623 research outputs found

    Medical image computing and computer-aided medical interventions applied to soft tissues. Work in progress in urology

    Full text link
    Until recently, Computer-Aided Medical Interventions (CAMI) and Medical Robotics have focused on rigid and non deformable anatomical structures. Nowadays, special attention is paid to soft tissues, raising complex issues due to their mobility and deformation. Mini-invasive digestive surgery was probably one of the first fields where soft tissues were handled through the development of simulators, tracking of anatomical structures and specific assistance robots. However, other clinical domains, for instance urology, are concerned. Indeed, laparoscopic surgery, new tumour destruction techniques (e.g. HIFU, radiofrequency, or cryoablation), increasingly early detection of cancer, and use of interventional and diagnostic imaging modalities, recently opened new challenges to the urologist and scientists involved in CAMI. This resulted in the last five years in a very significant increase of research and developments of computer-aided urology systems. In this paper, we propose a description of the main problems related to computer-aided diagnostic and therapy of soft tissues and give a survey of the different types of assistance offered to the urologist: robotization, image fusion, surgical navigation. Both research projects and operational industrial systems are discussed

    Improving Radiotherapy Targeting for Cancer Treatment Through Space and Time

    Get PDF
    Radiotherapy is a common medical treatment in which lethal doses of ionizing radiation are preferentially delivered to cancerous tumors. In external beam radiotherapy, radiation is delivered by a remote source which sits several feet from the patient\u27s surface. Although great effort is taken in properly aligning the target to the path of the radiation beam, positional uncertainties and other errors can compromise targeting accuracy. Such errors can lead to a failure in treating the target, and inflict significant toxicity to healthy tissues which are inadvertently exposed high radiation doses. Tracking the movement of targeted anatomy between and during treatment fractions provides valuable localization information that allows for the reduction of these positional uncertainties. Inter- and intra-fraction anatomical localization data not only allows for more accurate treatment setup, but also potentially allows for 1) retrospective treatment evaluation, 2) margin reduction and modification of the dose distribution to accommodate daily anatomical changes (called `adaptive radiotherapy\u27), and 3) targeting interventions during treatment (for example, suspending radiation delivery while the target it outside the path of the beam). The research presented here investigates the use of inter- and intra-fraction localization technologies to improve radiotherapy to targets through enhanced spatial and temporal accuracy. These technologies provide significant advancements in cancer treatment compared to standard clinical technologies. Furthermore, work is presented for the use of localization data acquired from these technologies in adaptive treatment planning, an investigational technique in which the distribution of planned dose is modified during the course of treatment based on biological and/or geometrical changes of the patient\u27s anatomy. The focus of this research is directed at abdominal sites, which has historically been central to the problem of motion management in radiation therapy

    Optimization of Decision Making in Personalized Radiation Therapy using Deformable Image Registration

    Get PDF
    Cancer has become one of the dominant diseases worldwide, especially in western countries, and radiation therapy is one of the primary treatment options for 50% of all patients diagnosed. Radiation therapy involves the radiation delivery and planning based on radiobiological models derived primarily from clinical trials. Since 2015 improvements in information technologies and data storage allowed new models to be created using the large volumes of treatment data already available and correlate the actually delivered treatment with outcomes. The goals of this thesis are to 1) construct models of patient outcomes after receiving radiation therapy using available treatment and patient parameters and 2) provide a method to determine real accumulated radiation dose including the impact of registration uncertainties. In Chapter 2, a model was developed predicting overall survival for patients with hepatocellular carcinoma or liver metastasis receiving radiation therapy. These models show which patients benefit from curative radiation therapy based on liver function, and the survival benefit of increased radiation dose on survival. In Chapter 3, a method was developed to routinely evaluate deformable image registration (DIR) with computer-generated landmark pairs using the scale-invariant feature transform. The method presented in this chapter created landmark sets for comparing lung 4DCT images and provided the same evaluation of DIR as manual landmark sets. In Chapter 4, an investigation was performed on the impact of DIR error on dose accumulation using landmarked 4DCT images as the ground truth. The study demonstrated the relationship between dose gradient, DIR error and dose accumulation error, and presented a method to determine error bars on the dose accumulation process. In Chapter 5, a method was presented to determine quantitatively when to update a treatment plan during the course of a multi-fraction radiation treatment of head and neck cancer. This method investigated the ability to use only the planned dose with deformable image registration to predict dose changes caused by anatomical deformations. This thesis presents the fundamental elements of a decision support system including patient pre-treatment parameters and the actual delivered dose using DIR while considering registration uncertainties

    Technical Note: Method to correlate whole‐specimen histopathology of radical prostatectomy with diagnostic MR imaging

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134778/1/mp1016.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134778/2/mp1016_am.pd

    Image-guided adaptive photon and proton radiotherapy

    Get PDF

    Development of a Novel Robot for Transperineal Needle Based Interventions: Focal Therapy, Brachytherapy and Prostate Biopsies

    Full text link
    Purpose: We report what is to our knowledge the initial experience with a new 3-dimensional ultrasound robotic system for prostate brachytherapy assistance, focal therapy and prostate biopsies. Its ability to track prostate motion intraoperatively allows it to manage motions and guide needles to predefined targets. Materials and Methods: A robotic system was created for transrectal ultrasound guided needle implantation combined with intraoperative prostate tracking. Experiments were done on 90 targets embedded in a total of 9 mobile, deformable, synthetic prostate phantoms. Experiments involved trying to insert glass beads as close as possible to targets in multimodal anthropomorphic imaging phantoms. Results were measured by segmenting the inserted beads in computerized tomography volumes of the phantoms. Results: The robot reached the chosen targets in phantoms with a median accuracy of 2.73 mm and a median prostate motion of 5.46 mm. Accuracy was better at the apex than at the base (2.28 vs 3.83 mm, p <0.001), and similar for horizontal and angled needle inclinations (2.7 vs 2.82 mm, p = 0.18). Conclusions: To our knowledge this robot for prostate focal therapy, brachytherapy and targeted prostate biopsies is the first system to use intraoperative prostate motion tracking to guide needles into the prostate. Preliminary experiments show its ability to reach targets despite prostate motion

    Image-Fusion for Biopsy, Intervention, and Surgical Navigation in Urology

    Get PDF

    Biomechanical modelling of the pelvic system: improving the accuracy of the location of neoplasms in MRI-TRUS fusion prostate biopsy

    Get PDF
    Background An accurate knowledge of the relocation of prostate neoplasms during biopsy is of great importance to reduce the number of false negative results. Prostate neoplasms are visible in magnetic resonance images (MRI) but it is difficult for the practitioner to locate them at the time of performing a transrectal ultrasound (TRUS) guided biopsy. In this study, we present a new methodology, based on simulation, that predicts both prostate deformation and lesion migration during the biopsy. Methods A three-dimensional (3-D) anatomy model of the pelvic region, based on medical images, is constructed. A finite element (FE) numerical simulation of the organs motion and deformation as a result of the pressure exerted by the TRUS probe is carried out using the Code-Aster open-source computer software. Initial positions of potential prostate lesions prior to biopsy are taken into consideration and the final location of each lesion is targeted in the FE simulation output. Results Our 3-D FE simulations show that the effect of the pressure exerted by the TRUS probe is twofold as the prostate experiences both a motion and a deformation of its original shape. We targeted the relocation of five small prostate lesions when the TRUS probe exerts a force of 30 N on the rectum inner wall. The distance travelled by these lesions ranged between 5.6 and 13.9 mm. Conclusions Our new methodology can help to predict the location of neoplasms during a prostate biopsy but further studies are needed to validate our results. Moreover, the new methodology is completely developed on open-source software, which means that its implementation would be affordable to all healthcare providers

    Artificial Intelligence and Machine Learning in Prostate Cancer Patient Management-Current Trends and Future Perspectives

    Get PDF
    Artificial intelligence (AI) is the field of computer science that aims to build smart devices performing tasks that currently require human intelligence. Through machine learning (ML), the deep learning (DL) model is teaching computers to learn by example, something that human beings are doing naturally. AI is revolutionizing healthcare. Digital pathology is becoming highly assisted by AI to help researchers in analyzing larger data sets and providing faster and more accurate diagnoses of prostate cancer lesions. When applied to diagnostic imaging, AI has shown excellent accuracy in the detection of prostate lesions as well as in the prediction of patient outcomes in terms of survival and treatment response. The enormous quantity of data coming from the prostate tumor genome requires fast, reliable and accurate computing power provided by machine learning algorithms. Radiotherapy is an essential part of the treatment of prostate cancer and it is often difficult to predict its toxicity for the patients. Artificial intelligence could have a future potential role in predicting how a patient will react to the therapy side effects. These technologies could provide doctors with better insights on how to plan radiotherapy treatment. The extension of the capabilities of surgical robots for more autonomous tasks will allow them to use information from the surgical field, recognize issues and implement the proper actions without the need for human intervention
    corecore