1,190 research outputs found

    A Comparison of Quaternion Neural Network Backpropagation Algorithms

    Get PDF
    This research paper focuses on quaternion neural networks (QNNs) - a type of neural network wherein the weights, biases, and input values are all represented as quaternion numbers. Previous studies have shown that QNNs outperform real-valued neural networks in basic tasks and have potential in high-dimensional problem spaces. However, research on QNNs has been fragmented, with contributions from different mathematical and engineering domains leading to unintentional overlap in QNN literature. This work aims to unify existing research by evaluating four distinct QNN backpropagation algorithms, including the novel GHR-calculus backpropagation algorithm, and providing concise, scalable implementations of each algorithm using a modern compiled programming language. Additionally, the authors apply a robust Design of Experiments (DoE) methodology to compare the accuracy and runtime of each algorithm. The experiments demonstrate that the Clifford Multilayer Perceptron (CMLP) learning algorithm results in statistically significant improvements in network test set accuracy while maintaining comparable runtime performance to the other three algorithms in four distinct regression tasks. By unifying existing research and comparing different QNN training algorithms, this work develops a state-of-the-art baseline and provides important insights into the potential of QNNs for solving high-dimensional problems

    Early stopping - but when?

    Get PDF

    Evolution of Neural Networks for Helicopter Control: Why Modularity Matters

    Get PDF
    The problem of the automatic development of controllers for vehicles for which the exact characteristics are not known is considered in the context of miniature helicopter flocking. A methodology is proposed in which neural network based controllers are evolved in a simulation using a dynamic model qualitatively similar to the physical helicopter. Several network architectures and evolutionary sequences are investigated, and two approaches are found that can evolve very competitive controllers. The division of the neural network into modules and of the task into incremental steps seems to be a precondition for success, and we analyse why this might be so

    Benchmarking Toxic Molecule Classification using Graph Neural Networks and Few Shot Learning

    Full text link
    Traditional methods like Graph Convolutional Networks (GCNs) face challenges with limited data and class imbalance, leading to suboptimal performance in graph classification tasks during toxicity prediction of molecules as a whole. To address these issues, we harness the power of Graph Isomorphic Networks, Multi Headed Attention and Free Large-scale Adversarial Augmentation separately on Graphs for precisely capturing the structural data of molecules and their toxicological properties. Additionally, we incorporate Few-Shot Learning to improve the model's generalization with limited annotated samples. Extensive experiments on a diverse toxicology dataset demonstrate that our method achieves an impressive state-of-art AUC-ROC value of 0.816, surpassing the baseline GCN model by 11.4%. This highlights the significance of our proposed methodology and Few Shot Learning in advancing Toxic Molecular Classification, with the potential to enhance drug discovery and environmental risk assessment processes

    Development of an R package to learn supervised classification techniques

    Get PDF
    This TFG aims to develop a custom R package for teaching supervised classification algorithms, starting with the identification of requirements, including algorithms, data structures, and libraries. A strong theoretical foundation is essential for effective package design. Documentation will explain each function’s purpose, accompanied by necessary paperwork. The package will include R scripts and data files in organized directories, complemented by a user manual for easy installation and usage, even for beginners. Built entirely from scratch without external dependencies, it’s optimized for accuracy and performance. In conclusion, this TFG provides a roadmap for creating an R package to teach supervised classification algorithms, benefiting researchers and practitioners dealing with real-world challenges.Grado en Ingeniería Informátic

    COMPUTATIONAL MODELLING OF HUMAN AESTHETIC PREFERENCES IN THE VISUAL DOMAIN: A BRAIN-INSPIRED APPROACH

    Get PDF
    Following the rise of neuroaesthetics as a research domain, computational aesthetics has also known a regain in popularity over the past decade with many works using novel computer vision and machine learning techniques to evaluate the aesthetic value of visual information. This thesis presents a new approach where low-level features inspired from the human visual system are extracted from images to train a machine learning-based system to classify visual information depending on its aesthetics, regardless of the type of visual media. Extensive tests are developed to highlight strengths and weaknesses of such low-level features while establishing good practices in the domain of study of computational aesthetics. The aesthetic classification system is not only tested on the most widely used dataset of photographs, called AVA, on which it is trained initially, but also on other photographic datasets to evaluate the robustness of the learnt aesthetic preferences over other rating communities. The system is then assessed in terms of aesthetic classification on other types of visual media to investigate whether the learnt aesthetic preferences represent photography rules or more general aesthetic rules. The skill transfer from aesthetic classification of photos to videos demonstrates a satisfying correct classification rate of videos without any prior training on the test set created by Tzelepis et al. Moreover, the initial photograph classifier can also be used on feature films to investigate the classifier’s learnt visual preferences, due to films providing a large number of frames easily labellable. The study on aesthetic classification of videos concludes with a case study on the work by an online content creator. The classifier recognised a significantly greater percentage of aesthetically high frames in videos filmed in studios than on-the-go. The results obtained across datasets containing videos of diverse natures manifest the extent of the system’s aesthetic knowledge. To conclude, the evolution of low-level visual features is studied in popular culture such as in paintings and brand logos. The work attempts to link aesthetic preferences during contemplation tasks such as aesthetic rating of photographs with preferred low-level visual features in art creation. It questions whether favoured visual features usage varies over the life of a painter, implicitly showing a relationship with artistic expertise. Findings display significant changes in use of universally preferred features over influential vi abstract painters’ careers such an increase in cardinal lines and the colour blue; changes that were not observed in landscape painters. Regarding brand logos, only a few features evolved in a significant manner, most of them being colour-related features. Despite the incredible amount of data available online, phenomena developing over an entire life are still complicated to study. These computational experiments show that simple approaches focusing on the fundamentals instead of high-level measures allow to analyse artists’ visual preferences, as well as extract a community’s visual preferences from photos or videos while limiting impact from cultural and personal experiences
    • …
    corecore