3,065 research outputs found

    Study on QoS support in 802.11e-based multi-hop vehicular wireless ad hoc networks

    Get PDF
    Multimedia communications over vehicular ad hoc networks (VANET) will play an important role in the future intelligent transport system (ITS). QoS support for VANET therefore becomes an essential problem. In this paper, we first study the QoS performance in multi-hop VANET by using the standard IEEE 802.11e EDCA MAC and our proposed triple-constraint QoS routing protocol, Delay-Reliability-Hop (DeReHQ). In particular, we evaluate the DeReHQ protocol together with EDCA in highway and urban areas. Simulation results show that end-to-end delay performance can sometimes be achieved when both 802.11e EDCA and DeReHQ extended AODV are used. However, further studies on cross-layer optimization for QoS support in multi-hop environment are required

    Millimeter Wave Ad Hoc Networks: Noise-limited or Interference-limited?

    Full text link
    In millimeter wave (mmWave) communication systems, narrow beam operations overcome severe channel attenuations, reduce multiuser interference, and thus introduce the new concept of noise-limited mmWave wireless networks. The regime of the network, whether noise-limited or interference-limited, heavily reflects on the medium access control (MAC) layer throughput and on proper resource allocation and interference management strategies. Yet, alternating presence of these regimes and, more importantly, their dependence on the mmWave design parameters are ignored in the current approaches to mmWave MAC layer design, with the potential disastrous consequences on the throughput/delay performance. In this paper, tractable closed-form expressions for collision probability and MAC layer throughput of mmWave networks, operating under slotted ALOHA and TDMA, are derived. The new analysis reveals that mmWave networks may exhibit a non-negligible transitional behavior from a noise-limited regime to an interference-limited regime, depending on the density of the transmitters, density and size of obstacles, transmission probability, beamwidth, and transmit power. It is concluded that a new framework of adaptive hybrid resource allocation procedure, containing a proactive contention-based phase followed by a reactive contention-free one with dynamic phase durations, is necessary to cope with such transitional behavior.Comment: accepted in IEEE GLOBECOM'1

    On the Experimental Evaluation of Vehicular Networks: Issues, Requirements and Methodology Applied to a Real Use Case

    Get PDF
    One of the most challenging fields in vehicular communications has been the experimental assessment of protocols and novel technologies. Researchers usually tend to simulate vehicular scenarios and/or partially validate new contributions in the area by using constrained testbeds and carrying out minor tests. In this line, the present work reviews the issues that pioneers in the area of vehicular communications and, in general, in telematics, have to deal with if they want to perform a good evaluation campaign by real testing. The key needs for a good experimental evaluation is the use of proper software tools for gathering testing data, post-processing and generating relevant figures of merit and, finally, properly showing the most important results. For this reason, a key contribution of this paper is the presentation of an evaluation environment called AnaVANET, which covers the previous needs. By using this tool and presenting a reference case of study, a generic testing methodology is described and applied. This way, the usage of the IPv6 protocol over a vehicle-to-vehicle routing protocol, and supporting IETF-based network mobility, is tested at the same time the main features of the AnaVANET system are presented. This work contributes in laying the foundations for a proper experimental evaluation of vehicular networks and will be useful for many researchers in the area.Comment: in EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 201

    A topology-oblivious routing protocol for NDN-VANETs

    Full text link
    Vehicular Ad Hoc Networks (VANETs) are characterized by intermittent connectivity, which leads to failures of end-to-end paths between nodes. Named Data Networking (NDN) is a network paradigm that deals with such problems, since information is forwarded based on content and not on the location of the hosts. In this work, we propose an enhanced routing protocol of our previous topology-oblivious Multihop, Multipath, and Multichannel NDN for VANETs (MMM-VNDN) routing strategy that exploits several paths to achieve more efficient content retrieval. Our new enhanced protocol, i mproved MMM-VNDN (iMMM-VNDN), creates paths between a requester node and a provider by broadcasting Interest messages. When a provider responds with a Data message to a broadcast Interest message, we create unicast routes between nodes, by using the MAC address(es) as the distinct address(es) of each node. iMMM-VNDN extracts and thus creates routes based on the MAC addresses from the strategy layer of an NDN node. Simulation results show that our routing strategy performs better than other state of the art strategies in terms of Interest Satisfaction Rate, while keeping the latency and jitter of messages low

    Efficient medium access control protocol for vehicular ad-hoc networks

    Get PDF
    Intelligent transportation systems (ITS) have enjoyed a tremendous growth in the last decade and the advancement in communication technologies has played a big role behind the success of ITS. Inter-vehicle communication (IVC) is a critical requirement for ITS and due to the nature of communication, vehicular ad-hoc network technology (VANET) is the most suitable communication technology for inter-vehicle communications. In Practice, however, VANET poses some extreme challenges including dropping out of connections as the moving vehicle moves out of the coverage range, joining of new nodes moving at high speeds, dynamic change in topology and connectivity, time variability of signal strength, throughput and time delay. One of the most challenging issues facing vehicular networks lies in the design of efficient resource management schemes, due to the mobile nature of nodes, delay constraints for safety applications and interference. The main application of VANET in ITS lies in the exchange of safety messages between nodes. Moreover, as the wireless access in vehicular environment (WAVE) moves closer to reality, management of these networks is of increasing concern for ITS designers and other stakeholder groups. As such, management of resources plays a significant role in VANET and ITS. For resource management in VANET, a medium access control protocol is used, which makes sure that limited resources are distributed efficiently. In this thesis, an efficient Multichannel Cognitive MAC (MCM) is developed, which assesses the quality of channel prior to transmission. MCM employs dynamic channel allocation and negotiation algorithms to achieve a significant improvement in channel utilisation, system reliability, and delay constraints while simultaneously addressing Quality of Service. Moreover, modified access priority parameters and safety message acknowledgments will be used to improve the reliability of safety messages. The proposed protocols are implemented using network simulation tools. Extensive experiments demonstrated a faster and more efficient reception of safety messages compared to existing VANET technologies. Finally, improvements in delay and packet delivery ratios are presented

    A Hybrid Model to Extend Vehicular Intercommunication V2V through D2D Architecture

    Full text link
    In the recent years, many solutions for Vehicle to Vehicle (V2V) communication were proposed to overcome failure problems (also known as dead ends). This paper proposes a novel framework for V2V failure recovery using Device-to-Device (D2D) communications. Based on the unified Intelligent Transportation Systems (ITS) architecture, LTE-based D2D mechanisms can improve V2V dead ends failure recovery delays. This new paradigm of hybrid V2V-D2D communications overcomes the limitations of traditional V2V routing techniques. According to NS2 simulation results, the proposed hybrid model decreases the end to end delay (E2E) of messages delivery. A complete comparison of different D2D use cases (best & worst scenarios) is presented to show the enhancements brought by our solution compared to traditional V2V techniques.Comment: 6 page

    Development of an efficient Ad Hoc broadcasting scheme for critical networking environments

    Get PDF
    Mobile ad hoc network has been widely deployed in support of the communications in hostile environment without conventional networking infrastructure, especially in the environments with critical conditions such as emergency rescue activities in burning building or earth quick evacuation. However, most of the existing ad hoc based broadcasting schemes either rely on GPS location or topology information or angle-of-arrival (AoA) calculation or combination of some or all to achieve high reachability. Therefore, these broadcasting schemes cannot be directly used in critical environments such as battlefield, sensor networks and natural disasters due to lack of node location and topology information in such critical environments. This research work first begins by analyzing the broadcast coverage problem and node displacement form ideal locations problem in ad hoc networks using theoretical analysis. Then, this research work proposes an efficient broadcast relaying scheme, called Random Directional Broadcasting Relay (RDBR), which greatly reduces the number of retransmitting nodes and end-to-end delay while achieving high reachability. This is done by selecting a subset of neighboring nodes to relay the packet using directional antennas without relying on node location, network topology and complex angle-of-arrival (AoA) calculations. To further improve the performance of the RDBR scheme in complex environments with high node density, high node mobility and high traffic rate, an improved RDBR scheme is proposed. The improved RDBR scheme utilizes the concept of gaps between neighboring sectors to minimize the overlap between selected relaying nodes in high density environments. The concept of gaps greatly reduces both contention and collision and at the same time achieves high reachability. The performance of the proposed RDBR schemes has been evaluated by comparing them against flooding and Distance-based schemes. Simulation results show that both proposed RDBR schemes achieve high reachability while reducing the number of retransmitting nodes and end-to-end delay especially in high density environments. Furthermore, the improved RDBR scheme achieves better performance than RDBR in high density and high traffic environment in terms of reachability, end-to-end delay and the number of retransmitting nodes
    • …
    corecore