4 research outputs found

    A Hand-Held Device Presenting Haptic Directional Cues for the Visually Impaired

    Get PDF
    Haptic information is essential in everyday activities, especially for visually impaired people in terms of real-world navigation. Since human haptic sensory processing is nonlinear, asymmetric vibrations have been widely studied to create a pulling sensation for the delivery of directional haptic cues. However, the design of an input control signal that generates asymmetric vibrations has not yet been parameterised. In particular, it is unclear how to quantify the asymmetry of the output vibrations to create a better pulling sensation. To better understand the design of an input control signal that generates haptic directional cues, we evaluated the effect of the pulling sensations corresponding to the three adjustable parameters (i.e., delay time, ramp-down step length, and cut-off voltage) in a commonly applied step-ramp input signal. The results of a displacement measurement and a psychophysical experiment demonstrate that when the quantified asymmetry ratio is in a range of 0.3430–0.3508 with an optimised cut-off voltage for our hand-held device, the haptic directional cues are better perceived by participants. Additionally, the results also showed a superior performance in haptic delivery by shear forces than normal forces

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility
    corecore