-Rank (Heterogeneous Link-Based Similarity) [8]: P-Rank is applied on our

text information network by treating TT and TW relations as in-links and

out-links in its framework.

We set all shared parameters between our method and those of baselines

the same (C = 0.8, λ = 0.1), and the window size is set as σ = 4. We ran 20

iterations for SynRank, SimRank and P-Rank. The comparison of SynRank

with the other five baseline methods in terms of P@5, P@10 and P@20 are

shown in Table 5.3. It shows that SynRank outperforms other methods,

demonstrating that leveraging both contextual and content information helps

to measure similarities among triplets.

5.4.4 Parameter Study

Recall that the two parameters, σ and λ in SynRank formulas control their

information gain between context and content. The window size σ controls

71



5 10 15 20 25

Iterations

0.75

0.8

0.85

0.9

0.95

P
@

1
0

With Updating Sw

Without Updating Sw

Figure 5.9: Performance Gain from Learning Corpus-based Word Similarity
Jointly: P@10 over iterations is plotted, with or without updating the
corpus-based word similarity matrix SW , respectively, on Japan’s Tsunami
labeled dataset.

the range of contextual information, whereas λ in Equation (5.1) controls the

information trade-off between the context and content of triplets. We now

study the influence of parameters on SynRank’s performance by measuring

P@10 on Japan’s Tsunami labeled dataset. Parameter study results on other

data sets suggest similar trend. In Figure 5.8(a), SynRank gained best P@10

when σ = 4, and has relatively low P@10 when σ is small or large. As

an extreme case, when σ = 0 it means no context of triplet is used in the

calculation and only content is considered. Low P@10 at small σ indicates

that context is useful to enhance similarity measure performance. Also, low

P@10 at large σ demonstrates the fact that taking too large range of neighbor

triplets as context may introduce too much unrelated and noisy information.

From Figure 5.8(b) we can examine the appropriate balance between con-

tent and contextual information in terms of similarity measuring perfor-

mance. When λ = 0, we only make use of content information, which causes

low performance gain. On the other hand, when λ goes close to 1, which

means only context is leveraged, the performance gain also drops. We found

the optimal value for λ is 0.1.

5.4.5 Corpus-based Word Similarity

In order to show the performance gain from corpus-based word similarity

matrix updating, we plot the curve in Fig. 5.9 which shows the change of

P@10 as SynRank iteration goes, i.e., SW is updated iteratively. In the

Figure, we show the P@10 with and without updating SW (i.e., fix the word

similarity matrix as SW = I|W |). Even though learning the word similarity
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from corpus leads to worse performance at first, it eventually enhances it and

gets to a stable point, demonstrating that word similarity updating by the

corpus bring usefulness.

5.4.6 Effectiveness of Frame-Based Document Representation

Many of the document representation studies [100] evaluate their proposed

representation methods via specific applications like similarity search and

document clustering. We choose the event tracking task because it is one of

the key applications for monolingual comparable corpora analysis, and it is

an interesting task for a collection of news articles.

We identified four important events from the Japan’s Tsunami corpus and

London Riot corpus. For each event, we searched for the best triplet clusters,

keywords, and topics that describe the event, where topics are from LDA [77]

with 20 topics. Then, we plot them by counting their occurrences in the

corpus and normalizing by the number of documents in each date. Figure 5.6

and 5.7 show the trends in the order of triplets, words, and topics. The

bottom row in Figure 5.6 and 5.7 show the event tracking by topics. The

highest probability words from each topic are listed on each plot.

In Figure 5.6 and 5.7, we also indicated the timelines of the two corpora.

The red dots in the trend plots indicate the consistent points with the time-

lines7. Thus, those red dots should be higher than other data points.

As shown in the two figures, in general, the frame-based event tracking

performs better than the other two baselines. Quantitatively, we can take

the average of the rankings of the red dots within the plots as an evaluation

measure. For example, in the “reactor” plot, the four red dots ranked 1, 3,

4, and 9. The averages of the rankings of the 19 red dots for frames, words,

and topics are respectively 2.33, 2.42, and 3.75. Since lower is better in this

measure, the frame-based event tracking is better than the others.

The observation is that if an event cannot be described in a single keyword,

it is hard to track events by the keyword. For example, “radiation leaked”

cannot be described by a single word. Topic models are designed to model

the theme of the words, which are more general concepts than events. It

is hard to specify an event using topics. The topic trend plots have many

7Since the timestamps of the news articles are the publication dates, they are off by
one from the timeline dates

73



Table 5.2: Topic Model Evaluation Survey

The Number of Topics 10 20 50
The Pairwise Agreement 33% 46% 33%

Table 5.3: Precision Evaluations of Different Compared Methods on Three
Labeled Datasets

Method
Japan’s Tsunami London’s Riot Egypt Revolution

P@5 P@10 P@20 P@5 P@10 P@20 P@5 P@10 P@20

Content 0.767 0.698 0.653 0.853 0.787 0.719 0.848 0.773 0.689

Corpus 0.756 0.694 0.650 0.859 0.794 0.723 0.853 0.770 0.681

WordNet 0.770 0.711 0.664 0.854 0.791 0.722 0.850 0.767 0.683

SimRank 0.747 0.683 0.641 0.798 0.737 0.695 0.745 0.722 0.679

P-Rank 0.783 0.726 0.681 0.868 0.803 0.728 0.817 0.746 0.677

SynRank 0.856 0.864 0.854 0.883 0.848 0.807 0.905 0.843 0.739

peaks because one topic covers more than one event. These results show that

topics are not suitable to specify an event. Increasing the number of topics

does not help to specify events. The following survey experiment shows that

increasing the number of topics does not make the topics more specific.

We make multiple choice questions. Each question has a one event de-

scription by a sentence and five choices of topics with top ranked words from

the word distributions of the topics. Then, participants are asked to pick the

most relevant topic for a given event description.

We first generated topics using LDA [77] for the London corpus, and for

each of the four events, we selected five most relevant topics by looking at

their word distributions and the rankings of several keywords. We repeated

this survey for different number of topics (10, 20, and 50). We computed

the pairwise agreements for the different number of topics as shown in Ta-

ble 5.2. The pairwise agreement indirectly measures the specificity of topics

for events. When the number of topics is 20, the pairwise agreement is low-

est, which means the topics from LDA with 20 topics describe events better

than those from LDA with 10 or 50 topics. Thus, increasing the number of

topics does not improve the specificity of topics for events.
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CHAPTER 6

MULTI-ATTRIBUTE PROXIMITY

NETWORK MODELING

6.1 Overview

With the proliferation of digital media and newswires, massive online news

data has become widely available. Subsequently, automated analysis of news

events has become an important research issue since the sheer quantity of

news events makes human analysis infeasible. An interesting common phe-

nomenon among these large collections of news articles is that these news cor-

pora not only have high coverage of world-wide news events, but also contain

a lot of partially overlapping information. Partially overlapping information

gives an opportunity to align articles and discover both what is important

and what is correct within the collection.

More specifically, the statistical power available from information redun-

dancy makes it possible to find and describe important events as well as

their essential attributes such as time, location, as well as related organiza-

tions and persons. Moreover, it helps discover connections between events

in news articles because news articles cover multiple related events together,

contrasting to short documents like micro-blog posts which mostly cover a

single event.

Discovering and visualizing events with their key descriptors, essential at-

tributes, and their connections makes it possible to understand the big pic-

ture when bombarded with a huge amount of information in news articles.

Effective event discovery can be used to summarize and navigate a news cor-

pus and effectively retrieve nuggets of knowledge for a specific interest. It is

thus desirable to build a system that, given a news corpus, discovers impor-

tant events automatically, attributes key properties to them accurately, and

connects them thematically.

There have been multiple approaches that summarize and visualize news
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events. However, they suffer from several limitations.

1. Unigram-based event descriptors: While some systems use uni-

grams (i.e., single words) as event descriptors [37, 101], it has been

shown that phrases are more descriptive and interpretable than words [102,

103]. There are several studies that use phrases in information flow de-

tection on the Web [104, 105] or in event detection with micro blogs [16,

106]. However, their phrases are not for describing events but for

searching and linking multiple documents.

2. Lack of key dimensions for event description: A reader can better

understand the context of an event if she knows several key dimension

(or attribute) values of an event: when and where the event happened,

and who or which organizations the event is related to [107]. Most

of the studies do not have such attributes in their outputs, and some

extract event attributes from meta data like publication dates and re-

porting locations, which can be misleading. Some key dimension values,

such as persons or organizations, are often unavailable or inaccurate.

3. Ignoring event connections within a single document: Events

naturally relate to each other. While these connections are often explic-

itly addressed within news articles, many event detection and tracking

studies in micro blogs [108, 106, 16] and news articles [37, 101] make

the strong assumption that each document describes a single event.

While for short documents like micro blog posts, this assumption may

hold, it often fails to hold for long documents like news articles which

are more susceptible to event drift. Further, enforcing this assumption

will lose event connection evidences found within a single document.

It is challenging but desirable to effectively mine and extract high-quality

event knowledge from large, noisy text corpora consisting of partially re-

peated news articles. In this study, we develop a new approach, ProxiModel

(Proximity network-based generative model), which leverages the notion of

proximity: If two instances co-occur in news articles closely and frequently,

they have high proximity. This notion of proximity is used to model events,

descriptors, attributes, and connections.

Fig. 6.1 shows an example output of ProxiModel for the news collection

about 2011 Japan tsunami and nuclear accident. There are 16 events shown,
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with automatically generated phrasal key descriptors and event attributes,

where circle size represents the importance of events, and line width the

strength of event connection.

By automatically identifying latent news events, their phrasal descriptors,

attributes, and connections, ProxiModel provides an effective framework for

organizing and exploring these huge amounts of data. Without understand-

ing the meanings of sentences in news articles, our method models the events

based on the notion of proximity. ProxiModel possesses several key quali-

ties that differentiate it from other event detection methods and allow for

high-quality event discovery and intuitive and interpretable organization of

news: (1) it provides a big picture of events in news articles with rich in-

formation, which includes the importance of events, key phrasal descriptors,

event attributes, and event connections, (2) it utilizes proximity information

and regularizes sparsity in model parameters to find correct event attributes

and connections from text, and (3) it uses a scalable data structure, called a

proximity network, that stores necessary information from news articles.

6.2 Event Mining

In this section, we introduce a proximity network generated from a compa-

rable news corpus and propose an event mining method on the constructed

proximity network.

6.2.1 Event Definition

While bearing some similarities, event discovery has subtle differences from

topic discovery or topic modeling. Traditionally, a topic is defined as a dis-

tribution of words [77]. An event, however, is associated with several key

dimensions including location, time, person, organization, and a set of de-

scriptive phrases as theme.

We first examine several key dimensions and primitives of events.

1. Time: Temporal expressions are extracted from documents and normal-

ized to the form of the TIMEX3, which is a part of the TimeML annotation

language [109]. Relative temporal expressions like “last night” and “yester-

day” are also normalized by taking the report time or publication time of
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Tsunami waves hit the Calif. coast today after the massive 8.9 earthquake 
that struck off Japan's northeastern coast.

Publication date : March 11, 2011

tsunami waves hit

PHRASE

2011 / 3 / 11

TIME

CALIFORNIA

LOCATION

coast

PHRASE

northeastern coast

PHRASE

strike

PHRASE

massive 8.9 earthquake

PHRASE

JAPAN

LOCATION

Figure 6.2: The representation of a document as a sequence of bases. NLP
tools and a phrase mining algorithm are used to segment documents.

the document as the fixed reference time. For example, the word “today” in

Figure 6.2 is mapped to “2011/3/11” because of the publication date. We

informally refer to the extracted normalized time expressions as time.

2. Location: Locations are geo-political entities such as city, state, and

country. They are extracted and normalized to their surface forms. For

example, the word “Calif.” is mapped to “CALIFORNIA” in Figure 6.2.

3. Person Extracted persons are not only public figures, but also private

figures who are mentioned in news articles. For example, Jun-seok Lee, who

was the captain of the sunken Sewol Ferry, is extracted. Coreferences are also

resolved within a document such that Captain Lee is mapped to Jun-seok

Lee.

4. Organization Companies, governments, and other organizations are

extracted. An abbreviation of an organization is mapped to its full name if

they are mentioned in the same document. For example, TEPCO is mapped

to Tokyo Electric Power Company.

5. (Thematic) phrases: A phrase is a sequence of contiguous words that

represents a meaningful semantic unit. Recently developed phrase mining al-

gorithms such as ToPMine [103] and SegPhrase [110] perform fast, pruning-

based frequent contiguous pattern mining and then statistically reason about

the significance of the contiguous co-occurrence while applying context con-

straints to discover meaningful phrases. We use ToPMine [103] to mine qual-

ity phrases representing the above dimensions as well as thematic phrases
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Fukushima

TokyoSendai

Chernobyl
Hawaii

earthquake tsunami
radiation leaknuclear power plant

cooling system

tap water
partial meltdown

2011-3-11

2011-3-15

Location Phrase Time

Figure 6.3: Statistical power of comparable news corpus: key information
can be easily discovered by counting the occurrences of basis

that form a thematic dimension as shown in Fig. 6.2.

For simplicity, we refer to any phrase, time, location, person, or organi-

zation as a basis. A document d is a sequence of segments 〈d1, d2, . . . , dk〉,

where di corresponds to a basis. The order of segments corresponds to the

order of original word tokens in the document. For a given comparable news

corpus, we want to discover events defined as follows:

Definition 7 (Event). An event, z, is a real-world occurrence represented

as a 5-tuple 〈ηz, φ
L
z , φ

T
z , φ

O
z , φ

P
z 〉, where ηz is the distribution over all phrases,

φL
z is that (distribution) over all locations, φT

z is that over all time, φO
z is that

over all organizations, and φP
z is that over all persons.

6.2.2 Comparable News Corpus

A comparable news corpus is a collection of news articles that cover related

events. The definition of a comparable news corpus is the same as that of a

comparable corpus [111] frequently used in natural language processing tasks

like translation, except that each document in a comparable news corpus has

the same news events instead of the same topics. We can collect such corpora

easily, for example, using keyword search on a news database. A comparable

news corpus contains a lot of partially repeated information and common

phrases for important events. These fragmented, but overlapping pieces of

information can complement each other in a collective analysis.

Here we briefly illustrate the potential of a collective analysis on a compara-

ble news corpus, with two simple but incomplete analysis methods. Counting

the occurrences of bases gives key information for each dimension, such as

locations, phrases, and time as shown in Fig. 6.3. By counting redundant
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SENDAI

HAWAII

2011-03-15

radiation leak

tsunami warning

death toll

earthquake hit

2011-03-11
FUKUSHIMA

earthquake tsunami

nuclear plant

Figure 6.4: An example of proximity networks from the Japan Tsunami
corpus. There are three types of nodes: ©: a phrase node, ♦: a location
node, and �: a time node. Line thickness indicates the weight of the
corresponding edge in log scale.

information across the news articles about Japan tsunami in 2011, the peaks

show important information in each dimension.

Unfortunately, such peaks, generated from document-level co-occurrences

of key dimensions, cannot be used to extract events. This is because events

mined from document-level co-occurrences can be inaccurate. For example,

a hydrogen explosion in a nuclear power plant happened in Fukushima on

March 14, 2011. The phrase “hydrogen explosion”, however, has high co-

occurrence with “2011-03-11” because most of the news articles mentioned

the earthquake on March 11, 2011 to address the cause of the damaged

nuclear power plant. To avoid these problems, events should be resolved by

considering the proximity of bases within documents.

6.2.3 Proximity Network

Proximity is a measure of how close two terms occur in a document or a

passage. This measure has been successfully adopted in many different tasks

including word association [112, 113], document retrieval [114, 115], named

entity retrieval and expert finding [116, 117].

Proximity is an important cue for estimating the strength of association

between two bases, in which a strong association between two bases indicates

they belong to the same event.
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For example, in the Japan Tsunami news corpus, we find time expressions

of 2011/03/11 near earthquake hit phrase frequently: This is the time when

a massive earthquake hit Japan. In addition, we find location mentions of

Fukushima around the phrase radiation leak much more than any other

locations: Similarly, Fukushima is the city where crippled nuclear power

plants had radiation leaks.

We want to collect such evidence or associations between bases in an effi-

cient way by constructing an information network, called a proximity network.

We define a proximity network that has different types of nodes and edges

between them. The set of nodes in the proximity network is the set of bases

in a given corpus C, and the weight of an edge between two nodes is based

on proximity between the nodes as follows.

ex,y =
∑

d∈C

∑

1≤i<j≤Nd

δd(i, x)δd(j, y)k(i, j),

where δd : N× B → {0, 1} is an indicator function and k(i, j) is a proximity

kernel such that

δd(i, x) =

{

1 if the segment at position i in d corresponds to x

0 otherwise

k(i, j) = exp

[

−(i− j)2

2σ2

]

Note that σ is a constant that controls the propagation scope of each seg-

ment. A proximity network with small σ captures very different information

from one with large σ. We will use two proximity networks with different σs

to model different information as discussed in the next section.

An example of proximity networks is shown in Figure 6.4, generated from

the Japan Tsunami corpus with σ = 1. It shows strong proximity be-

tween FUKUSHIMA and nuclear plant and between earthquake tsunami and

2011-03-11. If one tries to cluster the nodes in the figure based on the edges,

such clustering may yield three clusters as follows:

1. { 2011-03-15, FUKUSHIMA, radiation leak, earthquake tsunami, nuclear

plant }

2. { 2011-03-11, SENDAI, earthquake tsunami, death toll, earthquake

hit }
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3. { 2011-03-11, HAWAII, tsunami warning }

There exist some latent parameters that form clusters of nodes, and we

model such parameters by events as addressed in the following section.

A proximity network constructed from the corpus could be noisy and dense

without post-processing. Since our corpus has partially repeated news arti-

cles and important links get greater weights, we use link minimum support

(lminsup) to remove infrequent links (i.e., whose weights are less than lminsup).

This truncation not only removes noises in the network, but also makes the

network sparse, where modeling becomes more efficient in time and space.

6.2.4 Proximity Network Generative Models

In this section, we describe Proximity Network Generative Model (Proxi-

Model). Proximity networks have pairwise proximity information among

bases. Unlike previous studies that use heuristic proximity metrics [112, 113,

114, 115, 117], we learn latent parameters from proximity to model events.

Specifically, we design a generative model for proximity networks to model

events, in which edges in the networks are generated under some assumptions.

In order to model events with descriptors, attributes, and connections, we

construct two proximity networks Ns and Nl, with small σs and large σl

values, from an input corpus.

Proximity Network Ns: σs is set smaller than σl to capture proxim-

ity within a smaller propagation scope. This proximity network is mainly

used to learn event descriptors and attributes. It only has edges with at

least one phrase end node. In other words, it only has edges consisting

of phrase-phrase, phrase-time, phrase-location, phrase-organization, and

phrase-person.

Proximity Network Nl: σl is set greater than σs to capture proximity

within a larger propagation scope. This proximity network is mainly used

to learn event connections. It only has edges with two phrase end nodes. In

other words, it has only edges of phrase-phrase.

Our Assumptions: In the generative model, we encode our assumptions

as follows:

1. Two phrases for the same event have high proximity in Ns.
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  Radiation leaked from a crippled nuclear plant in tsunami ravaged 
northeastern Japan after a third reactor was rocked by an explosion 
Tuesday and a fourth caught fire in a dramatic escalation of the 4-day-
old catastrophe. The government warned anyone nearby to stay indoors 
to avoid exposure. In a nationally televised statement, Prime Minister 
NAOTO KAN said radiation has spread from four reactors of the 
FUKUSHIMA Dai-ichi nuclear plant in FUKUSHIMA PROVINCE, one of 
the hardest-hit in Friday's 9.0-magnitude earthquake and ensuing 
tsunami. It is the first time that such a grave nuclear threat has been 
raised in the world since a nuclear power plant in CHERNOBYL, 
RUSSIA exploded in 1986.

03/15/2011, SOMA, JAPAN (Associated Press)

Figure 6.5: An example news article to discuss our assumptions. Phrases
are in red, named entities are in bold, and temporal expressions are in italic
and underlined.

2. A phrase and an event attribute for the same event have high proximity

in Ns.

3. Two phrases from different events have high proximity in Nl if the

events are connected

4. Each event has a few event attributes of the same type.

5. There are only a few event connections.

Note that two phrases for the same event have high proximity in Nl as well

as in Ns because of the Gaussian kernel.

We first address the assumptions with an example news article in Fig-

ure 6.5. The news article mainly reports the leaked radiation from a crippled

nuclear power plant in Fukushima, Japan, which happened in March 15,

2011.

The article also mentions a main cause of the damages in the nuclear

power plant—a massive earthquake hit Japan in March 11, 2011 which

caused strong tsunamis that damaged the nuclear power plant. For exam-

ple, radiation leaked and crippled nuclear plant have high proximity in

Ns as an example of Assumption 1. 9.0-magnitude earthquake and Friday

have high proximity in Ns as an example of Assumption 2. In addition,

9.0-magnitude earthquake and crippled nuclear plant have high proxim-

ity in Nl.
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6.2.5 Generative Process

In our generative model, we convert the edge weights in Ns and Nl to multi-

graphs as follows: The number of edges between two nodes is equal to the

integer part of the weight in the original network. We denote the total num-

ber of edges in Ns and Nl by ns and nl respectively.

We define a generative process for edges in Ns and Nl as shown in Algo-

rithm 3. In Ns, each edge belongs to one event, indicating two end points

belong to the event. In Nl, end points of each edge can belong to different

events as well as the same event. See Figure 6.6 for a graphical representation

of the model.

In this generative model, we can derive the distribution of the number of

edges between any two nodes in Ns. Generating an edge between a phrase-

i node and an attribute-j node of type t in event z can be modeled as a

Bernoulli trial with a success probability of θzρ
tηz,iφ

t
z,j. When ns is large,

the total number of successes, es,ti,j,z asymptotically follows a Poisson distri-

bution [118] as follows:

es,ti,j,z ∼ Poisson(nsθzρ
tηz,iφ

t
z,j).

Due to the additive property of Poisson distribution, we can derive that

the observed variable es,ti,j follows a Poisson distribution as follows:

es,ti,j =
∑

z

es,ti,j,z ∼ Poisson(
∑

z

nsθzρ
tηz,iφ

t
z,j).

Thus, given the model parameters, the probability of all observed edges in

Ns is

Ls = p({es,ti,j}|θ, ρ, η, φ) =
∏

i,j,t

(µi,j,t
s )e

s,t
i,jexp(−µi,j,t

s )

es,ti,j !
,

where µi,j,t
s =

∑

z nsθzρ
tηz,iφ

t
z,j.

Similarly, we can derive the distribution of the number of edges between

any two nodes in Nl.

eli,j =
∑

z1,z2

eli,j,z1,z2 ∼ Poisson(
∑

z1,z2

nlϕz1,z2ηz1,iηz2,j).
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Thus, given the model parameters, the probability of all observed edges in

Nl is

Ll = p({eli,j}|ϕ, η) =
∏

i,j

(µi,j
l )e

l
i,jexp(−µi,j

l )

eli,j!
,

where µi,j
l =

∑

z1,z2
nlϕz1,z2ηz1,iηz2,j.

The overall probability of all observed edges in Ns and Nl is

L = Ls · Ll.

We encode Assumptions 1 and 2 in the generative process of Ns, and

Assumption 3 in the generative process of Nl.

To model the assumptions that each event has only a few event attributes

and there are only few event connections, we introduce sparse regularization

on model parameters as their priors.

We impose an a priori probability on the parameters given by

L′ ∝ L · p(φ) · p(ϕ), (6.1)

where p(φ) = e−
∑

z

∑

t αtH(φt
z), p(ϕ) = e−βH(ϕ), H(x) is the Shannon’s entropy

of distribution x, and αt and β are sparse prior weights. With higher values of

αt and β, event attributes and connections have lower entropies, i.e., sparser.

6.2.6 Parameter Learning

We learn the model parameters by the Maximum Likelihood (ML) princi-

ple. To deal with the normalization constants of the prior probabilities, the

log-likelihood of Eq (6.1) must be augmented by appropriate Lagrange mul-

tipliers: Q = logL′ + λθ (
∑

z θz − 1) + λρ (
∑

t ρt − 1) +
∑

z λ
z
η (
∑

i ηz,i − 1) +
∑

t,z λ
t,z
φ

(
∑

i φ
t
z,i − 1

)

+ λϕ

(

∑

z1,z2
ϕz1,z2 − 1

)

Then, we maximize Q using an Expectation-Maximization (EM) algorithm

that iteratively infers the model parameters.
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The E-step calculates the expected number of edges:

ês,ti,j,z = es,ti,j

θzηz,iφ
t
z,j

∑

k θkηk,iφ
t
k,j

(6.2)

êli,j,z1,z2 = eli,j
ϕz1,z2ηz1ηz2

∑

k1,k2
ϕk1,k2ηk1ηk2

(6.3)

In the M-step, the update equations for θz, ρt, and ηz,i are given by

θz =

∑

i,j,t ê
s,t
i,j,z

ns

, ρt =

∑

i,j,z ê
s,t
i,j,z

ns

, (6.4)

ηz,i =

∑

j,t ê
s,t
i,j,z +

∑

j,z2
êli,j,z,z2

∑

k,j,t ê
s,t
k,j,z +

∑

k,j,z2
êlk,j,z,z2

(6.5)

In the M-step, maximization of Q with respect to φ and ϕ leads to different

sets of equations due to their priors and Lagrange multipliers:

1

φt
z,i

∑

j

ês,ti,j,z − nsθz + αt log φ
t
z,i + αt + λt,zφ = 0 (6.6)

1

ϕz1,z2

∑

i,j

êli,j,z1,z2 − nl + β logϕz1,z2 + β + λϕ = 0. (6.7)

The above set of simultaneous transcendental equations for φ and ϕ can

be solved using the Lambert’s W function similar to [119].

φt
z,i =

−
∑

j ê
s,t
i,j,z/αt

W(−
∑

j ê
s,t
i,j,ze

1−nsθz/αt+λt,z
φ

/αt/αt)
, (6.8)

where equations Eq. (6.6) and Eq. (6.8) form a set of fixed-point iterations

for λt,zφ , and thus the M-step for finding φt
z,i.

Similarly, we can get the following update equation for ϕz1,z2 :

ϕz1,z2 =
−
∑

i,j ê
l
i,j,z1,z2

/β

W(−
∑

i,j ê
l
i,j,z1,z2

e1−nl/β+λϕ/β/β)
. (6.9)
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Algorithm 3 Proximity Link Generative Models

1: for each edge ei in Ns do
2: Draw an event zi ∼Multi(θ)
3: Draw a type ti ∼Multi(ρ)
4: Draw a phrase pi ∼Multi(ηzi)
5: Draw an attribute xi ∼Multi(φti

zi
)

6: end for
7: for each edge ej in Nl do
8: Draw a pair of events wj ∼Multi(ϕ)
9: Draw a phrase yj,1 ∼Multi(ηwj,1

)
10: Draw a phrase yj,2 ∼Multi(ηwj,2

)
11: end for

NsNs NlNl

TT

θθ

ρρ φt
zφ
t
z

zizi

xixi

pipi

titi

ϕϕwjwj

yj,1yj,1

yj,2yj,2

EE

ηzηz

Figure 6.6: A generative model for σs-proximity network(Ns) and
σl-proximity network(Nl)

6.3 Experiments

In this section, we evaluate ProxiModel on a variety of news article corpora.

We begin by first describing the comparable news corpora we collected for

our evaluation, then showing the quality of event descriptors and attributes

generated by ProxiModel, when compared to those by other baselines. After

evaluating the quality of our events, we focus on benchmarking the efficiency

of our algorithm. We demonstrate the efficiency gains of constructing a

compact network for a corpus (without document-level representation) as

we increase the number of documents. In addition, we show how using

a link minimum support threshold reduces the runtime while maintaining

high-quality attributes. Since we have three technical parameters—noise re-

duction, proximity and sparsity—that affect the quality of event descriptors

and attributes as well as method efficiency, we perform parameter studies by

varying these parameters to highlight the effects of proximity and sparsity.
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Finally, by applying our methodology and extracting key event descrip-

tors and event attributes, we demonstrate how one can construct an event

storyline detailing the timeline of events.

6.3.1 Datasets

We evaluate each method on three news corpora, collected from a variety

of news agencies through NewsBank
1, which cover different distinct topical

content.

• Sewol Ferry (2014): The sinking of Sewol ferry occured on April 16,

2014, en route from Incheon to Jeju. We searched articles with “Sewol

Korea” keywords, and collected 1,520 articles published from April 15,

2014 to June 30, 2014.

• Japan Tsunami (2011): A massive 8.9-magnitude earthquake shook

Japan on March 11, 2011, causing a devastating tsunami to the coast

of Japan. We searched articles with “Japan Tsunami” keywords, and

collected 21,528 articles published from March 11, 2011 to April 11,

2011.

• Multiple (2014): This dataset has multiple news stories, including

Ebola outbreak, the 2014 Winter Olympics, Russian military interven-

tion in Ukraine, missing MH370, Gamboru Ngala attack, Jos bombings,

ISIS, Israel-Gaza conflict, and the MH17 tragedy. We searched articles

with multiple keywords for each news story, and collected 100,472 ar-

ticles published in 2014.

Table 6.1 summarizes the collected three datasets. The number of events

and the other input parameters can be selected by using cross-validation with

perplexity or Bayesian information criterion (BIC) [120]. In our study, we set

the number of events as follows: 10 for Sewol Ferry, 30 for Japan Tsunami,

and 60 for Multiple. As the default values, we set the proximity parameters

σs and σl to 1 and 10, and the sparsity parameters αL, αT , αO, αP , and β to

1000, 1000, 10, 10, and 100, respectively.

1www.newsbank.com
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Dataset Articles Words TIME GPE ORG PERSON
Sewol Ferry 1,520 5,706 67 190 164 235
Japan Tsunami 21,528 31,793 574 2,367 2,862 4,338
Multiple 100,472 133,540 3,565 10,907 15,417 39,093

Table 6.1: Statistics of the datasets: We count words and other entities
that appear in at least 5 different news articles.

6.3.2 Baselines

For the comparative study, we have identified two, directly comparable meth-

ods and two variations of ProxiModel as baselines for each of our proposed

hypotheses.

• HISCOVERY: This work [37] assumes each document describes a

single event, and the event time is very close to the publication date

of the news article. Because of the event time assumption, this model

uses publication dates as extra information, which is not available to

other baselines.

• PhraseLDA: PhraseLDA is proposed in [103]. This model extends

Latent Dirichlet allocation to incorporate phrase generation. It utilizes

the co-occurrence of phrases or attributes in documents, instead of

using proximity. In addition, it has homogeneous outcomes from the

generative process, in which all phrases and attributes are generated

from a single distribution.

• ProxiModel-NP: This is a variation of our model which does not use

the proximity information, but the co-occurrence information. It is a

special case of ProxiModel, where the proximity parameters (σ) are set

to a very large number. This model serves to see the effectiveness of

the proximity information.

• ProxiModel-NS: This is our model without the sparse regularization.

It is a special case of ProxiModel, where the sparsity parameters are 0.

This baseline is designed to show the effects of sparse priors.

6.3.3 Event Descriptor Evaluation

In this section we apply a proposed user-study to evaluate the descriptors of

the key events across each method.
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HISCOVERY

PhraseLDA

ProxiModel-NP

ProxiModel-NS

ProxiModel

Sewol Ferry Japan Tsunami Multiple

A - key descriptors B - auxiliary descriptors C - irrelevant descriptors

Figure 6.7: The evaluation of descriptors of the aligned key events
generated by different methods

We select key events from each dataset that can be found across all the

methods.

These alignments were performed by expert examination of the descriptors

and attributes. One example of a key event used in our evaluation is: “cap-

tain arrested on suspicion of negligence” in 4/19/2014 which was reported in

a news article: “senior prosecutor Yang Jung-jin said the ferry captain, Lee

Joon-seok, 68, faces five charges including negligence of duty and violation

of maritime law.” 2

We found 4 events in Sewol Ferry, 10 events in Japan Tsunami, and 16

events in Multiple datasets. For each key event, we collected the top 10 de-

scriptors from each method, combined and shuffled them to make a method-

blind list of descriptors. We then asked four participants, who are very

familiar with each event and have first read multiple articles for further fa-

miliarity, to label each descriptors into the following categories A to C: (A)

key descriptors, (B) vague or auxiliary descriptors, and (C) not related. The

agreement of the labels by the four participants was measured as 0.67 in

Fleiss’ kappa [121], indicating substantial agreement.

We show an example of aligned key events in Sewol Ferry and the top 10

descriptors and the associated attributes from each methods in Table 6.2.

Figure 6.7 shows the distribution of labels for each method. The phrase-

based methods have smaller proportions of B labels than the word-based

method, HISCOVERY. In addition, the results show that modeling proximity

is important to find key descriptors for events.

2The article can be found in http://goo.gl/0jW2dO
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6.3.4 Event Attribute Evaluation

We use a positive and negative set of event attributes for event attribute eval-

uation. We define a positive set of event attributes as follows: all attributes

in a positive set related to one specific event.

We generated a candidate list of attribute sets and labelled them manually.

Table 6.3 shows some of the annotated event attribute sets.

We compute the probability to generate a given set of attributes from one

event as following:

Pr(τ |M) =
∑

e

Pr(e|M)
∏

a∈τ

Pr(a|e),

where M is a model, e is an event, τ is a given labeled set of attributes, and

a is an attribute in τ .

Based on these probabilities, we rank the labelled sets of attributes to com-

pute the area under the curve (AUC) of the receiver operator curve (ROC)—a

curve showing the true positive rate against the false positive rate. This is

a standard measure used in information retrieval to show the performance

of a binary classifier as the discriminatory threshold is varied. We can see

the performance of our model compared to other baselines in Table 6.4.

While ProxiModel and ProxiModel-NS outperform the other baseline meth-

ods, ProxiModel has marginal improvement over ProxiModel-NS. We will

address this difference between our sparse model, and non-sparse model in

Section 6.3.8. Also, note that PhraseLDA has lower AUC than ProxiModel,

especially in Organization and Person because of using a single distribution

for attributes and phrases.

6.3.5 Parameter Studies

There are three main parameters in ProxiModel to control the noise reduc-

tion (link minimum support), proximity measures, and sparsity of learning

parameters. In the following sections, we show how these parameters affect

the model’s performance.
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Time Location Phrase

+ 2011-03-11 HAWAII tsunami warning
+ 2011-03-16 FUKUSHIMA nuclear power plant

- 2011-03-11 CHERNOBYL cooling system
- 2011-03-16 TOKYO spend fuel pool

Positive and negative examples of Base

Time Location Phrase Org.

+ 2011-03-11 SENDAI relief effort RED CROSS
+ 2011-03-19 TOKYO radiation level TEPCO

- 2011-03-12 CHERNOBYL cooling system IAEA
- 2011-03-12 LIBYA sweep away UN

Positive and negative examples of Base + Organization

Time Location Phrase Person.

+ 2011-03-11 FUKUSHIMA stay indoors NAOTO KAN
+ 2011-03-17 FUKUSHIMA storage pool YUKIO EDANO

- 1979 UKRAINE radioactive material NAOTO KAN
- 2011-03-11 SENDAI fuel rod BARACK OBAMA

Positive and negative examples of Base + Person

Table 6.3: Examples of human annotated event attributes

HISCOVERY PhraseLDA ProxiModel-NP ProxiModel-NS ProxiModel

Sewol Ferry

Base 0.5217 0.7971 0.6102 0.8010 0.8103

Org. 0.5190 0.6659 0.5111 0.6983 0.6944

Person 0.5144 0.6105 0.5308 0.6385 0.6455

Japan Tsunami

Base 0.5149 0.6018 0.5212 0.6854 0.6976

Org. 0.4754 0.5018 0.5594 0.7648 0.7688

Person 0.6093 0.5334 0.5291 0.6710 0.6948

Multiple

Base 0.5928 0.7139 0.6272 0.7310 0.7351

Org. 0.6254 0.6740 0.6170 0.7564 0.7431

Person 0.5409 0.6688 0.6504 0.7605 0.7660

Table 6.4: Event retrieval task evaluated using AUC: bold numbers indicate
significantly better results than other methods.

6.3.6 Link Minimum Supports

Because ProxiModel leverages data redundancy, it naturally places higher

emphasis on larger link-weights. Taking this into consideration, we apply a

minimum support to links in order to reduces the number of trivial links and

thus enhance the efficiency of the algorithm. In the Japan tsunami dataset,

more than 96% of links have less than 1.0 weight. By removing small weight

links, we have comparable results in quality, but better efficiency.

In Figure 6.8, we analyze both our performance as a measure of area under

curve of ROC and our runtime performance as we vary the link minimum

support parameter. We show the performance of ProxiModel in AUC against
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Figure 6.8: Link Minimum Supports (AUC)
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Figure 6.9: Different σ (AUC)

different values of link minimum support, lminsup. When lminsup is too large,

the performance is degraded due to the loss of important information. For

all our datasets, we set lminsup to 10.

In Figure 6.11(a), as we increase the minimum support, proximity networks

become sparser, leading to improved efficiency and better runtimes.

6.3.7 Proximity

In Section 6.3.4, experiments showed ProxiModel outperforming ProxiModel-

NP (non-proximity). In this section we vary σ to control our proximity

parameter and analyze its effect on retrieval performance. In Figure 6.9,

we show the performance of our model in AUC with variants with different

proximity parameters(σ) for Ns. We notice peaks around one in the all fig-

ures, but we have significant drops for Organization and Person performance

when σ > 2. As we addressed in Section 6.2.3, proximity is related to the

information propagation within a document. When σ is large, the proximity

network captures long range information propagation. For smaller σ, only

near-by information is propagated. Analyzing Figure 6.9, we can see indica-
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Figure 6.10: Sparsity vs Non-sparsity: Location and Time

tion that for organizations and persons, information is generally propagated

in relatively shorter range when compared to location and time information

while enjoying long-range propagation. As such, this motivates setting the

proximity parameters for each attribute.

6.3.8 Sparsity

As mentioned previously, ProxiModel demonstrated marginal improvement

over ProxiModel-NS, which was shown to not be statistically significant in

Table 6.4. While objectively performance is marginal, we observe however

that sparsity affects the interpretability of the learned parameters. For ex-

ample, Figure 6.10 shows the learned parameters – location distribution and

time distributions – for the fire explosion that occurred in the Fukushima

nuclear power plant on March 15th. Unlike non-sparse models which display

many peaks and thus conflicting information, ProxiModel appears sparse dis-

playing single peaks in the location distribution and time distribution. These

are significantly more human-interpretable.

6.3.9 Efficiency Analysis

To understand the run-time efficiency of our methodology, we measure the

run-time of ProxiModel using our Multiple dataset, which has approximately

100k documents combined from a variety of sources. We measure runtime as

we incrementally increase corpus size. Figure 6.11(b) demonstrates empiri-

cally run-time is linear in terms of the number of documents. We then vary
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Figure 6.11: Running Time

the number of events parameter and observe run-time performance. From

Figure 6.11(c) we can see that runtime is quadratic in relation to number of

events. As this parameter is usually small (a small number of events), this

is less significant than linearity with respect to corpus size.

6.3.10 Visualization

We use ProxiModel to learn Japan Tsunami events and their connections,

and visualize them in Figure 6.1. An event is represented by a circle with a

radius proportional to its probability in event distribution θ. Each event is

described by a list of top 6 event descriptors from ηz in conjunction with top

event attributes (e.g., time, location, organization, persons) from φ. For some

events, there could be no relevant event attributes for a certain type. When
∑

i ê
s,t
i,j,z < 1 for a top event attribute j of an event z, the top event attribute

is ignored and shown as –. This combination of human-interpretable, multi-

word phrases with event attributes help to understand each event.

In addition, links between events are drawn based on ϕ. Since we impose

sparsity on ϕ, there are only a few non-trivial links between events. Each

line width is proportional to its probability in event link distribution ϕ. The

links between events help chain related events together naturally forming an

easy-to-interpret branching timeline story. By systematically traversing this

event graph, one can naturally construct a storyline of the significant events

surrounding the Japan nuclear disaster.
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CHAPTER 7

CONCLUSION

I have investigated the topics of schema conversion for constructing informa-

tion networks from documents.

For schema conversion, I investigate the relationship between topic mod-

els and information networks, and demonstrate to use a novel Entity Topic

Model (ETM) to build a information networks with documents, words, enti-

ties and topics, which can explicitly model the word co-occurrences in pairs

of a topic and entity, with smartly designed priors. Having shared asymmet-

ric Dirichlet priors, our model reduces the size of its parameter space while

learning a large number of parameters. A Gibbs sampling-based algorithm

is proposed to learn the model.

In addition to topic models, I propose a new syntactic feature set of k-

ee subtrees as nodes in information networks with authors, documents, and

discriminative writing styles. To mine k-ee subtrees, I developed a direct dis-

criminative k-ee subtree mining algorithm via a branch-and-bound approach.

Our novel algorithm could perform a discriminative score based feature se-

lection procedure to mine discriminative patterns in one step, not iteratively.

I investigate clustering redundant nodes in information networks. A link-

based similarity function called SynRank is proposed to capture similarities

between nodes in an iterative way. Experiments on real-world datasets have

shown the performance of SynRank.

Finally, for building event information networks, I propose a novel event

mining framework (ProxiModel) to integrate phrases, named entities, and

time expressions to construct then cluster proximity networks to identify

these hidden events. A key aspect of the approach involves utilizing proximity

of information consistently found in a comparable corpus in order to model

and propagate event information.
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