4,462 research outputs found

    On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime

    Full text link
    We consider a two-dimensional atomic mass spring system and show that in the small displacement regime the corresponding discrete energies can be related to a continuum Griffith energy functional in the sense of Gamma-convergence. We also analyze the continuum problem for a rectangular bar under tensile boundary conditions and find that depending on the boundary loading the minimizers are either homogeneous elastic deformations or configurations that are completely cracked generically along a crystallographic line. As applications we discuss cleavage properties of strained crystals and an effective continuum fracture energy for magnets

    Onset of Propagation of Planar Cracks in Heterogeneous Media

    Full text link
    The dynamics of planar crack fronts in hetergeneous media near the critical load for onset of crack motion are investigated both analytically and by numerical simulations. Elasticity of the solid leads to long range stress transfer along the crack front which is non-monotonic in time due to the elastic waves in the medium. In the quasistatic limit with instantaneous stress transfer, the crack front exhibits dynamic critical phenomenon, with a second order like transition from a pinned to a moving phase as the applied load is increased through a critical value. At criticality, the crack-front is self-affine, with a roughness exponent ζ=0.34±0.02\zeta =0.34\pm 0.02. The dynamic exponent zz is found to be equal to 0.74±0.03 0.74\pm 0.03 and the correlation length exponent ν=1.52±0.02\nu =1.52\pm 0.02. These results are in good agreement with those obtained from an epsilon expansion. Sound-travel time delays in the stress transfer do not change the static exponents but the dynamic exponent zz becomes exactly one. Real elastic waves, however, lead to overshoots in the stresses above their eventual static value when one part of the crack front moves forward. Simplified models of these stress overshoots are used to show that overshoots are relevant at the depinning transition leading to a decrease in the critical load and an apparent jump in the velocity of the crack front directly to a non-zero value. In finite systems, the velocity also shows hysteretic behaviour as a function of the loading. These results suggest a first order like transition. Possible implications for real tensile cracks are discussed.Comment: 51 pages + 20 figur

    How river rocks round: resolving the shape-size paradox

    Get PDF
    River-bed sediments display two universal downstream trends: fining, in which particle size decreases; and rounding, where pebble shapes evolve toward ellipsoids. Rounding is known to result from transport-induced abrasion; however many researchers argue that the contribution of abrasion to downstream fining is negligible. This presents a paradox: downstream shape change indicates substantial abrasion, while size change apparently rules it out. Here we use laboratory experiments and numerical modeling to show quantitatively that pebble abrasion is a curvature-driven flow problem. As a consequence, abrasion occurs in two well-separated phases: first, pebble edges rapidly round without any change in axis dimensions until the shape becomes entirely convex; and second, axis dimensions are then slowly reduced while the particle remains convex. Explicit study of pebble shape evolution helps resolve the shape-size paradox by reconciling discrepancies between laboratory and field studies, and enhances our ability to decipher the transport history of a river rock.Comment: 11 pages, 5 figure

    On microscopic origins of generalized gradient structures

    Get PDF
    Classical gradient systems have a linear relation between rates and driving forces. In generalized gradient systems we allow for arbitrary relations derived from general non-quadratic dissipation potentials. This paper describes two natural origins for these structures. A first microscopic origin of generalized gradient structures is given by the theory of large-deviation principles. While Markovian diffusion processes lead to classical gradient structures, Poissonian jump processes give rise to cosh-type dissipation potentials. A second origin arises via a new form of convergence, that we call EDP-convergence. Even when starting with classical gradient systems, where the dissipation potential is a quadratic functional of the rate, we may obtain a generalized gradient system in the evolutionary Γ\Gamma-limit. As examples we treat (i) the limit of a diffusion equation having a thin layer of low diffusivity, which leads to a membrane model, and (ii) the limit of diffusion over a high barrier, which gives a reaction-diffusion system.Comment: Keywords: Generalized gradient structure, gradient system, evolutionary \Gamma-convergence, energy-dissipation principle, variational evolution, relative entropy, large-deviation principl

    Statistical mechanics and dynamics of solvable models with long-range interactions

    Get PDF
    The two-body potential of systems with long-range interactions decays at large distances as V(r)1/rαV(r)\sim 1/r^\alpha, with αd\alpha\leq d, where dd is the space dimension. Examples are: gravitational systems, two-dimensional hydrodynamics, two-dimensional elasticity, charged and dipolar systems. Although such systems can be made extensive, they are intrinsically non additive. Moreover, the space of accessible macroscopic thermodynamic parameters might be non convex. The violation of these two basic properties is at the origin of ensemble inequivalence, which implies that specific heat can be negative in the microcanonical ensemble and temperature jumps can appear at microcanonical first order phase transitions. The lack of convexity implies that ergodicity may be generically broken. We present here a comprehensive review of the recent advances on the statistical mechanics and out-of-equilibrium dynamics of systems with long-range interactions. The core of the review consists in the detailed presentation of the concept of ensemble inequivalence, as exemplified by the exact solution, in the microcanonical and canonical ensembles, of mean-field type models. Relaxation towards thermodynamic equilibrium can be extremely slow and quasi-stationary states may be present. The understanding of such unusual relaxation process is obtained by the introduction of an appropriate kinetic theory based on the Vlasov equation.Comment: 118 pages, review paper, added references, slight change of conten
    corecore