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A B S T R A C T

This research paper focuses on quaternion neural networks (QNNs) - a type of neural network wherein the
weights, biases, and input values are all represented as quaternion numbers. Previous studies have shown that
QNNs outperform real-valued neural networks in basic tasks and have potential in high-dimensional problem
spaces. However, research on QNNs has been fragmented, with contributions from different mathematical and
engineering domains leading to unintentional overlap in QNN literature. This work aims to unify existing
research by evaluating four distinct QNN backpropagation algorithms, including the novel GHR-calculus
backpropagation algorithm, and providing concise, scalable implementations of each algorithm using a modern
compiled programming language. Additionally, the authors apply a robust Design of Experiments (DoE)
methodology to compare the accuracy and runtime of each algorithm. The experiments demonstrate that the
Clifford Multilayer Perceptron (CMLP) learning algorithm results in statistically significant improvements in
network test set accuracy while maintaining comparable runtime performance to the other three algorithms in
four distinct regression tasks. By unifying existing research and comparing different QNN training algorithms,
this work develops a state-of-the-art baseline and provides important insights into the potential of QNNs for
solving high-dimensional problems.

1. Introduction

Over the last several decades, research in artificial intelligence and
machine learning (AI/ML) has progressed at a breakneck pace. The
democratization of machine learning has led to state-of-the-art results
and advances in a variety of high-dimensional scientific problem do-
mains. As computing resources, data collection, and machine learning
algorithms have increased, so too have the size and scale of problems
addressed via machine learning methodologies. This work investigates
various backpropagation algorithms utilized to train quaternion-valued
neural networks; a line of research that seeks to reduce the dimension-
ality of neural networks through the inclusion of quaternion valued
weights thereby improving the accuracy and generalizability of trained
networks in high-dimensional problem domains.

The quaternions H are a 4-dimensional number system originally
introduced in Hamilton (1844) as a direct extension of the complex
numbers C. While the complex numbers are ubiquitous in signal pro-
cessing and electrical engineering applications due to the succinct
representation of 2-dimensional vector rotations in the complex plane,
the quaternions provide a similarly succinct representation of vector
rotation in 3-dimensional space. Hence quaternions are often used in
robotics, control theory, computer graphics, and even quantum com-
puting (Kuipers, 1999). Quaternion-valued neural networks incorporate
quaternions and quaternion algebra directly into a neural network
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structure to perform neural computation in high-dimensional problem
domains. Such networks have demonstrated improvements in terms of
network size, expressive power, and network accuracy in a wide variety
of domains (Parcollet, Morchid, & Linarès, 2020).

In modern mathematics, quaternion algebra resides under the um-
brella of what are known as hypercomplex number systems. The study
of hypercomplex numbers has a disjointed history, as is evident in
Fig. 1. Several hypercomplex number systems grew out of specific en-
gineering and mathematical physics problems, such as the quaternions,
spin algebras, and tensor algebras. Attempts to unify these systems
under a common language of mathematics has also been disjointed,
resulting in Grassmann Algebras, Clifford Algebras, and Geometric
Algebras (Chappell et al., 2016). Each of these frameworks provides a
common mathematical language that describes the algebraic structure
and operations of hypercomplex numbers. The terms ‘‘Clifford algebra’’
and ‘‘geometric algebra’’ are generally used synonymously, but the
confluence of terms in the literature can often be confusing.

1.1. Hypercomplex neural networks

In the field of neurocomputing, various hypercomplex number sys-
tems have been utilized in neural networks in an attempt to combat
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Fig. 1. Timeline of vector algebras recreated from Chappell, Iqbal, Hartnett, and Abbott
(2016).

the so-called ‘‘curse of dimensionality’’. These hypercomplex neural
networks (HNNs) are neural network structures wherein the weights,
biases, and inputs all consist of hypercomplex numbers as opposed
to real numbers. Some examples include complex-valued neural net-
works (Hirose, 1992), quaternion-valued neural networks (Arena, For-
tuna, Occhipinti, & Xibilia, 1994), and octonion-valued neural net-
works (Popa, 2016). Unfortunately, HNN research suffers from some of
the same issues as that of hypercomplex numbers themselves. Contribu-
tions to HNN research have been published under various fields using a
variety of index terms including Clifford-valued neural networks, geo-
metric algebra neural networks, and architecture specific works such as
quaternion-valued neural networks. As is evident in Fig. 2, quaternion-
valued neural networks represent the lion’s share of HNN research
due to their broad applicability to specific engineering problems in
computer vision (Kusamichi, Isokawa, Matsui, Ogawa, & Maeda, 2004;
Shen, Zhang, Huang, Wei, & Zhang, 2020), robotics (Takahashi, 2018),
and natural language processing (Parcollet et al., 2016; Tay et al.,
2019).

Recent research in each of these fields has demonstrated that quater-
nion neural networks provide several benefits over traditional real-
valued neural networks. In particular, since each quaternion element
contains four real-valued components, RGB color image datasets can
easily be cast into quaternion representations wherein each pixel is
represented as a single pure quaternion as opposed to a 3-tuple of
values. Parcollet, Morchid, and Linarès (2018) successfully use quater-
nion convolutional neural networks (QCNNs) to process color images
in this manner, demonstrating that QCNNs trained with gray-scale
only images were able to successfully reconstruct unseen color images
during testing. The proposed network achieved higher reconstruction
performance than a real-valued CNN while containing fewer overall
parameters and weight connections.

In addition, quaternions are ubiquitous in robotics applications.
Quaternion-based rigid body dynamic models avoid many of the pitfalls
of other representations such as Euler angles (Wehage, 1984). In Cao,
Li, and Zhong (2022), the authors construct a quaternion differential
encoder–decoder network to predict 3D human motion. The authors
demonstrate that quaternion networks successfully capture multi-order
information in the quaternion space, providing for a better model of
3D motion than the real-valued model. The proposed network outper-
forms several advanced recurrent neural network models on several
benchmark human motion datasets.

Fig. 2. Google Scholar search results by search term (as of August 2022).

Moreover, a novel research field in machine learning combines
the use of swarm intelligence and metahueristic algorithms with ma-
chine learning methodologies (Bacanin et al., 2022; Malakar, Ghosh,
Bhowmik, Sarkar, & Nasipuri, 2020). In Bill, Champagne, Cox, and Bihl
(2021), the authors demonstrate that metaheuristic search techniques
such as genetic algorithms can successfully train quaternion neural
networks, bypassing the need for complex quaternion backpropagation
rules in some simple settings. Finally, researchers have implemented
a variety of specialized quaternion and Clifford-valued neural network
architectures. Examples include quaternion and Clifford-valued recur-
rent neural networks (Liu, Zheng, Lu, Cao, & Rutkowski, 2020; Xia,
Liu, Kou, & Wang, 2022), quaternion attention networks (Shahadat &
Maida, 2021), and quaternion transformer networks (Tay et al., 2019).
In each instance, the quaternion neural networks have shown improved
performance over their real-valued counterparts in a variety of public
and benchmark datasets.

While quaternion neural networks have become the most studied
form of HNNs, the quaternions can be viewed as a special case of the
geometric or Clifford algebras. Hence, any advancement that applies in
general to Clifford-valued neural networks also applies to quaternion-
valued neural networks. Even so, a comparison of recent QNN (Par-
collet et al., 2020) and Geometric Algebra (Bayro-Corrochano, 2021;
Breuils, Tachibana, & Hitzer, 2022; Hitzer, Nitta, & Kuroe, 2013)
surveys reveals two distinct lines of research that are nearly disjoint.
These disparate lines of research have led to a certain amount of
unintentional overlap in HNN research. As an example, a brief review
of QNN research reveals three distinct derivations of the quaternion
backpropagation algorithm (Arena et al., 1994; Buchholz & Sommer,
2008; Nitta, 1995), each with slight differences. In addition, the novel
Generalized Hamilton-Real (GHR) calculus (Xu, Jahanchahi, Took, &
Mandic, 2015) provides yet another quaternion backpropagation al-
gorithm using a full quaternion calculus. While each of Arena et al.
(1994), Buchholz and Sommer (2008), Nitta (1995) and Xu, Jahan-
chahi, et al. (2015) demonstrate the ability of QNNs trained with the
four respective backpropagation algorithms to outperform equivalent
real-valued neural networks on a variety of problems, no work has been
done to compare and contrast the performance of these four training
algorithms against each other.

This work provides such an evaluation and comparison of the
current techniques used to train quaternion-valued neural network
learning algorithms. In particular:

1. This work unifies the disparate lines of research between the
geometric (Clifford) algebra community and the quaternion neu-
ral network community by formalizing the four current QNN
backpropagation algorithms in use in the literature with com-
mon notation. This study places particular emphasis on the
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differences between ‘‘split’’ backpropagation algorithms versus
the full quaternion backpropagation algorithm which the novel
GHR calculus provides.

2. This study offers a comprehensive comparison of the four back-
propagation algorithms, highlighting the strengths and weak-
nesses of each update rule. To achieve this, smart sampling
techniques and design of experiments methodologies are used
to train tuned neural networks using each of the four methods
on four distinct optimization test functions. Through multiple
replications of the training and test process, the study demon-
strates that the Clifford Multilayer Perceptron (CMLP) (Buchholz
& Sommer, 2008) backpropagation algorithm provides a statis-
tically significant improvement in neural network accuracy over
the other three algorithms. Furthermore, the CMLP formulation
offers the strongest theoretical results and the highest level of
generality, which are discussed in Section 5.

3. Finally, this study provides implementations of each training
method in a modern, dynamically-typed, just-in-time compiled
programming language, Julia (Bezanson, Karpinski, Shah, &
Edelman, 2012), with a robust scientific computing ecosystem.
Notably, to the best of the authors’ knowledge these imple-
mentations represent the first ever deep (> 1 hidden layer)
implementations of the GHR calculus update rules and the first
extension of adaptive gradient optimization methods to the GHR
calculus learning algorithm. Additionally, these implementations
can easily be extended to GPU computing environments using
Julia’s CUDA package (Besard, Foket, & De Sutter, 2018) or the
Julia Flux (Innes, 2018; Innes et al., 2018) machine learning
library for future work in state-of-the-art research.

The contributions of this work are threefold: first, this paper pro-
vides the first ever deep (i.e. greater than 1 hidden layer) imple-
mentation of GHR-based backpropagation to train quaternion neural
networks. Second, the authors show empirically, and verify via statis-
tical testing, that even minor differences in algorithm implementations
can have a significant impact on the performance of quaternion neural
networks due to the non-commutative nature of quaternion multiplica-
tion. Finally, through rigorous statistical comparison tests, this paper
establishes the CMLP algorithm as the current state-of-the-art training
method for quaternion neural network regression problems, resulting
in statistically significant improvements in network accuracy and im-
proved generalizability versus other split and full calculus quaternion
algorithms.

The rest of this article is organized as follows: Section 2 provides a
brief background on the quaternions, quaternion neural networks, and
the quaternion backpropagation algorithms in use in the literature. Sec-
tion 3 presents a detailed overview of the experimental methodology
used to assess the four algorithms while Section 4 outlines the results
of the experiments. Finally, Section 5 provides several conclusions and
recommendations for future work.

2. Preliminaries

This section provides background information on the quaternions,
quaternion neural networks, Clifford Algebra, and the novel GHR-
calculus. The intent of this section is to provide a standalone introduc-
tion to quaternion algebra as it relates to neural networks. The infor-
mation presented here generally follows the chronological development
of quaternion neural network research, starting with an introduction
to quaternion algebra which was first developed by Sir William Rowan
Hamilton in 1844 (Hamilton, 1844), continuing through a discussion of
the GHR-calculus gradient optimization methods and the GHR-based
backpropagation algorithm.

2.1. Quaternion algebra

The quaternion numbers (denoted by H) are a four-dimensional
extension of the complex numbers. Each quaternion 𝑞 consists of a
real part and three imaginary parts, so that the quaternions form an
isomorphism with R4 with basis elements 1, 𝑖, 𝑗, and 𝑘̄:

𝑞 = 𝑟 + 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘̄. (1)

Note that in the discussion that follows and throughout the rest of this
paper, all quaternions are represented with bar notation, while scalars
in R are represented with lowercase, unbolded letters. In addition,
the single real and three imaginary components of a quaternion are
represented with the variables (𝑟, 𝑥, 𝑦, 𝑧), respectively.

Quaternions form a generalization of the complex numbers, wherein
the three imaginary components 𝑖, 𝑗, and 𝑘̄ follow the same construct
as 𝐢 in C:

𝑖(2) = 𝑗(2) = 𝑘̄(2) = −1. (2)

However, the three imaginary basis components must also satisfy the
following rules:

𝑗𝑘̄ = −𝑘̄𝑗 = 𝑖, (3)

𝑘̄𝑖 = −𝑖𝑘̄ = 𝑗, (4)

𝑖𝑗 = −𝑗𝑖 = 𝑘̄. (5)

These rules demonstrate that quaternion multiplication ⊗, known
as the Hamilton Product, is non-commutative. The Hamilton Product is
easily derived using the basis multiplication rules in Eqs. (3)–(5) and
the distributive property. In reduced form, the Hamilton product of two
quaternions 𝑞1 and 𝑞2 is defined as:

𝑞1 ⊗ 𝑞2 ∶=(𝑟1𝑟2 − 𝑥1𝑥2 − 𝑦1𝑦2 − 𝑧1𝑧2)

+(𝑟1𝑥2 + 𝑥1𝑟2 + 𝑦1𝑧2 − 𝑧1𝑦2)𝑖

+(𝑟1𝑦2 − 𝑥1𝑧2 + 𝑦1𝑟2 + 𝑧1𝑥2)𝑗

+(𝑟1𝑧2 + 𝑥1𝑦2 − 𝑦1𝑥2 + 𝑧1𝑟2)𝑘̄.

(6)

In addition, the element-wise (Hadamard) product, is defined as:

𝑞1 ⊙ 𝑞2 ∶= 𝑟1 ⋅ 𝑟2 + (𝑥1 ⋅ 𝑥2)𝑖 + (𝑦1 ⋅ 𝑦2)𝑗 + (𝑧1 ⋅ 𝑧2)𝑘̄. (7)

Similarly, quaternion addition is defined using the element-wise addi-
tion operation. For two quaternions 𝑞1, 𝑞2 ∈ H, the sum 𝑞1+𝑞2 is defined
as,

𝑞1 + 𝑞2 ∶=(𝑟1 + 𝑟2) + (𝑥1 + 𝑥2)𝑖+

(𝑦1 + 𝑦2)𝑗 + (𝑧1 + 𝑧2)𝑘̄.
(8)

The notion of a quaternion conjugate is analogous to that of a
complex conjugate in C. The conjugate of a quaternion 𝑞 = 𝑟+𝑥𝑖+𝑦𝑗+𝑧𝑘̄
is given by 𝑞∗ = 𝑟−𝑥𝑖− 𝑦𝑗 − 𝑧𝑘̄. The norm of a quaternion is equivalent
to the Euclidean norm in R and is given by

‖𝑞‖ ∶=
√

𝑞𝑞∗ =
√

𝑟2 + 𝑥2 + 𝑦2 + 𝑧2. (9)

With this quaternion norm, one can also define a notion of distance
𝑑(𝑞, 𝑝̄) between two quaternions 𝑞 and 𝑝̄ as

𝑑(𝑞, 𝑝̄) ∶= ‖𝑞 − 𝑝̄‖. (10)

The quaternion norm is also used to define the multiplicative inverse
of any quaternion:

𝑞(−1) =
𝑞∗

‖𝑞‖(2)
. (11)

It is easy to verify that 𝑞(−1)𝑞 = 𝑞𝑞(−1) = 1. In the special case where 𝑞
is a unit quaternion (i.e., ‖𝑞‖ = 1), then 𝑞(−1) = 𝑞∗.
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2.2. Quaternion neural networks

The mathematical machinery described in Section 2.1 provides
all of the necessary components to build a basic quaternion neural
network wherein the inputs, weights, and biases of the network are
all composed of quaternions as opposed to real numbers. The basic
Quaternion Multilayer Perceptron (QMLP) was first presented by Arena
et al. (1994) in 1994. The authors proposed a basic quaternion neural
network model that generally mirrors the standard MLP with two major
caveats.

First, Liouville’s Theorem (Nelson, 1961), a fundamental result
from Complex Analysis, indicates that any bounded entire function in
the complex plane is constant. Hornik (1991) demonstrated that the
two fundamental requirements for neural network activation functions
are that they are ‘‘bounded and nonconstant’’ (Hornik, 1991). Hence,
early work in Complex Multilayer Perceptrons revealed that traditional
activation functions in the complex plane (and any higher-dimensional
Clifford algebra) were problematic. As a workaround, Benvenuto and
Piazza (1992) proposed a ‘‘split’’ activation function, defined in C as:

𝜎̄(⋅) = 𝜎(⋅) + 𝑖𝜎(⋅), (12)

where 𝜎(⋅) represents any real-valued neural network activation func-
tion. Arena, Fortuna, Re, and Xibilia (1993) proved a universal approxi-
mation theorem for complex-valued neural networks using this split (or
‘‘component-wise’’) activation function construct, hence bypassing the
issues posed by Liouville’s Theorem for complex MLPs. Finally, in order
to perform backpropagation using split activation functions, Benvenuto
and Piazza (1992) proposed a ‘‘pseduo-gradient’’ update wherein the
gradient is computed component-wise:

̇̄𝜎(⋅) = 𝜎̇(⋅) + 𝑖𝜎̇(⋅), (13)

where 𝜎̇(⋅) represents the gradient of the real-valued function 𝜎(⋅).
Arena et al. (1994) extended these ideas directly to the quaternion
domain, presenting a basic split quaternion backpropagation algorithm.
Shortly thereafter, the authors presented a succinct proof of a Universal
Approximation Theorem for QMLPs (Arena, Fortuna, Muscato, & Xi-
bilia, 1997) similar to their proof for the complex-valued case (Arena
et al., 1993) and Cybenko (1989)’s and Hornik, Stinchcombe, and
White (1989)’s results for real-valued neural networks.

Nitta (1995) independently and concurrently proposed a QMLP
model using the same split activation and pseudo-gradient construct
as Arena et al. (1994). While Nitta (1995)’s QMLP model was identical
in structure to Arena et al. (1994), it utilized a slightly different weight
update rule in the proposed backpropagation algorithm that leveraged
the quaternion conjugate of the network weights.

Finally, Buchholz and Sommer (2008) generalized the complex and
quaternion backpropagation algorithms in the Clifford algebra liter-
ature, resulting in the Clifford Multilayer Perceptron (CMLP) neural
network and associated backpropagation algorithm. The authors prove
that CMLPs are universal approximators for any non-degenerate Clif-
ford algebra. The presentations by Arena et al. (1994), Nitta (1995),
and Buchholz’s CMLP (Buchholz & Sommer, 2008) all contain slight
differences and represent the three split backpropagation methods ex-
plored in this comparison. Recently, Xu, Zhang, and Mandic (2015) pre-
sented a full quaternion calculus, known as the generalized Hamilton-
Real (GHR) calculus. GHR calculus allows for a novel quaternion
backpropagation algorithm that utilizes split activation functions but
a full quaternion gradient in the weight update step. For brevity, Buch-
holz and Sommer (2008)’s CMLP algorithm is presented in full in
Section 2.3 as the representative split backpropagation algorithm dis-
cussed in this paper. The GHR algorithm is presented in Section 2.4 and
the Arena and Nitta backpropagation rules are presented and discussed
in Appendix A.1.

2.3. Clifford algebra

Clifford algebras, which are often referred to synonymously as
geometric algebras, provide a generalization of the algebras over R,
C, H, and several other hypercomplex algebras. While a full exposition
of Clifford algebras is beyond the scope of this work, the interested
reader should consult (Porteous et al., 1995) for an overview of the
subject and Sommer (2013) for a review of several modern applications
of Clifford algebras to fields such as robotics and computer vision.

In Buchholz and Sommer (2008), the authors present the Basic
Clifford Neuron (BCN) model and accompanying Clifford Multilayer
Perceptron (CMLP). In generality, the authors demonstrate that the
CMLP model and backpropagation algorithm hold for neural networks
created using any non-degenerate Clifford algebra, which includes R, C,
H, the split-biquaternions H⊕H (an 8-dimensional algebra), as well as
many other high-dimensional algebras. In particular, with a quaternion-
valued CMLP, the network structure and forward pass rules reduce to
the following structure.

Notation:

• 𝑀 : number of layers in the network
• l: layer index 0, 1,… ,𝑀
• 𝑁𝑙: number of neurons in the 𝑙th layer
• 𝑛: neuron index in a given layer
• 𝑥̄(𝑙)𝑛 = 𝑟𝑥(𝑙)𝑛

+ 𝑥𝑥(𝑙)𝑛
𝑖 + 𝑦𝑥(𝑙)𝑛

𝑗 + 𝑧𝑥(𝑙)𝑛
𝑘̄: output of the 𝑛th neuron in the

𝑙th layer. Note that the output is a quaternion.
• 𝑤̄(𝑙)

𝑛𝑚: the quaternion weight between the 𝑛th neuron of the 𝑙th
layer and the 𝑚th neuron of the (𝑙 − 1)-th layer

• 𝜃̄(𝑙)𝑛 : the quaternion bias term of the 𝑛th neuron in the 𝑙th layer

Forward Pass:
For 𝑙 = 1,… ,𝑀 and 𝑛 = 1,… , 𝑁𝑙

𝑠̄(𝑙)𝑛 =
𝑁𝑙−1
∑

𝑚=0
𝑤̄(𝑙)

𝑛𝑚 ⊗ 𝑥̄𝑙−1𝑚 + 𝜃̄(𝑙)𝑛 , (14)

𝑥̄(𝑙)𝑛 = 𝜎̄(𝑠̄(𝑙)𝑛 ), (15)

where

𝜎̄(⋅) = 𝜎(⋅) + 𝜎(⋅)𝑖 + 𝜎(⋅)𝑗 + 𝜎(⋅)𝑘̄ (16)

represents the split activation function, with 𝜎(⋅) being any real-valued
activation function. In addition, the ‘‘pseudo-derivative’’ of 𝜎̄(⋅) is given
by:

̇̄𝜎(⋅) = 𝜎̇(⋅) + 𝜎̇(⋅)𝑖 + 𝜎̇(⋅)𝑗 + 𝜎̇(⋅)𝑘̄ (17)

Finally, the loss function is defined as the split error of the output
layer:

𝐸 = 1
2

𝑁𝑀
∑

𝑛=1
(𝑦̄𝑛 − 𝑥̄(𝑀)

𝑛 )2

= 1
2

𝑁𝑀
∑

𝑛=1
(𝑟𝑦𝑛 − 𝑟𝑥𝑛 )

2 + (𝑥𝑦𝑛 − 𝑥𝑥𝑛 )
2𝑖

+ (𝑦𝑦𝑛 − 𝑦𝑥𝑛 )
2𝑗 + (𝑧𝑦𝑛 − 𝑧𝑥𝑛 )

2𝑘̄

(18)

Error Backpropagation (CMLP):
To perform the backpropagation step, the error ‘‘pseudo-gradient’’

must first be defined as:
𝜕𝐸
𝜕𝑤̄𝑛𝑚

= 𝜕𝐸
𝜕𝑟𝑛𝑚

+ 𝜕𝐸
𝜕𝑥𝑛𝑚

𝑖 + 𝜕𝐸
𝜕𝑦𝑛𝑚

𝑗 + 𝜕𝐸
𝜕𝑧𝑛𝑚

𝑘̄, (19)

wherein the partial derivatives of the loss function are computed
component-wise for each quaternion weight and bias value in the
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network. Under this definition, the backpropagation rules for each layer
𝑙 = 1,… ,𝑀 and each neuron 𝑛 = 1,… , 𝑁𝑙 are given by:

𝛿(𝑙)𝑛 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝑦𝑛 − 𝑥̄(𝑀)
𝑛 ), 𝑙 = 𝑀

̇̄𝜎
(

𝑠(𝑙)𝑛
)

⊙
𝑁𝑙+1
∑

ℎ=1
𝑤̄∗(𝑙+1)

ℎ𝑛 ⊗ 𝛿(𝑙+1)ℎ , 𝑙 ≠ 𝑀
(20)

Similar to (A.2), the CMLP weights are updated utilizing a multiplica-
tion by the output of the previous layer:

𝑤̄(𝑙)
𝑛𝑚 = 𝑤̄(𝑙)

𝑛𝑚 + 𝜂 ⋅ 𝛿(𝑙)𝑛 ⊗ 𝑥̄∗(𝑙−1)𝑚 , (21)

𝜃̄(𝑙)𝑛 = 𝜃̄(𝑙)𝑛 + 𝜂 ⋅ 𝛿(𝑙)𝑛 . (22)

In matrix–vector form, the rules are:

𝜹̄(𝑙) =
⎧

⎪

⎨

⎪

⎩

𝐞̄ = (𝐲̄ − 𝐱̄(𝑀)), 𝑙 = 𝑀

̇̄𝜎
(

𝐬(𝑙)
)

⊙
[

(

𝐖̄(𝑙+1))𝐻 ×
(

𝜹̄(𝑙+1)
)]

, 𝑙 ≠ 𝑀
(23)

with weight updates given by:

𝐖̄(𝑙) = 𝐖̄(𝑙) + 𝜂 ⋅ 𝜹̄(𝑙) ×
(

𝐱̄(𝑙−1)
)𝐻 , (24)

𝜽̄(𝑙) = 𝜽̄(𝑙) + 𝜂 ⋅ 𝜹̄(𝑙), (25)

In Buchholz and Sommer (2008), the authors demonstrate how the
conjugation operation (⋅)∗ in R is simply the identity operator, hence
the update rules as presented reduce exactly to standard backprop-
agation in R. The same cannot be said for either the Arena et al.
(1994) or Nitta (1995) rules due to differences in how the layers are
indexed in the Arena et al. (1994) rules and the use of the pre-activation
output in Eq. (A.8) in the Nitta (1995) update rules. Furthermore, Buch-
holz and Sommer (2008) proves a universal approximation theorem
that holds for any non-degenerate Clifford algebra, which includes
the quaternions and quaternion neural networks, but provides much
stronger statements than the proofs presented in Arena et al. (1997).

2.4. GHR calculus

The generalized Hamilton-Real (GHR) calculus is a novel calculus
first proposed in 2015 by Xu, Jahanchahi, et al. (2015). The au-
thors provided a second proof of the calculus in 2016 (Xu, Gao, &
Mandic, 2016) as well as several critical results establishing a general
optimization framework using the calculus in Xu, Xia, and Mandic
(2016). Finally, Flamant, Miron, and Brie (2021) provided a complete
framework for convex optimization in the quaternion domain using
GHR calculus rules, including a full set of optimality conditions.

The GHR calculus rules leverage quaternion involutions and quater-
nion rotation to define a set of quaternion derivative rules. An involu-
tion is a function that is its own inverse. The quaternion conjugation
rule defined in Section 2.1 is an example of an involution. In general,
involutions play a vital role in quaternionic analysis, and Ell and
Sangwine (2007) provides further details on some useful involutions.

In addition, quaternion rotation is perhaps the most used quaternion
operation, and is defined as:

𝑞𝜇̄ ∶= 𝜇̄𝑞𝜇̄(−1). (26)

If 𝜇̄ is a pure quaternion (i.e., a quaternion with real part 𝑟 = 0), then
the rotation operation becomes an involution. As an example, rotation
about each of the quaternion basis elements are the involutions shown
below:

𝑞𝑖 = −𝑖𝑞𝑖 = 𝑟 + 𝑥𝑖 − 𝑦𝑗 − 𝑧𝑘̄

𝑞𝑗 = −𝑗𝑞𝑗 = 𝑟 − 𝑥𝑖 + 𝑦𝑗 − 𝑧𝑘̄

𝑞𝑘̄ = −𝑘̄𝑞𝑘̄ = 𝑟 − 𝑥𝑖 − 𝑦𝑗 + 𝑧𝑘̄.

(27)

Finally, note that for any quaternion 𝜇̄ ∈ H, one can define a
general orthogonal quaternion basis {1, 𝑖𝜇̄ , 𝑗𝜇̄ , 𝑘̄𝜇̄} where the following
properties hold:

𝑖𝜇̄𝑖𝜇̄ = 𝑗𝜇̄𝑗𝜇̄ = 𝑘̄𝜇̄ 𝑘̄𝜇̄ = 𝑖𝜇̄𝑗𝜇̄ 𝑘̄𝜇̄ = −1. (28)

Using these principles, the GHR derivatives are defined as follows
(note that since quaternion multiplication is non-commutative, both left
and right derivatives must be defined):

Left GHR derivatives:
𝜕𝑓
𝜕𝑞𝜇̄

= 1
4

(

𝜕𝑓
𝜕𝑟

−
𝜕𝑓
𝜕𝑥

𝑖𝜇̄ −
𝜕𝑓
𝜕𝑦

𝑗𝜇̄ −
𝜕𝑓
𝜕𝑧

𝑘̄𝜇̄
)

∈ H (29)

𝜕𝑓
𝜕𝑞𝜇̄∗

= 1
4

(

𝜕𝑓
𝜕𝑟

+
𝜕𝑓
𝜕𝑥

𝑖𝜇̄ +
𝜕𝑓
𝜕𝑦

𝑗𝜇̄ +
𝜕𝑓
𝜕𝑧

𝑘̄𝜇̄
)

∈ H (30)

Right GHR derivatives:
𝜕𝑟𝑓
𝜕𝑞𝜇̄

= 1
4

(

𝜕𝑓
𝜕𝑟

− 𝑖𝜇̄
𝜕𝑓
𝜕𝑥

− 𝑗𝜇̄
𝜕𝑓
𝜕𝑦

− 𝑘̄𝜇̄
𝜕𝑓
𝜕𝑧

)

∈ H (31)

𝜕𝑟𝑓
𝜕𝑞𝜇̄∗

= 1
4

(

𝜕𝑓
𝜕𝑟

+ 𝑖𝜇̄
𝜕𝑓
𝜕𝑥

+ 𝑗𝜇̄
𝜕𝑓
𝜕𝑦

+ 𝑘̄𝜇̄
𝜕𝑓
𝜕𝑧

)

∈ H. (32)

While Xu, Zhang, and Mandic (2015) provides a full derivation of
the GHR calculus rules, Xu, Xia, and Mandic (2016) presents quater-
nion gradient and Hessian operators as well as several derived quater-
nion learning algorithms. In Xu, Xia, and Mandic (2016), the authors
demonstrate the real-valued gradient of a function 𝑓 is related to the
quaternion-valued gradient via a simple invertible linear transforma-
tion. In addition, the authors present an explicit derivation of the
backpropagation learning algorithm for a single-hidden-layer quater-
nion neural network using the GHR derivatives. In particular, given the
error function 𝐸 shown in Eq. (18), the quaternion gradient is given by:

∇𝐪̄∗𝐸 = −1
2

∑

𝜇̄∈{1,𝑖,𝑗,𝑘̄}

(

𝐄𝐻
𝐪̄𝜇̄ 𝐞̄

)𝜇̄ , (33)

where 𝐞̄ is the error vector 𝐲̄− 𝐱̄𝑀 from Eq. (18) and the (⋅)𝐻 operation
represents the Hermitian transpose of the quaternion error vector. This
gradient can be expressed in a layer-by-layer fashion using the same
notation as the previous backpropagation algorithms.

𝜹̄(𝑙) =
⎧

⎪

⎨

⎪

⎩

𝐞̄ = (𝐲̄ − 𝐱̄(𝑀)), 𝑙 = 𝑀
(

𝐖̄(𝑙+1) × ̇̄𝜎
(

𝐬(𝑙+1)
))𝐻 × 𝜹̄(𝑙+1), 𝑙 ≠ 𝑀

(34)

The weight update rules for the ouput layer are:

𝐖̄(𝑙) = 𝐖̄(𝑙) + 𝜂 ⋅ 𝜹̄(𝑙) ×
(

𝐱̄(𝑙−1)
)𝐻 , (35)

𝜽̄(𝑙) = 𝜽̄(𝑙) + 𝜂 ⋅ 𝜹̄(𝑙), (36)

while the weight updates for the hidden layers are given by:

𝐖̄(𝑙) = 𝐖̄(𝑙) + 𝜂 ⋅
∑

𝜇̄∈{1,𝑖,𝑗,𝑘̄}

(

𝜹̄(𝑙)
)𝜇̄

×
(

𝐱̄(𝑙−1)
)𝐻 , (37)

𝜽̄(𝑙) = 𝜽̄(𝑙) + 𝜂 ⋅
∑

𝜇̄∈{1,𝑖,𝑗,𝑘̄}

(

𝜹̄(𝑙)
)𝜇̄

. (38)

Finally, note that the formal GHR derivative of the split activation
function 𝜎̄(⋅), shown in Eq. (35), is distinct from the general split
derivative used in the other three backpropagation algorithms. In Xu,
Xia, and Mandic (2016), the authors prove that the GHR derivatives of
any split activation function 𝜎̄(⋅) is given by:

𝜕𝜎̄(𝑞)
𝜕𝑞

=1
4

(

𝜕𝜎(𝑞)
𝜕𝑟

−
𝜕𝜎(𝑞)
𝜕𝑥

𝑖 −
𝜕𝜎(𝑞)
𝜕𝑦

𝑗 −
𝜕𝜎(𝑞)
𝜕𝑧

𝑘̄
)

(39)

=1
4
(

𝜎̇(𝑟) + 𝜎̇(𝑥) + 𝜎̇(𝑦) + 𝜎̇(𝑧)
)

(40)

𝜕𝜎̄(𝑞)
𝜕𝑞∗

=1
4

(

𝜕𝜎(𝑞)
𝜕𝑟

+
𝜕𝜎(𝑞)
𝜕𝑥

𝑖 +
𝜕𝜎(𝑞)
𝜕𝑦

𝑗 +
𝜕𝜎(𝑞)
𝜕𝑧

𝑘̄
)

(41)

=1
4
(

𝜎̇(𝑟) − 𝜎̇(𝑥) − 𝜎̇(𝑦) − 𝜎̇(𝑧)
)

. (42)
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Fig. 3. Test functions.

Hence, the GHR derivatives of any split activation function are real-
valued, thus simplifying several of the gradient calculations.

2.5. Space-filling designs and smart sampling techniques

The Design of Experiments (DoE) refers to a systematic method
of experimentation which results in extracting as much information
about a system as possible in the smallest number of experimental runs.
This work utilizes a space-filling DoE to tune the hyperparameters of
several neural network models. Space-filling designs are particularly
well-suited for evaluating computer simulations or experiments (My-
ers, Montgomery, & Anderson-Cook, 2016) and provide a logical and
systematic method of testing various combinations of hyperparame-
ters without resorting to naive or expensive search techniques such
as randomized search methods or grid search methods. To tune the
hyperparameters of each network, the hyperparameters themselves are
considered the factors of an experimental design. The goal, then, is
to determine the optimal level of each factor that results in the best
network performance.

Since computer experiments often exhibit relatively low run-to-run
response variability, space-filling designs can be used to efficiently
test for optimal parameter settings across the entire range of the
parameter space (Montgomery, 2017). While there are a variety of
different techniques for generating high quality space-filling designs,
each method generally involves a combinatorial optimization problem
to determine the optimal location of test points in the parameter space.
Some examples of smart-sampling techniques and space filling designs
include the Latin Hypercube Design (McKay, Beckman, & Conover,
1979), sphere-packing designs (Johnson, Moore, & Ylvisaker, 1990),
maximum entropy designs (Shewry & Wynn, 1987), and Fast Flexible
Filling (FFF) designs (Lekivetz & Jones, 2015). For an in-depth com-
parison of computer-generated test designs, see Johnson, Montgomery,
and Jones (2011).

3. Methodology

This work compares the performance of the four quaternion back-
propagation algorithms outlined in Section 2 by testing each algo-
rithm’s ability to approximate noisy nonlinear test functions. Function
approximation is one of the most basic tasks in which neural networks
excel. Cybenko (1989) and Hornik et al. (1989)’s universal approxi-
mation theorems demonstrate that real-valued neural networks with
an appropriate topology can approximate any nonlinear function to an
arbitrary degree of accuracy. The theorems in Arena, Baglio, Fortuna,
and Xibilia (1995) and Buchholz and Sommer (2008) provide similar
results for QMLPs and CMLPs, respectively.

Concretely, this work compares the four quaternion backpropaga-
tion algorithms by training a neural network with a fixed topology us-
ing each of the four backpropagation methods. Each network is trained
and tested on four separate optimization test functions using individ-
ually tuned hyperparameters for each test function/backpropagation
algorithm pairing. The topology used for each network in the com-
parison test is a 1 → 5 → 5 → 5 → 1 Multilayer Perceptron model.
This topology provides a sufficient number of neurons per layer for
each quaternion network to learn some of the complex nonlinearities
associated with each test function. In addition, the depth of the network

allows for better comparisons between the runtime and scalability
of each training method. To the best of the authors knowledge, this
work presents the first ever deep (i.e., more than one hidden layer)
implementation of the GHR-calculus learning rules. The tuned models
are compared using a variety of different metrics, including test set
error, computational runtime, and training characteristics. Finally, the
tuned model comparisons are validated using robust statistical tests
performed on each metric.

Section 3.1 describes the four optimization test functions used in
this study, while Section 3.2 describes the smart sampling techniques
used to generate the training, test, and validation datasets. Section 3.3
presents two simple extensions of the Adagrad (Duchi, Hazan, & Singer,
2011) and Adadelta (Zeiler, 2012) adaptive gradient optimizers to the
quaternion domain for use in the network comparisons. Section 3.4
presents a simple space-filling design used to tune the hyperparameters
of each model. Finally, Section 3.5 details the metrics used to compare
the performance of each network.

3.1. Test functions

In order to test the performance of each algorithm, the Ackley
(2012), Griewank (1981), Schwefel (1993), and Rastrigin (1974) func-
tions were selected from a library of standard optimization test func-
tions. Each of these functions can be extended to an arbitrary num-
ber of input dimensions, making them ideal test cases for complex,
quaternion, and hypercomplex neural networks.

In this work, each function was extended to five dimensions, i.e.,
each function utilized four input dimensions 𝑥1, 𝑥2, 𝑥3, and 𝑥4 and
each quaternion neural network was trained to approximate the func-
tion output, 𝑓 (𝑥1, 𝑥2, 𝑥3, 𝑥4). While it is impossible to picture the five-
dimensional versions of each of these test functions, three-dimensional
surface plots of each function are shown in Fig. 3. Even in three
dimensions, the high degree of complexity and nonlinearity associated
with each function are stark. Additionally, the four functions vary
widely in terms of the size and scale of their surfaces over the test
range. While the Ackley and Rastrigin functions appear to form smooth
surfaces relative to the Griewank and Schwefel functions, in reality all
four functions have highly corrugated surfaces. Zooming in on a smaller
range reveals this for both functions.

For more information on each function as well as a host of other
common optimization test functions, the interested reader is referred
to Surjanovic and Bingham (2013).

3.2. Data generation

Each of the four functions described in Section 3.1 was sampled
30,000 times across a grid of points using an Optimal Latin Hypercube
Sampling (OLHS) plan generated using Julia’s LatinHypercubeSam-
pling.jl package (Urquhart, Ljungskog, & Sebben, 2020). Similar to the
space-filling designs discussed in Section 2.5, OLHS seeks to sample
points evenly across the entire input space. The employment of the
OLHS plan ensured good coverage of the datapoints across the four in-
put dimensions, and initial experiments demonstrated superior training
and generalization performance of models trained with OLHS sampled
datasets as opposed to naive uniform random sampling.
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Each dataset was split 70%/15%/15% between training, validation,
and test sets, respectively. Each of the four input dimensions were
standardized using the mean and standard deviation of each dimension
from the training dataset. Finally, each input datapoint (𝑥1, 𝑥2, 𝑥3, 𝑥4)
was cast into a single quaternion using the following basic procedure:

𝐱 = (𝑥1, 𝑥2, 𝑥3, 𝑥4) → 𝑞 = 𝑥1 + 𝑥2𝑖 + 𝑥3𝑗 + 𝑥4𝑘̄.

Following best practices for neural network training, each network was
trained solely on the training dataset while the validation datasets were
used to tune the hyperparameters of each network. Each network’s per-
formance on the validation dataset was also used to determine an early
stopping condition for network training. Finally, after all networks were
trained with tuned hyperparameters, the test set performance of each
network was measured and recorded.

3.3. Adaptive gradient methods

In the real domain, a vast number of enhancements have been
made to the original gradient descent algorithm. Improvements such
as momentum optimization (Qian, 1999), adaptive gradient meth-
ods (Duchi et al., 2011), and regularization methods (Srivastava, Hin-
ton, Krizhevsky, Sutskever, & Salakhutdinov, 2014) have all demon-
strated consistent performance improvements over vanilla gradient
descent. This work presents two simple extensions of the real-valued
adaptive gradient methods Adagrad (Duchi et al., 2011) and Adadelta
(Zeiler, 2012). Both methods allow for a more complete comparison
of the four backpropagation algorithms and their performance using
modern optimization techniques. While several works in the literature
utilize adaptive learning methods with the pseudo-gradient backprop-
agation rules (Huang & Gai, 2020; Saoud, Al-Marzouqi, & Deriche,
2021; Yin et al., 2019), to the authors knowledge this work represents
the first ever extension of adaptive step-size learning methods to the
GHR-calculus backpropagation.

Algorithm 1 Quaternion Adagrad update at time 𝑡

Require: Constant 𝜖
for each parameter 𝜃

compute gradient: 𝑔𝑡
accumulate gradients: 𝐺𝑡 =

∑𝑡
𝜏=1 ||𝑔𝑡||

2

update parameters: 𝜃𝑡 = 𝜃𝑡−1 +
𝜂

√

𝐺𝑡+𝜖
⋅ 𝑔𝑡

end for

Algorithm 1 shows the general process for updating each weight and
bias parameter using the quaternion Adagrad optimizer. The Adagrad
routine relies on adaptively scaling the learning rate for each parame-
ter, making it possible to extend Adagrad to the quaternion domain by
simply accumulating the square of the norm of each gradient. Recall
from Eq. (9) that the quaternion norm ‖ ⋅ ‖ ∶ H → R, hence the
Adagrad update in the quaternion domain scales the learning rate for
each parameter by a value 𝐺𝑡 ∈ R. For both the Adagrad and Adadelta
update rules, the constant 𝜖 is fixed at 1.00 × 10−9

Algorithm 2 Quaternion Adadelta update at time 𝑡

Require: Constant 𝜖, decay rate 𝜌
Initialize accumulation variables: 𝐸[𝐺0] = 0

for each parameter 𝜃
compute gradient: 𝑔𝑡
accum. gradients: 𝐸[𝐺2

𝑡 ] = 𝜌𝐸[||𝑔||2]𝑡−1 + (1 − 𝜌)||𝑔𝑡||2

update parameters: 𝜃𝑡 = 𝜃𝑡−1 +
𝜂

√

𝐸[𝐺2
𝑡 ]+𝜖

⋅ 𝑔𝑡

end for

The Adadelta update rule shown in Algorithm 2 represents the
sliding window Adadelta method, wherein gradient information from
previous epochs is accumulated using a decay parameter of 𝜌 = 0.9.

Table 1
Hyperparameter tuning results.

Architecture Parameters Ackley Schwefel Rastrigin Griewank

Arena QMLP
LR 0.000285 0.006433 0.004264 0.000483
Optimizer Adadelta Adagrad Adadelta Adadelta
Activation leakyrelu leakyrelu leakyrelu swish

Nitta QMLP
LR 0.00311 0.00246 0.00451 0.00373
Optimizer Adadelta Adadelta Adadelta Adadelta
Activation tanh swish tanh sigmoid

CMLP
LR 0.00473 0.000483 0.000483 0.000483
Optimizer Adadelta Adadelta Adadelta Adadelta
Activation sigmoid swish swish swish

GHR
LR 0.00183 0.000285 0.00246 0.000483
Optimizer SGD Adadelta Adadelta Adadelta
Activation tanh leakyrelu swish swish

While the accumulated gradients in the Adagrad update can grow
without bound, eventually causing the scaled learning rates to converge
to zero, the sliding window approach of the Adadelta method prevents
the accumulated gradients from growing too large.

3.4. Hyperparameter tuning

In addition to the smart-sampling techniques used to generate each
experimental dataset (Section 3.2), this work employed a Fast Flexible
Filling (FFF) design (Lekivetz & Jones, 2015) generated in JMP Pro
15 to tune the hyperparameters of a fixed neural network topology.
The FFF test design was used to tune the hyperparameters for each
backpropagation algorithm (the Arena QMLP, Nitta QMLP, CMLP, and
GHR architectures) on each of the four test functions, resulting in a set
of 16 optimal hyperparameters.

The FFF design employed three factors: the network Learning Rate,
Optimizer, and hidden layer Activation Function. The Learning Rate
was a continuous factor ranging from a minimum of 1 × 10−7 to a max-
imum of 1 × 10−2. The two categorical factors, Optimizer and Activation
Function, contained the following levels:

• Optimizer : Stochastic Gradient Descent (SGD), Adagrad, and
Adadelta

• Activation Function: tanh, sigmoid, swish, and leakyrelu

The hyperparameter settings in each design point were run for 30
epochs on each network architecture and the lowest validation set error
was recorded across each run as the response for each design point. The
results of the hyperparameter tuning for each architecture are shown
in Table 1. The design run table for the FFF design can be found in the
Supplementary Materials for this paper.

3.5. Tuned network comparisons

Using the results from the hyperparameter tuning test, each network
was re-initialized and re-trained using the optimal hyperparameter
settings. Each network was trained for a maximum of 250 epochs, with
a 𝑃𝑄0.5 early stopping condition as defined in Prechelt (1998). Prechelt
notes that such a criterion maximizes the average quality of solutions
and provides some level of patience during unstable phases of training.
Finally, to ensure that the best network parameters were returned
upon termination of the training algorithm, each network was saved
to disk in a binary format at each epoch when the validation set error
surpassed the best validation set error seen up to that point. Upon
termination of the training loop, the algorithm returned the cached
network containing the optimal weight and bias values.

The test set performance of each saved model was then evalu-
ated using the Mean Absolute Percentage Error (MAPE). The MAPE is
calculated using the following formula:

MAPE = 1
𝑛

𝑛
∑

𝑖=1

|𝐲𝑖 − 𝐲̂𝑖|
|𝐲𝑖|

, (43)
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where 𝐲𝑖 represents each truth or target value and 𝐲̂𝑖 represents the
predicted values (i.e., the output of each neural network). The MAPE
allows for a scaled easily interpretable measure of test set performance
across each network for each test function. This training/test process
was repeated 30 times for each hyperparameter combination in order to
generate summary statistics and statistical comparisons between each
result.

In addition, the 𝑅2 values for each algorithm on each dataset and
the total training time for each replication were recorded. The 𝑅2, or
coefficient of determination, is calculated as follows:

𝑅2 = 1 −
∑𝑛

𝑖=1(𝐲𝑖 − 𝐲𝑖)2
∑𝑛

𝑖=1(𝐲𝑖 − 𝐲̄)2
, (44)

where 𝐲𝑖 represents each truth or target value, 𝐲̂𝑖 represents the pre-
dicted values, and 𝐲̄ represents the mean of all target values 𝐲𝑖. While
the MAPE provides a measure of the accuracy and generalizability
of each trained network, the 𝑅2 value provides a measure of how
well each neural network fits the underlying data distributions for
each problem. Moreover, the computational runtime of each algorithm
provides insight into each method’s ability to scale to large, real-
world problems. While several instances of pseudogradient methods
have been applied to large datasets (see Parcollet, Morchid, Linares,
& De Mori, 2018; Parcollet et al., 2019), to the best of the authors
knowledge, no large-scale implementations have been developed for
the GHR-calculus backpropagation method and no comparisons have
been made on the scalability of pseudogradient methods versus the
GHR method.

Taken together, the 𝑅2, MAPE, and runtime results provide a com-
prehensive picture of the overall performance of each algorithm. The
MAPE measure is one of many metrics for assessing the accuracy
of regression models. As a percentage measure, the MAPE always
produces a value between 0 and 1, hence allowing for meaningful
comparisons across the four algorithms as well as across the four test
functions. Moreover, the 𝑅2 values for each model provide critical
insight into the amount of variance in each dataset explained by
each regression model. Finally, performing multiple replications of
each test function/backpropagation algorithm pairing allows for robust
statistical comparisons between the results of each algorithm.

This study utilized a paired t-test to quantify the statistically sig-
nificant differences between each algorithm’s performance. The paired
t-test contains three main assumptions:

• The observations being tested are all independent.
• The observations are approximately normally distributed.
• There are no outliers among the observations.

To ensure the independence of each observation, the random number
streams for each experimental run were carefully controlled. Each test
run 𝑖 for 𝑖 ∈ (1,… , 30) was initialized with a unique non-overlapping
random number stream. However, within each run 𝑖 common random
number streams were used to initialize each backpropagation algorithm
as a variance reduction technique. Verification of the normality as-
sumption and outlier assumption for each t-test, as well as the results
from each test are summarized in Section 4 below.

4. Experimental results

All computer experiments were performed on a desktop workstation
with 256 GB of RAM and an AMD Epyc 7402p 24-core processor
running Ubuntu 22.04.1 LTS. All coding was performed in Julia v1.7.0.
Many real-valued neural network routines from the Julia Flux machine
learning package were extended to the quaternion domain with custom
built training and optimization functions in Flux v0.12.8. Finally, the
FFF computer designs were generated in JMP Pro v15 (SAS Institute
Inc., 1989–2021).

The MAPE, 𝑅2 and Runtime results for each test function are
summarized in Table 2. The table displays the minimum, maximum,

and mean values for each metric. The best mean value for each metric
is highlighted in bold for each of the four test functions. The CMLP algo-
rithm resulted in the best test set performance for the Ackley, Griewank,
and Rastrigin test functions, with the lowest average MAPE and the
highest 𝑅2 values for each function. The GHR algorithm achieved
slightly better 𝑅2 and MAPE values on the Schwefel test function.
However, the improvements that the GHR algorithm afforded over the
CMLP algorithm on the Schwefel test function were not statistically
significant, as discussed in Section 4.1.

The MAPE and 𝑅2 values were computed using holdout data (i.e., the
test set data) for each algorithm. Across all four test functions, the
Nitta algorithm performed the worst in terms of both 𝑅2 and MAPE.
In each test case, the Nitta algorithm witnessed negative 𝑅2 values,
indicating final solutions with very poor fits to the underlying data
distributions. On average, the Arena algorithm performed better than
the Nitta algorithm on each of the four test functions but still lagged
behind both the GHR algorithm and the CMLP algorithm.

Box and whisker plots of the MAPE, 𝑅2, and runtime values for each
test function are shown in Figs. 4–7. Each boxplot adheres to the fol-
lowing conventions: the box captures the 1st, 2nd, and 3rd quartiles of
each dataset, where the 2nd quartile represents the median of the data.
The whiskers extend out to the largest and smallest observations within
1.5 times the interquartile range (IQR), while outliers are shown as
dots beyond each whisker. Finally, the mean for each dataset is shown
as dashed horizontal line, and the dashed diagonal lines around the
mean represent the standard deviation around the mean. In addition,
scatter plots of the MAPE vs. 𝑅2 values are shown for each test function.
Since 𝑅2 and MAPE both represent distinct scaled metrics of accuracy,
these scatter plots present insightful representations of each algorithm’s
performance for each test function.

4.1. Statistical comparison testing

The results in Table 2 indicate that in three of the four test cases,
the CMLP algorithm achieved the lowest average MAPE and highest
average 𝑅2 values. In the fourth case (the Schwefel function), the GHR
achieved better MAPE and 𝑅2 values by a very narrow margin. Hence,
to test for statistical significance of the results, the means of each of the
backpropagation methods were compared to the CMLP mean values as
a baseline using a paired 𝑡-test and the Bonferroni multiple comparison
method with an 𝛼 = 0.1.

Sawilowsky and Blair (1992) note that the paired 𝑡-test is robust
against departures from normality in the data when the sample sizes
between two populations under consideration are equal, when the
sample sizes are fairly large (25 or 30), and when the tests are two-
tailed. In addition, the paired 𝑡-test does not require an assumption of
equal variance across the two populations being compared. However,
the paired 𝑡-test does assume that there are no outliers in the data. To
ensure that the test data adheres to the assumptions of the paired 𝑡-test,
the Runtime, MAPE, and 𝑅2 paired differences were carefully examined
for each of the four test functions. Boxplots for the (CMLP − Nitta),
(CMLP−Arena), and (CMLP−GHR) Runtime, MAPE, and 𝑅2 values are
shown in Fig. 8. Any outliers indicated on the boxplots (i.e. data points
that were greater than or less than 1.5 times the interquartile range)
were removed, and the subsequent paired differences were plotted on
a normal quantile–quantile (QQ) plot, which provides an indication of
the normality of the data. While some of the QQ plots indicated slight
deviations from normality, the number of filtered data points (with
outliers removed) for each test was greater than 25, thus aligning with
the robustness requirements set forth in Sawilowsky and Blair (1992).
QQ plots for the Ackley function 𝑅2 paired differences are shown in
Fig. 9, while the QQ plots for the other three functions can be found in
the appendix.

The 90% confidence intervals and p-values for the statistical com-
parison tests are summarized in Table 3. As a reminder, using the
Bonferroni multiple comparisons method, a value of 𝑃 < 0.05

3 = 0.016 70
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Table 2
Function approximation results.

MAPE 𝑅2 Runtime

Min Max Average Min Max Average Min Max Average

Ackley
CMLP 0.015 40 0.017 19 𝟎.𝟎𝟏𝟓 𝟗𝟕 0.8300 0.8739 𝟎.𝟖𝟔𝟒𝟓 546.6 2507 1812
Arena 0.028 70 0.036 43 0.031 93 0.004 000 0.4174 0.2461 193.3 837.2 521.4
Nitta 0.036 20 0.040 07 0.037 42 −0.084 00 0.023 52 −0.041 64 42.37 1514 792.8
GHR 0.017 10 0.038 32 0.019 76 −0.002 000 0.8454 0.7525 10.38 478.4 𝟑𝟔𝟐.𝟕
Griewank
CMLP 0.002 500 0.008 440 𝟎.𝟎𝟎𝟒 𝟕𝟏𝟏 0.9996 1.0000 𝟎.𝟗𝟗𝟗𝟗 491.8 1775 1167
Arena 0.1184 0.6240 0.3872 −0.005 000 0.9177 0.4530 24.58 831.6 𝟑𝟒𝟏.𝟏
Nitta 0.5209 0.6271 0.6042 −0.003 000 0.2742 0.038 12 123.8 2252 1621
GHR 0.005 600 0.029 90 0.012 26 0.9930 0.9998 0.9988 393.9 1751 1083
Schwefel
CMLP 0.1490 0.1987 0.1856 0.1010 0.4723 0.2020 159.6 2739 1966
Arena 0.1977 0.2063 0.1987 0.040 00 0.1096 0.1010 2945 3272 3050
Nitta 0.1960 0.3789 0.2074 −3.286 0.1038 −0.034 98 28.39 451.4 𝟐𝟐𝟎.𝟓
GHR 0.1725 0.1973 𝟎.𝟏𝟖𝟓𝟑 0.1050 0.3039 𝟎.𝟐𝟎𝟖𝟓 1104 6087 5421
Rastrigin
CMLP 0.1793 0.1825 𝟎.𝟏𝟖𝟎𝟕 0.5040 0.5139 𝟎.𝟓𝟏𝟎𝟐 147.1 1883 1114
Arena 0.1920 0.2753 0.2342 −0.019 00 0.3894 0.1749 55.48 259.9 𝟏𝟔𝟒.𝟑
Nitta 0.2456 0.2654 0.2621 −0.001 000 0.1003 0.016 56 31.07 2327 1404
GHR 0.1788 0.1891 0.1821 0.4900 0.5088 0.5015 53.15 541.4 434.1

Fig. 4. Function approximation results for the Ackley function.

indicates that there is a statistically significant difference between
the mean CMLP algorithm result and the listed algorithm’s result in
Table 3. Bolded values in the table indicate instances in which the
CMLP algorithm witnessed a statistically significant improvement.

As Table 3 illustrates, the CMLP algorithm performed statistically
significantly better in terms of MAPE and 𝑅2 than the Nitta and
Arena algorithms on all four test functions. In addition, the CMLP was
significantly better than the GHR algorithm in three of the four test
functions. On the Schwefel function, the performance between the two
algorithms was statistically indistinguishable.

Regarding runtime, the four backpropagation methods did not show
any clear trends. The total training time required to reach a stopping

condition was measured in each instance. While the CMLP algorithm
was never the outright winner in terms of runtime, it did perform
significantly better than both the GHR and the Arena algorithm on
the Schwefel test function, and significantly better than the Nitta
algorithm on the Griewank function. Moreover, the CMLP had compa-
rable runtime performance with the GHR algorithm on the Griewank
test function and the Nitta algorithm on the Rastrigin test function.
In all other cases, the CMLP witnessed significantly worse runtime
performance. The authors suspect that this is likely due to the fact
that the CMLP algorithm achieved continued improvements in training
throughout the 250 epoch training window for each test function,
whereas the other three algorithms failed to progress in meaningful
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Fig. 5. Function approximation results for the Griewank function.

Table 3
Statistical comparison test results.

CMLP - GHR CMLP - Nitta CMLP - Arena

90% C.I. p-value 90% C.I. p-value 90% C.I. p-value

Ackley
Runtime (s) (1189, 1709) 3.642 × 10−13 (726.0, 1312) 1.441 × 10−8 (1021, 1560) 1.405 × 10−11

MAPE (−𝟎.𝟎𝟎𝟑 𝟒𝟑𝟑, −𝟎.𝟎𝟎𝟐 𝟓𝟑𝟏) 𝟏.𝟔𝟕𝟖 × 𝟏𝟎−𝟏𝟒 (−𝟎.𝟎𝟐𝟏 𝟓𝟕, −𝟎.𝟎𝟐𝟏 𝟑𝟕) 𝟏.𝟎𝟐𝟕 × 𝟏𝟎−𝟓𝟐 (−𝟎.𝟎𝟏𝟔 𝟖𝟓, −𝟎.𝟎𝟏𝟓 𝟎𝟖) 𝟓.𝟖𝟏𝟕 × 𝟏𝟎−𝟐𝟕

𝑅2 (𝟎.𝟎𝟔𝟓 𝟒𝟒, 𝟎.𝟎𝟗𝟒 𝟏𝟒) 𝟏.𝟎𝟐𝟒 × 𝟏𝟎−𝟏𝟐 (𝟎.𝟗𝟎𝟓𝟗, 𝟎.𝟗𝟏𝟕𝟒) 𝟏.𝟒𝟕𝟓 × 𝟏𝟎−𝟒𝟗 (𝟎.𝟓𝟕𝟎𝟖, 𝟎.𝟔𝟔𝟓𝟗) 𝟓.𝟑𝟕𝟒 × 𝟏𝟎−𝟐𝟑

Griewank
Runtime (s) (−95.36, 264.1) 0.3029 (−𝟖𝟑𝟐.𝟑, −𝟐𝟎𝟗.𝟑) 𝟎.𝟎𝟎𝟎 𝟖𝟑𝟓 𝟗 (649.8, 1003) 2.339 × 10−11

MAPE (−𝟎.𝟎𝟎𝟖 𝟖𝟒𝟖, −𝟎.𝟎𝟎𝟒 𝟗𝟗𝟔) 𝟗.𝟐𝟔𝟒 × 𝟏𝟎−𝟗 (−𝟎.𝟔𝟏𝟎𝟏, −𝟎.𝟔𝟎𝟐𝟓) 𝟏.𝟓𝟓𝟎 × 𝟏𝟎−𝟒𝟗 (−𝟎.𝟒𝟒𝟒𝟑, −𝟎.𝟑𝟐𝟎𝟕) 𝟐.𝟔𝟔𝟔 × 𝟏𝟎−𝟏𝟒

𝑅2 (𝟎.𝟎𝟎𝟎 𝟑𝟓𝟔 𝟑, 𝟎.𝟎𝟎𝟎 𝟖𝟔𝟒 𝟑) 𝟏.𝟏𝟕𝟓 × 𝟏𝟎−𝟓 (𝟎.𝟗𝟕𝟐𝟐, 𝟎.𝟗𝟖𝟗𝟕) 𝟏.𝟔𝟎𝟔 × 𝟏𝟎−𝟒𝟓 (𝟎.𝟒𝟑𝟑𝟐, 𝟎.𝟔𝟔𝟎𝟔) 𝟏.𝟐𝟓𝟎 × 𝟏𝟎−𝟏𝟏

Schwefel
Runtime (s) (−𝟑𝟕𝟐𝟕, −𝟑𝟑𝟕𝟓) 𝟏.𝟒𝟔𝟐 × 𝟏𝟎−𝟐𝟐 (2074, 2254) 6.185 × 10−25 (−𝟖𝟔𝟗.𝟖, −𝟔𝟏𝟎.𝟖) 𝟒.𝟖𝟏𝟎 × 𝟏𝟎−𝟏𝟐

MAPE (−0.003 507, 0.007 502) 0.4234 (−𝟎.𝟎𝟐𝟏 𝟖𝟔, −𝟎.𝟎𝟎𝟗 𝟗𝟓𝟓) 𝟏.𝟗𝟐𝟐 × 𝟏𝟎−𝟔 (−𝟎.𝟎𝟏𝟖 𝟐𝟔, −𝟎.𝟎𝟎𝟕 𝟗𝟐𝟕) 𝟒.𝟎𝟑𝟕 × 𝟏𝟎−𝟔

𝑅2 (−0.062 81, 0.024 02) 0.3259 (𝟎.𝟎𝟕𝟖 𝟕𝟕, 𝟎.𝟏𝟕𝟎𝟎) 𝟏.𝟑𝟖𝟔 × 𝟏𝟎−𝟔 (𝟎.𝟎𝟔𝟎 𝟑𝟎, 𝟎.𝟏𝟒𝟏𝟔) 𝟓.𝟓𝟏𝟐 × 𝟏𝟎−𝟔

Rastrigin
Runtime (s) (528.9, 896.3) 1.967 × 10−9 (−583.4, 1.622) 0.034 25 (808.1, 1164) 6.670 × 10−13

MAPE (−𝟎.𝟎𝟎𝟐 𝟎𝟓𝟏, −𝟎.𝟎𝟎𝟎 𝟐𝟎𝟕 𝟖) 𝟎.𝟎𝟏𝟎 𝟒𝟗 (−𝟎.𝟎𝟖𝟒 𝟏𝟎, −𝟎.𝟎𝟖𝟐 𝟑𝟓) 𝟐.𝟒𝟏𝟑 × 𝟏𝟎−𝟒𝟐 (−𝟎.𝟎𝟔𝟑 𝟒𝟗, −𝟎.𝟎𝟒𝟑 𝟔𝟐) 𝟖.𝟐𝟑𝟕 × 𝟏𝟎−𝟏𝟑

𝑅2 (𝟎.𝟎𝟎𝟔 𝟔𝟓𝟐, 𝟎.𝟎𝟎𝟗 𝟕𝟒𝟔) 𝟏.𝟗𝟒𝟓 × 𝟏𝟎−𝟏𝟐 (𝟎.𝟒𝟗𝟕𝟒, 𝟎.𝟓𝟎𝟗𝟕) 𝟏.𝟎𝟑𝟐 × 𝟏𝟎−𝟒𝟎 (𝟎.𝟐𝟕𝟗𝟖, 𝟎.𝟑𝟗𝟎𝟖) 𝟒.𝟗𝟕𝟗 × 𝟏𝟎−𝟏𝟒

improving directions or diverged from good minima and triggered the
early stopping conditions outlined in Section 3.

5. Conclusions

While each of the four backpropagation algorithms provide a viable
means of training quaternion neural networks, the subtle differences
between each algorithm result in statistically significant differences in

final network results. This study employed a robust design of experi-
ments methodology across a variety of test functions to compare the
algorithms. The results show that the CMLP algorithm outperforms the
other three methods in terms of test set performance while maintaining
adequate runtime performance. In general, the full calculus backprop-
agation rules developed using the GHR method did not result in a
significant improvement in terms of accuracy or runtime over the CMLP
algorithm.
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Fig. 6. Function approximation results for the Schwefel function.

Fig. 7. Function approximation results for the Rastrigin function.
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Fig. 8. Boxplots of the paired differences for each metric.

Fig. 9. Ackley 𝑅2 QQ plots.

While the Nitta and Arena methods are the most often cited quater-
nion backpropagation papers with 96 and 65 citations, respectively,
the CMLP update rules provide the strongest theoretical support and
the highest level of generality. In Buchholz and Sommer (2008), the
authors demonstrate the universal approximation capabilities of CMLP
networks and show that the CMLP backpropagation algorithm applies
to neural networks in any non-degenerate Clifford algebra. Hence, the
CMLP backpropagation algorithm reduces exactly to ordinary back-
propagation in R and extends to neural networks in C, H, H⊕H, and
a host of other algebras in higher dimensions.

Due to the CMLP’s strong theoretical foundation, statistically sig-
nificant improvement in trained network accuracy, and comparable
runtime results the authors recommend the CMLP architecture be used
as the basis for any future HNN regression tasks. The algorithm is
easy to implement for algebra specific architectures such as quaternion-
valued neural networks and also provides a simple basis for creating a
generic HNN framework using the language of geometric or Clifford
algebra that is extendable to hypercomplex neural networks of any di-
mension. Such a framework would open HNN research to the full range
of modern geometric algebra research, which includes a broad range
of applications to robotics, color image processing, and multispectral
image processing (Bayro-Corrochano, 2021; Hitzer et al., 2013).

However, there are several limitations of this study that must be
considered. First, this study focused solely on the performance of
the four backpropagation algorithms applied to regression problems.
Hence, the authors can make no claims regarding the generalizability
of the results to machine learning classification problems. A necessary
next step is the examination of the various quaternion backpropagation
methods to basic classification tasks such as pattern recognition or
image classification. Second, the study only considered four distinct
regression problems, which may not be representative of all possible

regression tasks. While the superlative performance of the CMLP algo-
rithm strongly indicates an overall trend, future work could consider
a wider range of regression problems to ensure the robustness of the
results.

Finally, there is a current gap in the HNN literature regarding the
interpretability of results. As noted in Section 1, HNNs have demon-
strated superlative performance over real-valued neural networks in a
host of problem domains. However, very little remains known as to why
HNNs are able to achieve this improved performance. There is a current
need for experimental and theoretical results explaining the mechanics
of optimization in hypercomplex domains.

All code and computer design files for this experiment can be
found in the supplemental electronic material for this paper and HNN
researchers are invited to use the code base as a starting point or
inspiration for future developments in HNN research and applications.
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Appendix A. Arena and Nitta QMLP algorithms

A.1. Arena QMLP

The construction and forward pass rules for the Arena QMLP are
identical to the Clifford Multilayer Perceptron listed in Section 2.3.
However, the backpropagation rules are slightly different.

Error Backpropagation (Arena QMLP):
For each layer 𝑙 = 1,… ,𝑀 and each neuron 𝑛 = 1,… , 𝑁𝑙:

𝛿(𝑙)𝑛 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝑦𝑛 − 𝑥̄(𝑀)
𝑛 ), 𝑙 = 𝑀

𝑁𝑙+1
∑

ℎ=1
𝑤̄(𝑙+1)

ℎ𝑛 ⊗
(

𝛿(𝑙+1)ℎ ⊙ ̇̄𝜎
(

𝑠(𝑙+1)𝑛
)

)

, 𝑙 ≠ 𝑀
(A.1)

Finally, the weight and bias update rules are given by:

𝑤̄(𝑙)
𝑛𝑚 = 𝑤̄(𝑙)

𝑛𝑚 + 𝜂 ⋅ 𝛿(𝑙)𝑛 ⊗ 𝑥̄∗(𝑙−1)𝑚 , (A.2)

𝜃̄(𝑙)𝑛 = 𝜃̄(𝑙)𝑛 + 𝜂 ⋅ 𝛿(𝑙)𝑛 , (A.3)

where 𝜂 is the learning rate and 𝑥̄∗(𝑙−1)𝑚 is the quaternion conjugate of
𝑥̄(𝑙−1)𝑚 , i.e., the conjugate of the quaternion input into the 𝑙th layer of
the network.

These rules can also be represented in matrix–vector notation using
quaternionic vectors and matrices, represented in bold, as follows:

𝜹̄(𝑙) =
⎧

⎪

⎨

⎪

⎩

𝐞̄ = (𝐲̄ − 𝐱̄(𝑀)), 𝑙 = 𝑀
(

𝐖̄(𝑙+1))′ ×
(

𝜹̄(𝑙+1) ⊙ ̇̄𝜎
(

𝐬(𝑙+1)
)

)

, 𝑙 ≠ 𝑀
(A.4)

Using the conjugate (Hermitian) transpose operation (⋅)𝐻 , the weight
update is then given by:

𝐖̄(𝑙) = 𝐖̄(𝑙) + 𝜂 ⋅ 𝜹̄(𝑙) ×
(

𝐱̄(𝑙−1)
)𝐻 , (A.5)

𝜽̄(𝑙) = 𝜽̄(𝑙) + 𝜂 ⋅ 𝜹̄(𝑙), (A.6)

Arena et al. (1994)’s update rules have been implemented in a
variety of neural network structures and have been shown to improve
on real-valued neural networks with an equivalent number of trainable
parameters in tasks such as chaotic time series prediction (Arena et al.,
1995), color image classification (Yin et al., 2019), and many others.

While Arena et al. (1994) presented the first QMLP model, Nitta
(1995) independently and concurrently proposed a QMLP model using
the same split activation and loss function construct as Arena et al.
(1994). Nitta (1995)’s QMLP model was identical in structure to Arena
et al. (1994)’s but utilized a slightly different weight update rule in
the proposed backpropagation algorithm that leveraged the quaternion
conjugate of the network weights. Nitta (1995)’s proposed backprop-
agation algorithm is presented below and the full derivation of the
algorithm can be found in Nitta (1995) and Parcollet et al. (2019), with
a succinct presentation of the algorithm in Parcollet et al. (2020):

Error Backpropagation (Nitta QMLP):

For each layer 𝑙 = 1,… ,𝑀 and each neuron 𝑛 = 1,… , 𝑁𝑙:

𝛿(𝑙)𝑛 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝑦𝑛 − 𝑥̄(𝑀)
𝑛 ), 𝑙 = 𝑀

𝑁𝑙+1
∑

ℎ=1
𝑤̄∗(𝑙+1)

ℎ𝑛 ⊗
(

𝛿(𝑙+1)ℎ ⊙ ̇̄𝜎
(

𝑠(𝑙+1)𝑛
)

)

, 𝑙 ≠ 𝑀
(A.7)

Finally, the weight and bias update rules are given by:

𝑤̄(𝑙)
𝑛𝑚 = 𝑤̄(𝑙)

𝑛𝑚 + 𝜂 ⋅ 𝛿(𝑙)𝑛 ⊗ 𝑠̄∗(𝑙−1)𝑚 , (A.8)

𝜃̄(𝑙)𝑛 = 𝜃̄(𝑙)𝑛 + 𝜂 ⋅ 𝛿(𝑙)𝑛 . (A.9)

In matrix–vector notation, the differences between the Arena et al.
(1994) and Nitta (1995) rules become more apparent:

𝜹̄(𝑙) =
⎧

⎪

⎨

⎪

⎩

𝐞̄ = (𝐲̄ − 𝐱̄(𝑀)), 𝑙 = 𝑀
(

𝐖̄(𝑙+1))𝐻 ×
(

𝜹̄(𝑙+1) ⊙ ̇̄𝜎
(

𝐬(𝑙+1)
)

)

, 𝑙 ≠ 𝑀
(A.10)

with weight updates given by:

𝐖̄(𝑙) = 𝐖̄(𝑙) + 𝜂 ⋅ 𝜹̄(𝑙) ×
(

𝐬̄(𝑙−1)
)𝐻 , (A.11)

𝜽̄(𝑙) = 𝜽̄(𝑙) + 𝜂 ⋅ 𝜹̄(𝑙). (A.12)

In particular, there are two key differences to note between Arena
et al. (1994)’s backpropagation algorithm versus Nitta (1995)’s back-
propagation algorithm: the first is the use of the quaternion conjugate
of the weights in the calculation of 𝛿(𝑙) for each layer, as was previously
discussed. In addition, the two weight update rules themselves are
slightly different, as can be seen in Eqs. (A.2) and (A.8). Under the
Arena rules, the weights of a given layer are updated utilizing the
quaternion conjugate of the input into that layer. Under the Nitta rules,
the weights of a given layer are updated utilizing the quaternion con-
jugate of the weighted sums from the previous network layer (i.e., the
output of the previous network layer prior to passing through that
layer’s activation function).

These two slight changes result in different performance between
the two algorithms. Most modern works tend to favor Nitta (1995)’s
derivation, but both algorithms have been cited consistently over the
years. While researchers can generally show performance improve-
ments between equivalent real-valued and quaternion-valued neural
networks, the discrepancy between these two quaternion learning al-
gorithms could provide an opportunity for even further optimization.
This work seeks to elucidate the true differences between both back-
propagation methods listed above, as well as a backpropagation method
developed for Clifford Algebras and the novel GHR-calculus backprop-
agation algorithm, which utilizes a true quaternion gradient in contrast
to the pseudo-gradient.

Appendix B. Paired difference plots

See Figs. B.10–B.12.

Appendix C. QQ plots

See Figs. C.13–C.24.

Fig. B.10. Griewank paired differences for each metric.
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Fig. B.11. Schwefel paired differences for each metric.

Fig. B.12. Rastrigin paired differences for each metric.

Fig. C.13. Ackley Runtime QQ plots.

Fig. C.14. Ackley MAPE QQ plots.
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Fig. C.15. Ackley 𝑅2 QQ plots.

Fig. C.16. Griewank runtime QQ plots.

Fig. C.17. Griewank MAPE QQ plots.

Fig. C.18. Griewank 𝑅2 QQ plots.
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Fig. C.19. Schwefel runtime QQ plots.

Fig. C.20. Schwefel MAPE QQ plots.

Fig. C.21. Schwefel 𝑅2 QQ plots.

Fig. C.22. Rastrigin runtime QQ plots.
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Fig. C.23. Rastrigin MAPE QQ plots.

Fig. C.24. Rastrigin 𝑅2 QQ plots.

Appendix D. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.eswa.2023.120448.
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