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Abstract 

Following the rise of neuroaesthetics as a research domain, computational aesthetics has 

also known a regain in popularity over the past decade with many works using novel 

computer vision and machine learning techniques to evaluate the aesthetic value of visual 

information. This thesis presents a new approach where low-level features inspired from 

the human visual system are extracted from images to train a machine learning-based 

system to classify visual information depending on its aesthetics, regardless of the type 

of visual media. Extensive tests are developed to highlight strengths and weaknesses of 

such low-level features while establishing good practices in the domain of study of 

computational aesthetics. The aesthetic classification system is not only tested on the 

most widely used dataset of photographs, called AVA, on which it is trained initially, but 

also on other photographic datasets to evaluate the robustness of the learnt aesthetic 

preferences over other rating communities.  

The system is then assessed in terms of aesthetic classification on other types of visual 

media to investigate whether the learnt aesthetic preferences represent photography rules 

or more general aesthetic rules. The skill transfer from aesthetic classification of photos 

to videos demonstrates a satisfying correct classification rate of videos without any prior 

training on the test set created by Tzelepis et al. Moreover, the initial photograph classifier 

can also be used on feature films to investigate the classifier’s learnt visual preferences, 

due to films providing a large number of frames easily labellable. The study on aesthetic 

classification of videos concludes with a case study on the work by an online content 

creator. The classifier recognised a significantly greater percentage of aesthetically high 

frames in videos filmed in studios than on-the-go. The results obtained across datasets 

containing videos of diverse natures manifest the extent of the system’s aesthetic 

knowledge. 

To conclude, the evolution of low-level visual features is studied in popular culture such 

as in paintings and brand logos. The work attempts to link aesthetic preferences during 

contemplation tasks such as aesthetic rating of photographs with preferred low-level 

visual features in art creation. It questions whether favoured visual features usage varies 

over the life of a painter, implicitly showing a relationship with artistic expertise. Findings 

display significant changes in use of universally preferred features over influential 
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abstract painters’ careers such an increase in cardinal lines and the colour blue; changes 

that were not observed in landscape painters. Regarding brand logos, only a few features 

evolved in a significant manner, most of them being colour-related features.  

Despite the incredible amount of data available online, phenomena developing over an 

entire life are still complicated to study. These computational experiments show that 

simple approaches focusing on the fundamentals instead of high-level measures allow to 

analyse artists’ visual preferences, as well as extract a community’s visual preferences 

from photos or videos while limiting impact from cultural and personal experiences. 
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Chapter 1                                                   

Introduction 

In the study of human visual preferences, experiments of behavioural psychology and 

neuroscience have been dominating the study of the phenomenon and have more recently 

been placed under the banner of neuroaesthetics (Chatterjee, 2011). Meanwhile, a 

subfield of artificial intelligence called computational aesthetics has been gaining 

momentum and has provided more insights into the understanding of human preferences. 

Historically, the domain is thought to originate in David Birkhoff’s attempt to define a 

theoretical measure of aesthetic taking order and complexity into account (Birkhoff, 

1933). With the increase in computational resources over the last decades, the field has 

evolved from its purely mathematical roots into computational experiments manipulating 

large datasets. Machine learning systems now train to predict human visual preferences 

and aesthetic judgements. The most prominent datasets used for research in visual 

aesthetics are assembled using community-based photography websites, implying 

thousands of pictures provided with hundreds of aesthetic ratings (Datta et al., 2006; 

Murray et al., 2012). While the datasets are not conceived in a strictly controlled 

environment as the ones in traditional psychology and neuroscience experiments, it offers 

opportunities to investigate human visual preferences and aesthetics on a larger scale. 
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1.1.  Problem formulation 

The aim of this thesis is to select a set of features represented in the human early visual 

system to evaluate the effect of low-level visual information (orientation, curvature, 

colour, etc.) in aesthetic judgement. The selected features should be implemented and fed 

into different machine learning algorithms to classify visual information based on its 

aesthetic value. As state-of-the-art solutions currently focus on binary classification, the 

proposed systems will be referred to as aesthetic classifiers. The selected features should 

efficiently represent human preferences and contribute heavily to the proposed aesthetic 

classifier’s state-of-the-art performances. It should extend state-of-the-art works due to 

the used low-level features which receive limited impact from cultural and personal 

experiences. The robustness of such aesthetic classifier should display cross-media 

capabilities, allowing investigations on the links of aesthetic criteria between different 

visual media. It should also make it possible to examine creative processes such as 

painting or logo designing, establishing a basis for future studies of aesthetics across 

datasets and visual media. Therefore, the brain-inspired features and the resulting 

aesthetic classifier should present a strong case that aesthetic evaluation is possible even 

when significantly discarding high-level information. 

The scope of this work is designed to be as broad as possible and is one of the main 

strengths of the proposed system, due to its different sources of inspiration from 

neuroaesthetics to computer vision. Indeed, the ambition behind the designed aesthetic 

classifier is to offer behavioural analyses while providing automated aesthetic 

predictions, making it attractive for developers and researchers in recommendation 

systems. From a computational resource perspective, the proposed feature extraction 

algorithms and the deep neural network should be able to run on any computer and even 

on the most recent phones. However, the proposed aesthetic classifier may be limited by 
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the number of low-level features presented in this proof of concept, meaning it is 

acceptable to have future implementations outperforming it. 

1.2.  Clarifying the vocabulary: Beauty, aesthetics and visual 

preferences 

This thesis contains vocabulary issued from neuroaesthetics and computational aesthetics. 

Due to the multiple disciplines involved, a significant dilemma relies on the fact that each 

subject has its definition and interpretation of the vocabulary. To begin with one of the 

most recurrent words in the study of aesthetics, the word “beauty” is used in various ways 

despite the strong cultural and philosophical meaning it conveys. For instance, 

neuroscientists and psychologists would define a stimulus as “beautiful” when the 

participant can report it as such, or the visual information triggers some observable 

positive physiological rewards (Ishizu & Zeki, 2011). In the meantime, artistic practices 

would tend to not limit themselves to the visual stimuli and define the whole experience 

of seeing a visual stimulus as “beautiful”, including the feeling of being confronted to the 

physical object that a painting or a photograph is and the eventual social context. 

Therefore, the word "beauty" is not used in this thesis to avoid any ambiguity. 

To be as accurate as possible, two principal terms are used to replace the concept of 

“beauty”. The first term is “aesthetic pleasantness”, which aims to emphasise the 

relationship between the set of rules and features included in the visual stimulus and the 

positive reward felt by the average observer. The second term is “visual preferences”, 

which is used when discussing how the observer perceives the visual stimulus and how 

specific groups of people are stimulated by specific visual features. While not limited to 

those two expressions, they illustrate how particular attention is given to dissociate visual 

stimuli and observers. 
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1.3.  Structure of the thesis 

The work developed in this thesis anchors itself deeply into empirical findings in the study 

of aesthetics. Chapter 2 introduces the historical developments leading to the study of 

human visual preferences, before reviewing the different trends that have been appearing 

along the last few decades regarding aesthetics in the domain of neuroscience of vision, 

psychology, and psychophysics. It is then followed by an overview of the different 

computer vision tools used in the field of computational aesthetics. 

Following the literature review, Chapter 3 clarifies how the different approaches interact 

with each other in the domain of study of human visual preferences and their 

shortcomings are enumerated. It allows to address the theoretical framework motivating 

the work presented in this thesis, as well as some general methods that will be used in the 

following chapters. 

Chapter 4 presents how a set of low-level features have been selected and developed. The 

set of features is then coupled with machine learning algorithms to reproduce human 

aesthetic judgements on datasets of photographs. This first computational experiment 

applies strict machine learning methodology and establishes a framework to compare 

state-of-the-art systems in computational aesthetics. The proposed aesthetic classifier is 

also tested for cross-dataset performances, with no notable work offering comparable 

results in the past.  

The demonstration that low-level features offer state-of-the-art performances when 

coupled with deep learning allows to move onto a new type of computational experiments 

in computational aesthetics. Chapter 5 exposes how the aesthetic classifier is used to 

categorise videos by assessing frames one by one and attempts cross-media aesthetic 

classification.  
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After achieving state-of-the-art levels of classification on photographs and satisfying 

cross-media performances on videos, Chapter 6 presents how the set of features is used 

to investigate human preferences on highly diverse types of visual information such as 

paintings and brand logos. The experiment attempts to link the set of features used for 

aesthetic classification with possible visual features used by influential artists and 

companies dominating their industries over the years. 

To finish, Chapter 7 addresses possible real-world applications of such works while 

relying on prototypes, before summarising all the results and assessing the contributions 

to the study of human visual preferences and aesthetics in Chapter 8. 
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Chapter 2                                                                  

Human Visual Preferences and Aesthetics: A 

Literature Review 

2.1. The origins of the study of aesthetics and visual preferences 

Artistic values and trends across centuries have heavily influenced the conversation on 

aesthetics. One of the first documented discussions on aesthetic experience originates 

back to ancient Greece with Plato and Aristotle addressing mimesis (Beardsley, 1975). 

Mimesis hypothesises that artistic beauty results from a representation of the real world. 

Plato firmly stated that art is a simple imitation of reality (Plato, 2003) from which it 

borrows its aesthetic qualities. Aristotle agreed to the idea of mimesis but rejected Plato’s 

opinion about art, arguing that art provides added value to the aesthetic attributes of the 

depicted object (Aristotle, 1996). Ancient Greece was a period rich in technical 

innovations for the artistic world and where works of art were primarily valued by their 

fidelity to represent real-world scenes. This approach brought an increasing flow of 

mathematical knowledge into the artistic world, which led to the creation of sophisticated 

technical methods to draw perfect shapes or credible perspectives (Casalderrey, 2017). 

The idea was later revisited and reached its peak with Renaissance paintings displaying 

photorealistic renders. These artworks left little room for technical improvements in the 

reproduction of the real-world and consequently triggered a new exploratory phase in 
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search of the meaning of aesthetics. Immanuel Kant in 1781 with the Kritik der reinen 

Vernunft (Critique Of Pure Reason) described the action of aesthetic judgement as a 

subjective phenomenon. Regardless of the reflections expressed by philosophers, it 

appears that the creative artistic process was merely addressed and the product remained 

the main subject. With Kant, the aesthetic quality of an object and the observer’s opinion 

are dissociated (Kant, 1999). Kant emphasised that aesthetic judgements are made 

without expecting a reward from the assessed object, as pure aesthetic evaluation should 

not take the functions of an object into account. Therefore, by interpreting the real world 

as a functionless medium, true beauty can be appreciated without any ambiguity or 

expectations. 

Coinciding with art evolving towards modern art in the middle of the 19th century, the 

birth of modern psychology motivated the first empirical study about perception and 

aesthetics in 1860 with Elemente der Psychophysik (Elements of psychophysics) by 

Gustav Fechner (Fechner, 1860). Fechner’s work marked the creation of psychophysics, 

the field of study exploring the relationship between visual stimuli and the observers’ 

experience or behaviour. Contradicting previous philosophical discussions on beauty, it 

focused on defining key elements of visual aesthetics such as colours or shapes in a 

bottom-up manner (Fechner, 1876). Fechner’s bottom-up perspective on the study of 

perception was challenged by Gestalt psychology, stipulating that features are always 

processed as a whole (Ehrenfels, 1890; Koffka, 1922; Wertheimer, 1923). Despite being 

initially developed to investigate visual perception, both psychophysics and Gestalt 

psychology are often sources of inspiration and cited by studies examining aesthetic 

experiences. It was only in 1999 that Semir Zeki and Vilayanur S. Ramachandran 

attempted to connect the “science of the beautiful” to the neurological knowledge at the 

time, both pioneering the field of neuroaesthetics (Ramachandran & Hirstein, 1999; Zeki, 
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1999). While the first statements were mainly theoretical and partly speculative, Zeki and 

his colleague Hideaki Kawabata applied their expertise in the neuroscience of vision and 

established the first study using functional magnetic resonance imaging (fMRI) to 

investigate correlations between activated brain areas during aesthetic experiences 

(Kawabata & Zeki, 2004).  

This brief introduction traces the study of aesthetic experiences and human visual 

preferences back to philosophical discussions in ancient Greece. Following the 

Renaissance period and with the emergence of psychological studies, scientific methods 

were increasingly used to study the topic. This section highlights how it only recently 

became its own research domain, instead of being a by-product of research on perception, 

vision, or philosophy of the arts.  

2.2. From visual processing to aesthetic pleasantness 

In both theoretical papers marking the birth of neuroaesthetics by Zeki and 

Ramachandran, a number of laws are suggested to categorise the types of aesthetics 

experiences in their relation to the human visual system (Ramachandran & Hirstein, 1999; 

Zeki, 1999). Zeki hypothesised that the visual brain aims at abstracting visual information 

to reduce noise and easily interpret the surrounding environment. Furthermore, 

Ramachandran and Hirstein developed eight laws to categorise artistic experiences: peak 

shift principle, grouping, isolating, contrast, symmetry, generic viewpoint, Bayesian logic 

of perception, and metaphors. Inspired from psychophysics and Gestalt psychology, the 

principles suggested by Zeki and Ramachandran can themselves be classified into three 

types. The principles focus on the structure of the visual stimuli, the level of complexity 

that leads to the understanding of the visual scene, and the association of the visual 

information with the observer’s previous knowledge. It highlights primary factors in 
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aesthetic experiences and by consequence, in aesthetic judgement. Therefore, the problem 

can be simplified and reformulated with the three main factors which are structural 

properties, complexity and familiarity.  

Building on the previous discussion, the following three definitions are used throughout 

this thesis. Firstly, a study is interpreted as investigating the impact of visual structure on 

aesthetic experiences if the visual stimuli presented to participants contain specific colour 

or line combinations, or a number of repetitions such as recursive features, or symmetries 

(reflectional, rotational and translational). Secondly, a study is understood as targeting 

visual complexity if the stimuli can be characterised by the density and variety of visual 

components. Thirdly, familiarity depends on the intensity and frequency of previous 

exposures to specific visual features or stimuli. Consequently, it varies across observers 

and may be seen as a purely subjective experience. 

This literature review develops each of the previously mentioned factors. Hereby it avoids 

grouping findings on philosophical or neurological levels as well as observations in 

specific contexts. Contextualised discussions, for example on landscape or human faces, 

are intentionally excluded from the following discussion to offer more general 

conclusions and avoid topics with cultural and individual preferences.  

2.2.1. Visual structure and composition 

The impact on aesthetic judgement by low-level visual components and their distribution 

across a two-dimensional space have been extensively studied in Gestalt and 

psychophysics studies. Regarding colours, it is important to note that studies on colour 

preference tend to use HSB (Hue, Saturation, Brightness) encoding, instead of the RGB 

(Red, Green, Blue) encoding. HSB encoding was introduced as a colour model in 

alignment with perception (Joblove & Greenberg, 1978). It is, therefore, used in 
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applications involving users, unlike RGB encoding which is less intuitive and harder to 

manipulate due to being a mix of the additive primary colours. 

In the human retina, two types of photoreceptor cells are sensitive to light, cones and rods. 

Cone cells act as colour receptors and exist in three different types. Each type of cone cell 

responds to a specific wavelength range, which corresponds roughly to red, green and 

blue (Kandel et al., 2000). The difference between the information received by these three 

types of cones then allows to identify perceived colours. A variety of fMRI experiments 

on humans and more invasive studies on other mammals with similar neurobiological 

structures lead to building robust hypotheses on colour processing at deeper neural levels. 

Areas in the visual cortex are numbered from V1 to V5 and are functional units within 

the occipital lobe towards the back of the head. The wavelengths received from the retina 

are thought to be registered and differentiated in the primary visual cortex, V1, with 

groups of cells, called blobs, also sensitive to specific wavelengths, before projecting onto 

V2, itself connected onto V4 (Kandel et al., 2000; Sincich & Horton, 2005). However, 

recent reviews question the blob-based structure in V1, due to evidence weakening the 

hypothesis that neural cells within blobs are sensitive to colours (Conway et al., 2010; 

Solomon & Lennie, 2007). While the visual area V4 was initially considered as the centre 

for colour processing, this hypothesis was dismissed due to its involvement in other aspect 

of visual processing such as shape information (Brouwer & Heeger, 2009; Hadjikhani et 

al., 1998; Heywood et al., 1992; Motter, 1994; Zeki & Marini, 1998). V4 appears to be 

involved in feature selectivity, contributing to visual scene understanding by highlighting 

salient features, but also to a more active attentional mechanism (Roe et al., 2012).  

More recently, investigations on colour preferences have been led mostly through 

psychological experiments. As reviewed by Palmer et al., several studies have found 

conclusive results in the average adult regarding a positive preference for shades of blue 
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and a negative preference for shades of yellow and orange (Palmer et al., 2013). 

Preferences are not limited to individual colours, as some colour combinations are known 

to be favoured by people (Ou et al., 2004b). The presence of other colours can impact the 

perception of individual colours, as well as the entire visual scene (Locher et al., 2005). 

Nonetheless, there are still significant variations in colour preferences across cultures and 

individuals (Ou et al., 2004a). For this reason, studies on infants shape a promising field 

on potential hardwired preferences in the human visual system. A study on infants by 

Franklin et al. demonstrates an innate positive colour preference for red hues and negative 

preference for green hues, with no difference between sexes, unlike in adults (Franklin et 

al., 2010).  

While the understanding of colour processing on a neurobiological level is still limited, 

many studies have also been conducted to improve the understanding of edge and shape 

processing. Experiments on mammals have demonstrated orientation selectivity in low-

level visual areas, with clear preferences for cardinal orientations (Blasdel, 1992; 

Chapman & Bonhoeffer, 1998). Similarly to the blobs of neural cells sensitive to specific 

colours, other groups of cells in V1, called interblobs, show preferences for orientation 

but can still be stimulated by some colours (Dow, 2002; Kandel et al., 2000; Solomon & 

Lennie, 2007). As for colours, the visual area V4 is involved in feature selection, but it is 

also sensitive to orientations, curves and some basic shapes (Roe et al., 2012). Despite 

the uncertainties behind the neural mechanisms composing the human visual system, 

psychological experiments confirm and emphasise the existence of such orientation 

preferences in humans (Girshick et al., 2011; Latto & Russell-Duff, 2002). This type of 

experiments also allows to go further and investigate the preference in shapes on a higher 

level, showing positive responses to smooth shape over sharp corners (Bertamini et al., 

2016; Munar et al., 2015; Silvia & Barona, 2009). 
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The composition of a visual stimulus requires observation on different scales to fully 

comprehend its structural properties. Gaze and attention to local features in visual 

information are studied using eye tracking, due to eye muscles activity potentially 

interfering with the recording of brain waves. Training in the arts shows to profoundly 

influence gaze efficiency and attention time to local features (Antes & Kristjanson, 1991; 

Koide et al., 2015; Vogt & Magnussen, 2007). For this reason, studies on structural 

properties focus on global particularities such as global symmetry, showing consistent 

results across people. Global symmetry is proven to prime positively aesthetic judgements 

in subjects across cultures from an early age, suggesting a hardwired mechanism in the 

visual system at birth (Huang et al., 2018). Pecchinenda et al. found that displaying 

symmetric patterns for only 75ms was sufficient to significant prime decision positively 

in aesthetic judgement (Pecchinenda et al., 2014). The brief display of the stimuli can be 

considered as a proof that symmetry detection is an unintentional behaviour, even though 

it has previously been argued that symmetry detection does not happen spontaneously. 

Another study strengthens the hypothesis of spontaneous processing by observing an 

Event-Related Potential (ERP) component occurring after subjects were exposed to 

symmetric visual patterns (Höfel & Jacobsen, 2007). The ERP component has also been 

observed with visual stimuli containing rotational symmetry, despite reflectional 

symmetry being preferred by the human visual system (Makin et al., 2012). While the 

results confirm the spontaneous nature of symmetry detection, it also points out that 

aesthetic evaluation is an intentional phenomenon as another ERP only appears in tasks 

where the subject is attending to the stimuli. In terms of electrophysiological responses, 

simple aesthetic contemplation is illustrated by a lateralised late positivity (440-880ms) 

while aesthetic evaluation showed an additional early frontocentral negativity (300-

400ms) (Makin et al., 2012). Evidence of specific sub-processes for symmetry detection 
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also exists at the functional level. The V1 area in the human visual system seems to 

encode information about the axis or the centre of symmetry, while higher visual areas 

such as V3a, V4, V7 and the lateral occipital cortex show significant activations when 

exposed to symmetric patterns (Bona et al., 2014; Sasaki et al., 2005; van der Zwan et al., 

1998). 

2.2.2. Visual complexity 

The distinction between structure and complexity is vague, especially when addressing 

topics such as structural symmetry due to its direct impact on complexity (Gartus & 

Leder, 2017). Visual complexity is complicated to define and anchor in a specific domain 

of research, due to being a concept of a higher, and therefore, more abstract level. A 

measure for visual complexity takes into account the variety and density of elements on 

different scales, as well as the variety of these elements’ characteristics. Early 

experiments are rarely reproducible due to subjective ratings based on unknown criteria. 

Berlyne first establishes a relationship between complexity and ratings of 

“interestingness” and “pleasingness”, hypothesising a threshold where complexity 

becomes too high for visual information to be aesthetically pleasant (Berlyne, 1970, 

1971). The use of subjective human ratings for visual complexity with vague criteria has 

been heavily challenged, with Rump suggesting that a more accurate vocabulary needs to 

be employed and potentially forgetting the term “visual complexity” (Rump, 1968). To 

solve many debates regarding the veracity of Berlyne’s findings, Nadal designed an 

experiment to investigate different meanings of complexity, concluding that arguments 

regarding the relationship between complexity and preference are due to vocabulary 

issues (Nadal et al., 2010). While most studies use biased metrics such as average ratings 

using a jury composed of only a few members, more mathematical and computational 

solutions are now emerging to improve reproducibility. For instance, image compression 
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algorithms prove to be a reliable indicator of human ratings of visual complexity due to 

their optimisation of memory by finding patterns and areas of perceptually similar colours 

in images (Donderi, 2006; Forsythe et al., 2011; Machado et al., 2015; Romero et al., 

2012). The use of image compression algorithms is particularly appreciated as they are 

mostly developed by a third-party organisation focusing on digital images and data 

compression ratio, and avoiding any potential bias from researchers running experiments. 

Fractal dimensionality also provides an objective measure of visual complexity. A fractal 

is a mathematical pattern often observed in nature, such as plants during their growth, but 

it also emerges in many artworks without intent from the artists (Forsythe et al., 2011; 

Taylor et al., 2005).  

Visual complexity brings new elements into the investigation of human aesthetic 

judgements. Measures of visual complexity have successfully been used in multiple 

applied studies looking at first impressions of visual content such as advertising or web 

page designing (Huhmann, 2003; Pieters et al., 2010; Reinecke et al., 2013; Tuch et al., 

2012). With the experiments focusing on specific scenarios, visual complexity appears to 

grow linearly with cognitive load, and therefore, could give indications of processing 

fluency (Harper et al., 2009). A phenomenon similar to the affective aspect of a subjective 

Eureka experience can be observed during aesthetic judgement when recognising familiar 

shapes in images initially confusing to the observers (Muth & Carbon, 2013). Palumbo et 

al. demonstrate that complex abstract patterns can make observers underestimate time 

durations, possibly implying that processing fluency could be influenced by non-artistic 

stimuli (Palumbo et al., 2014). Processing fluency is the assessment of the ease by which 

information is assimilated, either on a time or complexity scale. While Reber et al.’s 

theory suggests that processing fluency is tightly linked with aesthetic pleasantness, little 

is known about the actual mechanism at the origin of this relationship (Reber, 2012; Reber 
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et al., 2004). Reber argues that perceptual and conceptual fluency are both fed into the 

aesthetic judgement process, moderated by the expectations of processing complexity of 

the visual stimuli. In other words, a simple stimulus triggers no pleasure due to the 

expectation and the actual processing being fluent, but a complex stimulus that is 

processed fluently is rewarding. Therefore, Reber suggests that aesthetic pleasantness is 

a purely subjective experience that does not uniquely rely on the perception of the 

objective features of a stimulus, but also on the conceptual interpretation bringing cultural 

and personal experience into the decision process. 

2.2.3. Familiarity with the visual stimuli and conceptual association 

Conceptual processing fluency plays a role in aesthetic pleasantness (Reber et al., 2004). 

Both perceptual and conceptual fluency prove to be the source of positive emotions, 

triggering a sense of familiarity towards a visual stimulus (Lanska et al., 2014). Forsythe 

et al. also define familiarity as the stage in visual processing following complexity 

estimation and structural understanding (Forsythe et al., 2008, 2011). Familiarity creates 

a bias in the judgement of complexity, and therefore, indirectly affects aesthetic 

experiences. Such an impact was exposed by studies comparing abstract and 

representational artworks. Zeki et al. first addressed the work of influential and successful 

artist, Francis Bacon, who balanced his work between abstraction and teasing of familiar 

items such as faces (Zeki & Ishizu, 2013). Interestingly, conceptual stability appears to 

be preferred over unstable contexts (Muth et al., 2016). The plausibility of scenes and 

well-chosen titles contribute to aesthetic pleasure (Sammartino & Palmer, 2012). 

An object recognition task in paintings using event-related fMRI not only displays 

activation in higher-level visual regions when looking at representational art, but it also 

triggers stronger activation in the fusiform gyrus and temporoparietal junction (TPJ), 
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brain regions implicated in object recognition and local and global searches (Fairhall & 

Ishai, 2008). Another study using transcranial magnetic stimulation (TMS) demonstrates 

that interfering with activity in the lateral occipital cortex (LOC) leads to a loss in 

aesthetic appreciation of representational paintings (Cattaneo et al., 2015). Cattaneo et al. 

did not, however, observe the same effect with abstract paintings. The activation of the 

LOC during object recognition implies that semantic associations positively influence 

aesthetic judgement. Nonetheless, it can also be argued that the semantic content of 

representative paintings is positively biased, meaning that no strong negative emotion 

could be triggered, for instance by disgusting or violent visual content. Another TMS 

experiment run by the same research group focused on the involvement of the prefrontal 

cortex (PFC) in aesthetic judgement of faces (Ferrari et al., 2015). The results indicate 

that stimulation of the dorsolateral prefrontal cortex before exposure to a face positively 

primes the participant. Studies investigating brain activity during tasks with 

representational and abstract visual information allow to pinpoint significant differences 

in regions involved and potential influences of object recognition and memory on 

aesthetic judgement. 

Of course, it is to be expected that visual preferences in individuals can be altered by their 

personal and cultural experiences, as well as art training. Silvia attempts to connect the 

sciences of aesthetics and emotions and argues that emotions in aesthetic experiences are 

diverse. Consequently, conceptual association is likely to be the stage where the most 

variance emerge across people (Silvia, 2012). People tend to especially disagree when 

judging pictures containing controversial or negative semantics (Cooper & Silvia, 2009; 

Silvia & Brown, 2007). For example, Silvia demonstrates some similar findings regarding 

preferences in complexity, where art experts have more interest for complex pictures 

despite expressing similar emotions as lay people (Silvia, 2006). Another study also 
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shows that the strong structural particularity that is symmetry is preferred over asymmetry 

in the same manner by both art experts and non-specialists in implicit preference tests, 

but not in explicit statements by participants (Weichselbaum et al., 2018). It contributes 

to the idea of a robust priming on the visual system, but also that personal experience and 

training can overwrite this bias to some extent at a later stage. Moreover, the effect of the 

context surrounding the whole aesthetic experience on the emotional response is still 

controversial. Experiments taking place in an artistic environment find that positive 

emotions are either attenuated or stronger, while negative emotions stay unchanged 

(Brieber et al., 2015; Gerger et al., 2014). With personal experiences being complicated 

to control in experimental settings, research in aesthetic judgement across different art 

expertise levels allow to hypothesise that preferences related to perception are the most 

stable across people. 

2.2.4. Modelling aesthetic judgement 

Berlyne’s theory suggests that interest and preference grow curvilinearly with the 

complexity of visual stimuli up to a threshold from where this correlation weakens 

(Berlyne, 1970, 1971). Perceived complexity emerges from different elements in visual 

information, which is processed through different stages with some level of parallelism 

(Zeki, 2015). The different visual preferences that exist at the neural level in the 

processing of colours, edges, and shapes are overwritten by personal or cultural 

experiences. Nevertheless, these hardwired preferences appear to positively prime 

observers in their aesthetic judgements. A recent review by Che et al. puts the common 

view of visual preferences across cultures in perspective, with empirical studies strongly 

indicating that perceptual preferences shape individuals’ aesthetic preferences (Che et al., 

2018). Moreover, Che et al. emphasise the robustness of perceptual preferences by 

mentioning how such preferences are not only shared across humans, but also across 
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animals, and especially mammals. As put forward by Silvia, research on the relationship 

between aesthetics and emotions is still, similarly to neuroaesthetics, in its early stage 

(Silvia, 2012). Silvia underlines that the effect of both positive and negative emotions 

should receive more attention. While Silvia’s argument is valid, adopting a bottom-up 

approach and evaluate the influence of perception on aesthetic experiences may be a 

priority based on the previous suggestion by Che et al. (2018). For modelling purposes, 

factors of aesthetic experiences with the smallest variation across populations are 

essential to successful development. It is necessary to isolate the different elements even 

further and simplify the problem for further investigation in human aesthetic judgement. 

Considering that aesthetic contemplation and judgement can both be identified as creative 

activities, it can be assumed that they can be classified according to Melvin Rhodes’ 4 Ps 

of creativity: Person, Process, Product and Press (which stands for the context) (Rhodes, 

1961). Applying such segregation of the different components involved in the aesthetic 

judgement decision process strengthens previous conclusions. Indeed, the product can be 

assessed through direct visual observation and computer vision descriptors, and the 

process has been investigated with great progress being been made in the neuroscience 

and cognitive of aesthetic experience. However, the role of the person and the surrounding 

context are difficult to dissociate from each other, mainly because they vary hugely.  

With evidence pointing at a strong relationship between complexity estimation at the 

beginning of the aesthetic judgement process and the final decision, Graf et al. introduced 

an estimation of processing complexity of the visual system in their fluency-based model 

under the name of “fluency estimation” (Chipman, 1977; Forsythe et al., 2008; Graf & 

Landwehr, 2015). It implies that when first attending a visual stimulus, the human visual 

system estimates the resources required for processing. If the stimulus is processed more 

fluently than expected, for example, because of a specific structure in the stimulus, the 
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system can produce a reward. Nonetheless, it is important to note that the complexity 

estimation theory has little empirical support from neuroscience. 

In the model proposed by Redies, the physical and cultural environment of the subject are 

represented (Redies, 2015). The model is especially interesting for its representation of 

the whole process as a gradient shared between perceptual and cognitive processing, 

respectively representing the processing of the form and semantic content in visual 

stimuli. Chatterjee also made it a pivotal point of its model of aesthetic experience, 

labelling the main three factors as sensory-motor, knowledge-meaning, and emotion-

valuation (Chatterjee & Vartanian, 2014). This categorisation emphasises the full body 

experience that is provided by aesthetic pleasantness. However, as discussed previously, 

influences caused by personal and cultural experiences can lead to an increasing number 

of different factors to take into account.  

Despite all the visual processing happening prior to aesthetic appreciation, the latter is 

still heavily investigated to pinpoint a possible brain area weighing the many factors to 

reach a decision. As a whole, experiments in this emerging domain are rarely consistent 

with each other and consequently, it is difficult to make definite conclusions. However, 

it is suggested that the results are complementary and that the lack of consistency is due 

to subtle differences in vocabulary in the tasks, such as asking participants to judge 

whether a visual stimulus is “beautiful or not beautiful” or “beautiful or ugly” (Cela-

Conde et al., 2011; Nadal et al., 2008). For instance, Munar et al. observed significant 

differences in brain activity 400ms after exposure to “beautiful” or “not beautiful” visual 

stimuli (Munar et al., 2012). On a neurobiological level, Kawabata and Zeki found 

differences in activation of the Orbito-Frontal Cortex (OFC) and the motor cortex 

depending on whether paintings are qualified as “beautiful” or “ugly” (Kawabata & Zeki, 

2004). The results were confirmed by Ishizu and Zeki’s study, which revealed additional 
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subcortical regions but came to the conclusion that the role of these areas is not 

straightforward to determine, due to processes such as decision-making, judgement, and 

aesthetic experience being tricky to dissociate (Ishizu & Zeki, 2013). Also studying 

aesthetic experiences triggered by paintings, Vartanian and Goel obtained results showing 

reduced activity in the right caudate nucleus as preference decreased, while the bilateral 

occipital gyri, left cingulate sulcus, and bilateral fusiform gyri displayed stronger 

activations as preference increased (Vartanian & Goel, 2004). Therefore, it is suggested 

that these brain areas are involved in the evaluation of stimuli with emotional content and 

potential rewards. 

To conclude, this section has for main role to define the most stable sub-processes 

contributing to the final decision in aesthetic judgement in order to develop computational 

models. While an increasing number of studies on complexity, emotions and aesthetic 

judgement show influences on the final outcome, findings regarding preferences related 

to early visual processing appear more consistent across the different areas of study. 

However, it is essential to note that the perception of motion and depth were both 

intentionally left out from this review to focus exclusively on two-dimensional static 

images.   

2.3.  Computational processing of visual information 

This section introduces traditional and more recent computational tools used in computer 

vision. The goal of this section is to establish the general direction of advances in 

computer vision, before developing on feature extraction and machine learning 

algorithms used in their entirety or as inspiration in this thesis. A strong focus is brought 

on the efficiency and sustainability of solutions in a domain under pressure of an 

exploding number of technological innovations.  
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2.3.1. Image Processing 

With computing power respecting Moore’s law and internet speed growing at a steady 

pace, digital visual content is more present than ever in everyday life. From live video 

streaming on websites such as Twitch.tv to real-time video alteration on smartphone 

application such as Snapchat, not only the distribution of visual content has reached 

quality levels where further improvements are barely perceivable to the naked eye, but 

the content can also be transformed in real-time. Image processing and computer vision 

as a research domain have incredibly expanded with ever more complex and critical 

problems given to machines. When selecting an algorithm for image processing purposes, 

three main factors are taken into account: image pixel size, computer power available and 

task complexity. In many scenarios of image processing, information is extracted from 

pixels individually or by applying filters or templates on pixel areas. While no norm has 

been established regarding the size or format of digital photographs, a good indicator of 

the number of pixels in digital visual content and potential datasets mined on the internet 

is the maximum video quality offered by the streaming website, YouTube. Before 

activating videos of higher quality on the website, YouTube has to evaluate the potential 

level of adoption. For example, it must consider the number of video content creators who 

would produce in such resolution, but also whether the average broadband can support 

this level of data transfer and the average computer can display the video. As shown in 

Figure 2.1, the maximum number of pixels in 2005 is dwarfed by the current format. 

Despite the incredible variations possible between the different visual media, evaluating 

the order of magnitude of the average number of pixels in visual content online can help 

to anticipate the effort required to process visual content.  
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Figure 2.1: Number of pixels in the highest video quality available over time on the 

video streaming website, YouTube (data retrieved from 

http://en.wikipedia.org/wiki/YouTube, 2018). 

 

According to Moore’s law, the cost of making transistors for computational units is set to 

reduce significantly over time, making computing power grow in an exponential manner 

(Moore, 1965). The prediction made by Gordon Moore, co-founder of Intel Corporation, 

appeared to fulfil itself until more recently. As the exponential growth of the number of 

transistors in Central Processing Units (CPU) can be observed in Figure 2.2, the 

exponential trend has only been saved by the development of multi-core CPUs despite 

the actual single-core frequency losing momentum (Rupp et al., 2018). As the average 

number of pixels in images climbs at a seemingly exponential rate, a possible end to the 

trend respecting Moore’s law could cause severe processing issues. Despite both 

predictions showing risks of plateauing on the long term, it does illustrate how the design 

of computer vision algorithms should take into account this relationship and focus on the 

efficiency and scalability of visual information processing to keep the whole computer 

vision ecosystem sustainable on the long term. 
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Figure 2.2: Number of transistors per CPU since the 1970s. (Rupp et al., 2018) 

 

2.3.2. Visual Feature Extraction for Aesthetic Measures 

Many machine learning and statistical studies develop their own handmade features to 

use as metrics for a specific task. The metrics are usually inspired from different domains 

of research such as humanities or behavioural sciences. The main advantage of such 

approach is that it allows to reduce considerably the dimensionality of the visual 

information being processed. First stated by Bellman, the curse of dimensionality is a 

recurrent problem in machine learning assuming that data quickly become noisy when 

working with a high number of dimensions, which then requires to increase the size of 

training sets (Bellman, 1957).  

For example, Datta et al. developed a straightforward score for light exposure in 

photographs by averaging thousands of values representing the brightness of coloured 

pixels in an image into a single score (Datta et al., 2006). In another example, Lo et al. 

proposed to score the “color palette” by using a weighted k-means clustering algorithm 

to extract the 5 dominant colours, before scoring it by measuring the closeness of the 

dominant colours with photographs in the training set (Lo et al., 2012). While much more 
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complex aesthetic measures exist and attempt to be as loyal as possible to the rules of 

aesthetics, such scoring systems can be biased by the authors of the algorithms (Romero 

et al., 2012; Sun et al., 2018). Indeed, rare are the rules of aesthetics purely and strictly 

based on a mathematical formula (Casalderrey, 2017). The grey areas offer freedom of 

interpretation, which may lead the developer to feed their cultural and personal experience 

into the algorithm. Moreover, using such methods to avoid the curse of dimensionality 

and make machine learning easier can significantly affect performances in the other way 

due to potential oversimplification of the information. 

Regardless of the performance of such methods, Romero et al. (2012) display an 

evolutionary process to develop and select measures of complexity for aesthetic 

classification. The paper exposes the results of different possible measures of complexity 

but also investigates the gain provided by each component to the final results. After 

ranking the many features by their potential information gain using a Support Vector 

Machine, the paper goes further and highlights the information overlap of the different 

features by showing how coupling many features provide minimal performance 

improvements. 

2.3.3. Advanced Feature Extraction Algorithms: Visual Descriptors 

On the other end of the spectrum of visual feature extraction, many algorithms have been 

designed to retrieve as much information as possible regarding low-level visual features. 

Most of the well-known feature extraction algorithms, such the Scale Invariant Feature 

Transform (SIFT) or the Histograms of Oriented Gradient (HOG), have initially been 

designed for object recognition purposes (Dalal & Triggs, 2005; Lowe, 1999). The sets 

of features extracted by these algorithms are qualified as visual descriptors, as they define 

basic characteristics such as shape and colour for instance. SIFT marked the beginning of 
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a new era in computer vision with a series of efficient feature extractor for images in 

uncontrolled environments. Indeed, SIFT aimed at providing robust feature detection 

independent from translation, scaling and orientation with reasonable flexibility for noise 

and illumination. SIFT uses the Difference of Gaussians to efficiently highlight major 

features in different scale spaces. The Difference of Gaussians is achieved by subtracting 

two versions of the same image with different levels of Gaussian blur. After noise-

cleaning and locating keypoints, each keypoint is characterised by its estimated 

orientation and gradient magnitude, both contained into what is called a visual descriptor. 

With a number of keypoints on the order of the thousands, SIFT has demonstrated an 

ability to correctly match 78.6% of features in images even after distortions, orientation 

changes and added noise (Lowe, 1999). 

Over the years, many other algorithms using the keypoint approach have built onto the 

base provided by SIFT and improved on robustness and efficiency, such as SURF 

(Speeded Up Robust Features) and more recently ORB (Oriented FAST and Rotated 

BRIEF – two other algorithms) (Bay et al., 2006; Rublee et al., 2011). With datasets 

reaching millions of images, Puna Turcot and SIFT’s creator, David Lowe addressed 

efficiency issues in the representation of the extracted information and proposed a method 

to reduce the number of local visual features extracted per image (Turcot & Lowe, 2009). 

Following a bag-of-word framework, the method consists of combining local visual 

features to define “visual words” which have their usefulness assessed by their frequency 

of occurrence in images of the dataset. 

With keypoint-based approaches dominating the domain of image recognition, the 

Histograms of Oriented Gradient (HOG) algorithm provided an alternative to the 

traditional use of visual descriptors and was initially developed to detect humans. HOG 

is based on a simple design where an image is considered as a grid of pixels, itself divided 
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into 16x16-pixel sub-areas called “blocks” used for local illumination normalisation. 

Each block contains four 8x8-pixel sub-areas called “cells”, and within each cell, an 

estimated orientation is given for every pixel using the grayscale difference of its 

surrounding pixels. A histogram with a pre-defined number of bins is then processed to 

visualise the different categories of orientations present in the cell. 

Despite its simple design, HOG outperformed keypoint-based solutions in human 

detection tasks due to its grid covering the whole image, preventing any error in the 

detection of keypoints. In a human detection scenario, HOG also has the advantage of 

being sensitive to orientation and proportion (Dalal & Triggs, 2005). 

2.3.4. Binary classifiers: Support Vector Machine & Multilayer 

Perceptrons 

The extraction and scoring of visual information is the first step in many computational 

aesthetics experiments. The extracted information then needs to be fed into machine 

learning algorithms to learn its relationship to aesthetic preferences. SVMs (Support 

Vector Machine) and Multilayer Perceptrons are among the most popular supervised 

machine learning algorithms used for binary classification tasks. Both algorithms owe 

their popularity and adoption to the wide range of libraries which include them such as 

scikit-learn for Python or WEKA for Java. Their global adoption is also due to their ease 

to train and run, making them perfect for building prototypes. Most current computers 

can run these algorithms even in the greediest settings, with the only possible limitation 

caused by the time required for training. 

Cortes and Vapnik first introduced SVM in 1995 as a method to differentiate two sets of 

items (Cortes & Vapnik, 1995). In the simplest case, data points belonging to two distinct 

classes are mapped in a dimensional feature space and the SVM algorithm attempts to 
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find the most optimal hyperplane to segregate the two sets of items. The algorithm 

searches for the data points in each class which are the closest to each other in the 

dimensional space to calculate the support vector, creating a border in the space where 

the decision is the most critical and ambiguous. While SVM initially assumes that the two 

sets of data points are linearly separable and maximises the margin between the decision 

hyperplane and the two sets of data points, it can also adopt a soft margin hyperplane 

where it calculates the decision hyperplane with the least errors using the hinge loss 

function. To solve non-linear problems, the  “kernel trick” was developed to transform 

the input data into a higher-dimensional space (Boser et al., 1992). As illustrated in Figure 

2.3, while the data points cannot be linearly separated in the input space, a maximum-

margin hyperplane can be found after transformation into a higher-dimensional feature 

space, despite this same hyperplane not appearing linear when represented in the original 

input space. SVMs can also be tuned using regularisation parameters aiming to improve 

generalisation. The regularisation parameters allow to modify the amount of allowed 

misclassification in the training phase and the width of the margin surrounding the 

decision hyperplane. 

 

Figure 2.3: Representation of inputs and the transform into a high-dimensional space. 
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Following a connectionist approach, the multilayer perceptron (MLP) is often considered 

as the most basic working solution of neural networks. MLPs are composed of at least 

three interconnected layers of artificial neurons (also called units), where input and output 

layers are connected by one or more hidden layers, as represented in Figure 2.4. Each 

neuron on a layer is connected to all neurons of the following layer, and each connection 

is characterised by its strength, called weight. Training of such architecture was made 

possible by the development of the back-propagation algorithm (Rumelhart et al., 1986). 

The algorithm allows the network to learn by feeding data with an expected outcome and 

spread back potential errors across the layers during the training phase to tune the weights 

of the connections between neurons. Thanks to the use of hidden layers, a multilayer 

perceptron can model non-linear relationships, which is not possible with single-layer 

perceptron.  

 

Figure 2.4: Basic architecture of a multilayer perceptron. 

 

SVM and MLP have continuously been opposed and compared with respect to their 

theoretical principles, but no winner has ever been truly declared (Collobert & Bengio, 

2004; Suykens, 2001). While SVM is praised for always finding the global minimum 

solution and being accurate with high-dimensional data, MLP is seen as a more practical 
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solution due to the fixed size of the models with a small number of neurons and, therefore, 

being a more scalable (Osowski et al., 2004). 

2.3.5. Deep Learning 

Deep learning is a subfield of machine learning attracting the most attention in the last 

decade by overtaking traditional methods in pattern recognition contests such as MNIST 

(Schmidhuber, 2015). Moreover, the academic community contributing to research in 

deep learning is extraordinarily active on social media and conferences, making the field 

expand at an even faster rate. Emerging from a combination of larger datasets, growing 

GPU processing capabilities and machine learning innovations allowing neural networks 

of a much larger scale to learn, deep learning englobes several types of deep neural 

networks with different architectures and learning methods. A deep neural network can 

adopt an architecture as simple as a multilayer perceptron with more than one hidden 

layer of units. However, even in its most basic form, deep neural networks can include a 

high number of regularisation strategies, which helps to avoid overfitting the data and by 

consequence, improve generalisation (Goodfellow et al., 2017). 

While some regularisation methods are not exclusive to deep learning, their use is 

nowadays more critical in this domain due to the machine learning algorithms previously 

mentioned now being mainly used for prototyping. One of the most straightforward 

regularisation techniques, called early stopping, consists of continually making a copy of 

the most performant configurations on the validation set during the training phase. The 

reason for such practice is that excessive training has been shown to lead to overfitting of 

the training data, causing performance loss on the final test set. Speaking of training data, 

due to the facilitation in processing large datasets containing millions of entries, it has 

also become common practice to generate additional training items to improve 
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generalisation. New entries can be created by adding noise to the inputs such as, for visual 

information, create symmetric images or modify the colour settings of the original image. 

Other regularisation methods are implemented within the cost function which allows to 

calculate the errors between expected and actual outcomes. The cost function is an 

indicator of the progress made during training and is aimed to be as small as possible. For 

instance, the L2 parameter penalty, also called weight decay, allows to reduce the 

weights’ magnitude and keep them as close as possible to a given value, which is zero in 

the average case. L2 regularisation is achieved by adding the square of the sum of all 

weights to the cost function. Considered as having similar effects as early stopping, L2 

regularisation limits weight divergence by forcing them to stay as small as possible and 

therefore, reduce influence from potential noise. Another method, called L1 

regularisation, uses a similar approach and adds the sum of absolute values of the weight 

to the cost function. While it may appear to have the same effect as L2 regularisation, L1 

regularisation shrink the weights by a constant amount at each step while L2 

regularisation shrinks them proportionally. Therefore, L1 tends to highlight the most 

robust connections and select the most relevant inputs, but it can also cause some weights 

to reach an absolute zero and not reach the most optimal solution. 

One of the most recent regularisation techniques developed, the dropout algorithm 

consists of randomly removing a chosen percentage of units in the input and hidden layers 

at each training step (Srivastava et al., 2014). As represented in Figure 2.5, selected units 

have their weights set to zero for the given training step. Such process makes it possible 

to train the ensemble of all possible subnetworks within the trained neural architecture, 

improving generalisation. 
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Figure 2.5: Representation of a neural network in its standard setting and with dropout 

applied. 

 

With the constant flow of innovations, deep learning has made it easier to learn from a 

gigantic amount of data with a high number of features. It has led to a regain in popularity 

of the previously developed convolutional neural networks (CNN), which have become 

unprecedently dominant in the domain of computer vision. By taking inspiration from 

simple and complex cells, Fukushima had already introduced the concept of convolution 

and average pooling into a machine learning model called the neocognitron (Fukushima, 

1980). The model was the first to implement a receptive field coupled to a filter moving 

across it to learn visual patterns. At the time, the concept did not spread due to the lack 

of direct usability, similarly to deep learning in its early years. However, Yann LeCun 

successfully revived the idea by publishing a large dataset for handwritten digit 

recognition and establishing new state-of-the-art systems, showing the potential and 

reliability of CNNs for automated postcode reading (LeCun et al., 1998, 1999, 1995). 

CNNs allow to process a high number of inputs while keeping some level of spatial 

information, which makes it perfect for image processing as a raw image can count 

millions of pixels, each represented by 3 values (RGB or HSB in most cases, and therefore 

shaping a 3-dimensional input). CNNs take their name from the use of convolution to 
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process information in at least one layer. A typical CNN layer is composed of an input 

layer, a convolutional layer, and a pooling layer.  

Taking the example of an image, the input takes the shape of a 3-dimensional volume 

(width, height, and number of channels). A finite number of filters, also called kernels, is 

applied on the input volume as shown in Figure 2.6. Each kernel computes the dot product 

using the values of the filter and the input for each local area (including in depth) across 

the width and height of the input. Therefore, an activation map is created for each filter. 

The weights of each kernel are tuned during training, so the most relevant features are 

highlighted when filtering information. Such process leads to neural connections in CNNs 

having sparse interactions, unlike traditional neural network layers which are fully 

connected. As displayed in Figure 2.7, a given neuron on the first layer only propagates 

its information towards a certain number of neurons of the following layer. However, 

neurons on deeper levels still indirectly receive information from the first layer, meaning 

the middle layer have some spatial information from the input layer while feeding the 

information through the network in a more efficient manner. 
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Figure 2.6: Kernel processing the input volume into the convolutional layer. 

 

 

Figure 2.7: Differences in connections between a traditional fully-connected neural 

network (left) and a convolutional layer using a kernel of width 3 (right). 

 

Another key feature of CNNs is the pooling layer which allows downsampling the 

information with minimal loss. It applies max pooling filters on the previous layer where 

each filter only keeps the input with the highest value from the previous layer. In most 
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cases, several layers of convolutional and pooling layers are set to extract features before 

feeding them into a traditional fully-connected layer of neurons. 

To conclude, this overview exposes the robust mechanisms of deep learning and its most 

important architecture for computer vision. While deep learning brings efficient and 

performant solutions, the learning process is complicated to investigate, which can turn 

out to be problematic in a context where one of the objectives is to learn about 

relationships within the training data. 
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Chapter 3                                                      

Theoretical and Conceptual Frameworks 

As developed in Chapter 2, distinct trends are progressing in the domain of study of 

human visual preferences. This chapter establishes typical characteristics of these current 

trends before comparing the approaches. The position of the thesis in this environment is 

then discussed by introducing its framework and methodology.  

3.1.  Trends in the study of human visual preferences 

In order to compare the past and current investigations in human visual preferences and 

understand the evolution of the field of study, it is necessary to highlight common 

characteristics due to the wide range of disciplines involved. To identify and compare the 

different trends, it is proposed to represent them as evolving in a two-dimensional space, 

with one dimension being fidelity to empirical knowledge of the human visual system 

and the second dimension being generalisability of the findings. 

The first dimension is the level of fidelity to the knowledge of the visual system. For 

instance, the domain of neuroaesthetics in its early years represents one of the extremes 

on this axis as its initial objective was to link the idea of “beauty” to empirical studies on 
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the human visual system. As first demonstrated in the study by Kawabata and Zeki 

(2004), brain regions can be associated with aesthetic judgment. While such an 

association is established through rigorous methodology, it suffers from similar 

limitations as traditional neuroscience experiments. The interpretation of results relies 

heavily on the previously known roles of brain regions, leading to the conception of neural 

and cognitive models which can overfit the previously observed phenomena. As 

mentioned in Chapter 2, Nadal et al. (2008) mention that the lack of reproducibility in 

neuroaesthetics could be simply caused by the vocabulary used to formulate the tasks 

composing experiments. If the directives for a task can impact the findings to such an 

extent, it appears risky and too early to base new models on neuroaesthetics findings. 

Therefore, it can be argued that sub-domains of neuroscience can be speculative in their 

early years due to the low numbers of tested scenarios and that models issued from 

neuroaesthetics experiments are still fragile. Hence, the conception of a model of aesthetic 

judgement may benefit from relying solely on fundamental knowledge in the 

neuroscience of vision instead of more novel but also less verified findings. 

At the opposite end of the axis representing fidelity to neuroscientific knowledge, many 

works such as Reber at al. (2004) develop theories accentuating on the differences across 

people and the subjectivity of aesthetic experiences. As part of the aesthetic judgment 

process is subjective due to cultural and personal experiences, it is currently impossible 

to investigate such differences at the neurological level. When studying the subjective 

aspect of aesthetic appreciation, discussions often focus on individuals and address 

renown artists with exceptional aptitudes to create aesthetically appealing works of art. 

While some experiments may be able to pinpoint neurological mechanisms observed to 

help artistic creation, there is still no way to objectively and quantitively assess the impact 

on aesthetic judgment during visual art creation of a well-developed brain area or a 
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condition such as dementia (B. L. Miller et al., 1998; Z. A. Miller & Miller, 2012). Even 

though Semir Zeki contributed to the first experiments with strict neuroscience 

methodology, he also is the main author of published essays exploring the links between 

artists and neuroscience by attempting to reverse-engineer the brains of selected artists 

from their works of art (Zeki, 2002; Zeki & Ishizu, 2013). This top-down approach aims 

to determine brain areas that may have a role in artistic creation. It is, however, not relying 

on any quantifiable data from the selected “subjects”, making the conclusions of such 

study weak from a neuroscience perspective despite having some philosophical value. 

Zeki explains that the studied artists do not appear to appeal to the people’s visual 

preferences but to emotions such as romantic love or conceptual ambiguity. This shows 

that, while there is no existing framework to study human visual preferences during 

creative processes, essays about gifted individuals may lead to hints about the motivation 

behind works of art and potentially link concepts to aesthetic pleasantness. 

The second proposed dimension for studies of human visual preferences is the 

generalisability of findings and proposed models. Whether it is an experiment, a cognitive 

model or a computational model, the usefulness of the outcome to feed theories of 

aesthetic appreciation varies greatly. In a domain where objectivity is required to move 

forward, an individual’s subjective judgment cannot be ignored, as much as the context 

of the task. Ramachandran et al. (1999) aimed to link neurological mechanisms with 

philosophical theories and observations on aesthetics to establish general rules. While 

such approaches focus exclusively on perceptual preferences of the human visual brain, 

more recent cognitive models include concepts of emotions and pleasure (Chatterjee & 

Vartanian, 2014; Che et al., 2018; Graf & Landwehr, 2015; Redies, 2015). Indeed, these 

models take into account that contextual, cultural and personal backgrounds can overwrite 

the final decision in aesthetic appreciation, making them a much more robust and 
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generalised model (Weichselbaum et al., 2018). In terms of computational modelling, 

implementations of the measure of visual complexity prove to be successful at 

determining aesthetic goodness in visual information across many scenarios. Despite 

being a higher-level measure with no empirical basis of such process in the human brain, 

measures of visual complexity such as the JPEG compression algorithm indirectly include 

elements recognised as predictors of good aesthetics (colour repetitions, entropy/novelty, 

etc.) (Forsythe et al., 2011; Romero et al., 2012; Wallace, 1991). Visual complexity has 

not only proven to be a great indicator aesthetic pleasantness in computational 

experiments but it also appears to indicate aesthetic changes in visual art creation over 

time (Forsythe et al., 2017; Romero et al., 2012). It implies that it is a reliable tool as an 

objective measure of aesthetic pleasantness despite lacking neuroscience evidence. 

On the other hand, Zeki explored, once again, another facet of the domain by considering 

aesthetic experiences as a human behaviour in response to a very specific situation or 

objects such as exposure to paintings or mathematical formula (Kawabata & Zeki, 2004; 

Zeki et al., 2014). Other neuroaesthetics studies have been targeting, for example, the 

very specific phenomenon of aesthetic appreciation of architecture (Ma et al., 2015; 

Vartanian et al., 2013). While these examples can be deemed scientifically accurate, they 

teach us more about the interactions with a particular type of stimuli than about aesthetic 

judgement as a phenomenon. These types of studies have been criticised because of their 

narrow view of aesthetic experiences and their results being difficult to interpret (Marin, 

2015). Interestingly, a majority of the computational models of aesthetic experiences can 

be classified as adopting a similar narrow vision due to the lack of cross-dataset or cross-

media tests. Paradoxically, some computational models fully assume the very specialised 

training process, claiming that the aesthetic pleasantness of visual features is strictly 

context-dependent (Kao et al., 2017; Simond et al., 2015; Tian et al., 2015). By 
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consequence, it implies that these models are highly dependent on their semantic 

recognition performance. 

To conclude, the presented analysis of the trends in investigations on human visual 

preferences utilises fidelity to neuroscience knowledge and generalisability of the 

outcomes as two dimensions to locate the works in the space and compare the different 

approaches. When analysing the works at both extremes of the two dimensions suggested, 

it can be observed that neuroscientists and cognitive scientists advance on all fronts with 

experiments and model suggestions. However, there is a striking lack of computational 

models with plausible neuroscience inspiration and demonstrated learning of general 

human aesthetic preferences. Indeed, most models are specialised for particular contexts 

or used semantic recognition to improve aesthetic classification scores. Such evolution in 

the domain is explained by the fact that only one large-scale dataset for aesthetic 

classification exists, while datasets for semantic recognition as ImageNet or YouTube-

8M profit from millions of entries (Abu-El-Haija et al., 2016; Deng et al., 2009). The only 

area which links the experimental study of human visual preferences to computational 

models is the implementation of visual complexity but it still lacks a strong 

neuroscientific basis. Therefore, it can be concluded that the domain of research in human 

visual preferences severely miss works which would include theoretical knowledge into 

models, which would allow reverse-engineering and feed novel approaches to 

neuroscience.  

3.2.  Situating the thesis in the domain of study of human visual 

preferences 

The field of computational aesthetics has attempted to find visual features or machine 

learning systems allowing to classify images depending on aesthetic criteria. The 
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outcomes of such works mainly consist of tools to sort or automatically retouch 

photographs, but there is no major takeaway issued from computational aesthetics in 

terms of machine learning knowledge. Moreover, very little work has been done to 

connect the outcomes to neuroscience and psychology knowledge of aesthetic 

appreciation, underlining that computational aesthetics has not shown any major 

contribution to the study of human visual preferences. 

The work presented in this thesis places itself in the lineage of the initial works in 

neuroaesthetics due to its inspiration from the neuroscience of vision to investigate human 

visual preferences. The computational experiments developed in this thesis can 

individually be considered as part of the field of computational aesthetics due to its heavy 

use of machine learning techniques and large-scale data analysis. When considering the 

thesis as a whole, its aim is to link empirical knowledge about human visual preferences 

with computational aesthetics in order to acquire feedback for future neuroscience and 

cognitive models. Furthermore, multiple experiments will be set to validate that the 

aesthetic preferences learnt by the proposed computational models represent actual 

human visual preferences and do not solely portray preferences for specific photographic 

features or a subset of visual stimuli. On a machine learning point of view, the presented 

work will differentiate itself from previous works in the domain based on its biological 

inspiration, with hopes that the biological basis leads to great efficiency. Indeed, defining 

a set of features to extract relevant visual information for aesthetic judgement may 

provide better efficiency in terms of machine learning. Moreover, it offers the possibility 

to control the inputs and make sure that the models strictly learn from the low-level visual 

features, which also represents a risk of overall performance loss.  

This presented work is taking a position on several levels, it first takes a theoretical 

ground in neuroaesthetics and neuroscience of vision to define low-level visual features 
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known for being preferred by the human visual system. Limiting the machine learning 

techniques to existing algorithms is necessary to focus on a set of brain-inspired features 

which questions the origins of aesthetic judgment. Nevertheless, going against the trend 

of using convolutional neural networks to solve computational aesthetic problems may 

allow to challenge its dominance. Once the aesthetic classifier tested against existing 

works, its cross-media capability will allow to investigate whether aesthetic preferences 

can be generalised across different types of visual stimuli. To finish, an experimental 

framework will be set using the set of features to analyse aesthetic changes in the careers 

of visual artists. It is hoped to develop new measures characterising changes in a similar 

way as visual complexity measures but with ease of interpretation thanks to its stronger 

inspiration from the human visual system. All these positions are illustrated in the 

following questions that will be answered over the course of this thesis: 

1. Can human aesthetic preferences be learnt from rated photographs retrieved from 

the internet? 

2. Can an aesthetic classifier using a pre-defined set of low-level visual features rival 

traditional classifiers retrieving and learning from all available information, 

including contextual metadata and semantic information? 

3. Beside photography, do other media offer a possibility to assess the completeness 

of an aesthetic classifier’s features?  

4. Are aesthetic preferences in the visual domain during contemplation and creation 

comparable? 
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3.3.  Methods 

3.3.1. Standard practices in computational aesthetics 

As mentioned in Chapter 2, while research in human visual preferences has been 

developing for centuries, computational models making direct use of experimental data 

to learn and attempt to predict aesthetic judgement is still a novel approach. Indeed, only 

a handful of public datasets have been made available and widely used. The first 

published and used dataset for computational aesthetics was created by Datta et al (Datta 

et al., 2006). The dataset contains over 20,278 images and is issued from a community-

driven website focussing on photography named photo.net. In this dataset, each 

photograph is provided with the average user rating of aesthetics on a scale from 1 to 7, 

and the corresponding rating distribution. Due to the number of images being too small 

to train state-of-the-art machine learning models, images are segregated between two 

classes to simplify the prediction problem. As machine learning algorithms can be trained 

either for regression or classification, classification is usually chosen for new or hard 

problems as it allows to divide the data into specific subsets making the task noticeably 

easier. For example, Datta et al. (2006) demonstrate that picking subsets of images from 

the very top and bottom of the rating distribution improves classification performances 

significantly. The creation of large-scale datasets such as the Aesthetic Visual Analysis 

(AVA) dataset has significantly increased performance but no standard has been 

established for subset selection in classification tasks (Murray et al., 2012). The difference 

in subset selection among the current works leads to future work requiring a throughout 

test over several subsets to afford comparisons. In the dataset created by Tang et al. (2013) 

called CUHK, images are not classified through data mining over the internet but by 

making members of a pre-defined jury label images individually. While it means that the 

task of aesthetic judgment is more controlled, it makes the data collection process less 
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scalable, as, for example, only 10 reviewers were questioned to build the CUHK dataset. 

Moreover, the jury was asked to classify images between two classes unlike in previous 

datasets, which matched the standard binary classification task in computational 

aesthetics. It is, however, more complicated to obtain a reliable representation of human 

visual preferences with a small-sized jury using a binary scale. 

The size of the dataset also has a key role when building a machine learning model. In 

machine learning, the standard practice is to split the dataset between three distinct parts, 

the training set, validation set and test set (Alpaydin, 2009). In the learning phase, the 

training set is used purely to teach the machine learning system to recognise patterns 

while the validation set is used to calibrate hyperparameters and to evaluate whether any 

additional learning step could improve performances. Once the hyperparameters are 

chosen and the system reached its maximum performance, it is finally assessed over the 

test set which had been kept aside. Splitting a dataset to create the three sets is complicated 

as a balance has to be found between the learning potential of a larger training set and the 

improved representation of the data from larger validation and test sets. Reasonably large 

datasets, such as the MNIST handwritten digit database, provide a great number of 

samples in regards to the complexity of the problem, allowing to keep a representative 

chunk of the data for validation and testing without impacting the learning process 

(LeCun et al., 1998). A simple separation of the dataset is not advised for smaller datasets 

due to risks of poor performance or unrepresentative sets. A common practice is to use a 

technique called, k-fold cross-validation, which consists of randomly shuffling the data 

before sampling separate test sets by splitting the dataset into k equal groups (Kohavi, 

1995). For each of the k groups, the leftovers from the test set selection are used to train 

the model before evaluating it over the corresponding test set. After repeating the 

operation for each group, all the scores are averaged, therefore covering the entirety of 
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the dataset and ensuring that the results are not due to simply overfitting a model to a 

small subset of data. Due to the small size of Datta et al.’s dataset in comparison to the 

current machine learning standards, a cross-validation will be used (Datta et al., 2006). In 

regard to the AVA dataset, the 255,530 images are considered to be a large enough sample 

and, therefore, a simple percentage split of the dataset should suffice to provide 

representative results (Murray et al., 2012). As these datasets are finite and used as 

benchmarks for particular tasks across the field, selecting the right testing method is, 

therefore, key to obtain an outcome easily evaluated by peers.  

Traditional computational models such as multilayer perceptrons or SVMs will be trained 

and tested using the implementations from WEKA, a user-friendly data mining software 

with a great number of machine learning algorithms pre-implemented and easily tuneable 

(Hall et al., 2009). Deep learning models will be developed using Tensorflow, a machine 

learning library specialised in deep learning and compatible with several programming 

languages such as Python (Abadi et al., 2016). The use of a specific library is necessary 

due to memory optimisation issues caused by a large number of units in deep learning 

models, as well as the huge amount of data required for training. Interestingly, no standard 

has been defined regarding specific hardware requirements for a model so future works 

can offer a comparison in terms of computational greed, either it is in terms of time, 

parallel-process potential or memory usage.  

3.3.2. Statistical analysis 

To accentuate the disruption with previous works in computational aesthetics, the set of 

low-level features extracted from the studied images are compared between the two 

aesthetic classes created within every used dataset. By studying the difference in presence 

of low-level features, it helps to improve the understanding surrounding aesthetic 
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judgment and how difficult of a task it is as a computational problem. Many works have 

studied rating distributions or the impact of semantic content on rating but machine 

learning-based models for aesthetic prediction have never attempted to quantify the 

difficulty of the task from a human point of view (Kong et al., 2016; Murray et al., 2012; 

Tang et al., 2013). For every dataset used in this thesis, images are classified into two 

categories and the difference in presence of each extracted low-level feature between the 

two classes is tested for statistical significance. For example, images in datasets for 

aesthetic classification will be segregated into, either, aesthetically poor or aesthetically 

high. It is important to note that these two classes will be generated without selecting 

subsets or excluding any outliers. Welch’s t-test for unequal variances will be used to 

verify whether the means of each class are significantly different, on the condition that 

the resulting p-value is below 0.05 (Welch, 1947). Taking into account the fact that the 

datasets used in this thesis contain thousands of items and can be considered as large, 

normality can be assumed as stated by the Central Limit Theorem (Lumley et al., 2002). 

The statistical test is supported by Cohen’s d to evaluate the effect size of the studied 

phenomena (J. Cohen, 1988). Following Cohen’s guidelines on the comparison of means 

between two groups, a score of 0.2 can be interpreted as a small effect, 0.5 as a medium-

sized effect, and 0.8 as a large effect. All operations regarding statistical analysis will be 

done using the implementation from the Scikit-learn package for Python (Pedregosa et 

al., 2011).  
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Chapter 4                                                      

Aesthetic Classification of Images Using Brain-

Inspired Features 

Predicting people’s interest for visual information has seen an exponential popularisation, 

mainly due to the emergence of social networks and the need to find relevant content 

among the constant information feed. Computational aesthetic classification was first 

attempted in Datta et al.’s paper in 2006 (Datta et al., 2006), and it has since attracted 

more researchers thanks to new larger datasets sometimes provided with semantic tags. 

Datasets are retrieved initially from community-based photography websites and consist 

of images, mainly photographs, associated with ratings given by users. Users are asked 

to rate images using graduated scales depending on photographic rules, general aesthetics 

and for some, their coherence in a pre-defined context. In a typical binary classification 

task regarding aesthetics, images are split into two categories using the average of all the 

user ratings collected, which can vary from a dozen to hundreds depending on the dataset. 

Datta et al.’s work used measures based on photography rules (Datta et al., 2006). While 

it shows positive results, this type of measure may suffer from a bias caused by the 

subjective interpretation of photography rules by their designers and algorithm 

developers. Indeed, some measures such as the rule of thirds or golden ratio can be 
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interpreted differently and compress a specific artistic criterion into one number certainly 

affects data accuracy. The photography rules are inspired from artistic practices of the 

western world and directly assume preferred visual features and preferred feature 

combinations. In the footsteps of Datta et al.’s work, further attempts using Support 

Vector Machines (SVM) and multilayer perceptrons aimed at improving classification 

results by applying measures modelling photography rules but also computer vision 

algorithms originally used for recognition tasks. For example, descriptors have allowed 

efficient encoding of visual information by relying on algorithms inspired by the human 

visual cortex (Marchesotti et al., 2011). Visual complexity was also introduced as a good 

predictor of aesthetics with estimations calculated using image compression algorithms 

or fractal dimensionality analysis (Romero et al., 2012). Those measures can, however, 

make data less malleable for further investigations. 

With the creation of the Aesthetic Visual Analysis (AVA) dataset, approaches to aesthetic 

classification became more machine learning-oriented with the apparition of deep neural 

networks (Murray et al., 2012). In recent papers by Lu et al. and by Wang et al. (Lu et al., 

2014; Wang et al., 2016), brain-inspired architectures with parallel processing columns 

are designed so that the deep neural networks learn preferred aesthetic features. While the 

architectures are themselves brain-inspired, the inputs to the neural networks are focusing 

on colours channels, photography rules, and raw images. Parallel architectures have 

produced some of the best results in terms of rate of correct aesthetic classification. Lu et 

al. and some recent works on the AVA dataset have used Convolutional Neural Networks 

(CNN/Conv. Net.) with raw images as the input, partly because extracting visual features 

from a large dataset of images can take a considerable amount of time (Kao et al., 2016; 

Lu et al., 2014; Murray et al., 2012). All the previous solutions including warping or 

cropping images, Mai et al. avoided denaturing images by using multiple sub-networks 
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of different spatial pooling sizes, leading to improved performance (Mai et al., 2016). 

While CNNs and descriptors have shown to be efficient and displayed good 

performances, it is complicated to evaluate and dissociate the contributions from low-

level visual features and the semantic contained in visual information to the learning 

process. In point of fact, contexts and semantics have been shown to influence strongly 

aesthetic judgements of images and computational classifying systems’ performance 

(Kao et al., 2016, 2017; Simond et al., 2015). Exploiting semantic information to the 

maximum, Tian et al. developed a query-dependent aesthetic model which retrieves and 

builds a training subset of photographs with textual tags matching the tested photograph 

using the AVA dataset (Tian et al., 2015). This computational experiment shows that 

context recognition using pre-defined textual tags highly increases performances. It 

highlights questions regarding the boundary between the two families of aesthetic models 

which are universal and query-dependent. Most CNN-based aesthetic classifiers are 

considered as universal aesthetic models due to the training and testing phases being 

independent of each other. However, it can be argued that raw images provide more hints 

of semantic information than engineered features or photography-based measures, 

meaning that aesthetic classifiers could also be characterised by their potential to 

recognise contexts. To conclude on related works, a recently issued paper by Sun et al. 

has adopted a similar perceptual approach to the one presented here. It estimates visual 

complexity for aesthetic prediction using distributions of edges and colours with many 

additional measures of textures and edges (Sun et al., 2018). 

The described approach introduces features inspired by the ones appearing in the human 

visual process, such as colour, shape, depth, and motion (Kandel et al., 2000). 

Considering that depth of field and motion detection in static images can only be assumed, 

it was decided to focus only on shape and colour. The suggested features provide an 



Aesthetic Classification of Images Using Brain-Inspired Features 

49 

explicit representation of real-world visual information as inputs to the classifier, as well 

as some level of abstraction of visual information to investigate the necessity of semantics 

to aesthetics. Only the percentage distributions of the extracted features are used for 

classification, which reduces the impact of contexts and semantics on the learning of 

aesthetic preferences by removing semantical hints from spatial organisation. As shown 

in Sammartino and Palmer’s paper, spatial composition can have a real impact on 

aesthetic perception if a context is known (Sammartino & Palmer, 2012). Based on low-

level visual features processed in the early human visual system, the distributed measures 

permit to analyse preferences for specific orientations, curvatures, and colours. The fact 

that the distributions of the previous features are independent of each other allows to 

relate the results directly to existing neuroscience and psychophysics experiments, as well 

as removing the effect of spatial composition. A limited representation of spatial 

composition is included in the aesthetic classification process with a measure of global 

reflectional symmetry.  

This chapter offers an approach to aesthetic classification where percentage distributions 

of low-level features are used to learn aesthetic preferences. It allows to encode visual 

information into a low number of features fed as only 114 inputs to the classifier, against 

several hundred or thousand inputs for latest similar works. The classifier maintains state-

of-the-art results even across datasets, hinting at possible cross-media aesthetic 

classification. Cross-dataset tests are also used to evaluate the assimilation of the 

population’s aesthetic preferences even when different rating scales or communities were 

inquired. Feature analysis allows to question whether the aesthetic classifier learns about 

photography rules or more general human aesthetic preferences, as for example, 

horizontal lines or the colour blue have shown to be preferred.  
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4.1.  Dataset configurations in related works 

4.1.1. Description of the first dataset of photographs with aesthetic 

ratings (Datta et al.’s dataset) 

The dataset by Datta et al. consists of photographs posted on the website photo.net, and 

each image is linked to an average aesthetic rating provided by the community (Datta et 

al., 2006). Users could post photographs, and provide both comments and ratings (using 

a scale from 1 to 7) on a voluntary basis. Photographs were not required to have a specific 

context or background, but the community of photo.net appears to appreciate technical 

information such as camera settings (camera model, focal length, exposure time, etc.). 

High ratings on a photograph would only lead to potential exposure on the website’s 

homepage, meaning that it may not trigger strong competitive motives. While the dataset 

was built using the rating system previously described, the current version of photo.net 

does not operate with ratings anymore. The rating system has been replaced by a “like” 

feature, implying that viral content may have now more potential to be promoted than 

photographs of high quality. Not all images were available to download at the time of the 

study, and only images with at least 10 user ratings were used. The initial dataset 

contained 20,278 images and the final total of available images is 17,453. To be able to 

compare our results to previous classifiers, only photographs in the dataset with the 10% 

best and 10% worst ratings were kept (10% of the initial 20,278 images). 

4.1.2. Description of a large-scale dataset of photographs with 

aesthetic ratings (AVA Dataset) 

The AVA Dataset is initially a set of 255,530 photographs extracted from the website 

DPchallenge.com (Murray et al., 2012). While users provided ratings on a voluntary basis 

as in Datta et al.’s dataset, all posted photographs are initially taking part in contests with 
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pre-defined themes, where the winner only gains increased attention from the community. 

Such context means that this dataset may be more affected by competitive rating 

behaviours. All 255,530 images were available for download and the same classification 

rule was applied as for the dataset by Datta et al. The top and bottom 10% of the rating 

distribution were extracted, resulting in 25,553 aesthetically high and poor images. The 

rating scale is from 1 to 10 with the median average rating for the entire dataset of 5.35, 

while the mean of average ratings is of 5.33. 

4.1.3. Computational Aesthetic Classification 

Since the practice of computational aesthetic classification is still in its early years, it has 

not been regulated and computational experiments are difficult to compare with each 

other. It is mainly due to researchers having different backgrounds and publications 

aiming at different audiences (computer vision, machine learning, human-machine 

interaction, neuroaesthetics, etc.). For instance, the aesthetic classifier RAPID by Lu et 

al. has been used as a reference for aesthetic classification results over the AVA dataset 

(Lu et al., 2014). Despite designing an innovating deep-neural architecture and 

demonstrating impressive results, the classification rates may be biased by the distribution 

of the training set. The rating value that represents the border defining whether an image 

is labelled as aesthetically good or aesthetically poor is selected by researchers and can 

lead to unbalanced classes. Selecting 5.0 as the class border on a 1 to 10 scale generated 

a training set containing 167,000 highly aesthetic images and 68,000 lower aesthetic 

images. It means that each class has a respective distribution of 71.06% and 28.93%. The 

same distribution was calculated for the testing set and the rate of correct classification 

reached 74.46%. In case of unbalanced datasets, artificial neural networks tend to learn 

the probability of distribution and give the most represented class as output (Lawrence et 

al., 2012). Therefore, assessing the effectiveness of such computational experiments is 
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problematic, particularly when the percentage of correct classification for each class is 

not explicitly stated. Despite Sun et al. exposing issues with class borders, tests on 

samples with various rating gaps do not always present balanced samples between 

classes, results are not reported for both aesthetic classes and tests on smaller samples 

were not reproduced several times using different training samples, leading to less 

significant results (Sun et al., 2018). Another issue encountered in aesthetic classifier 

comparison is the pre-selection of datasets, where a subset is extracted out of original 

datasets to focus on landscapes or portraits for example. Better results are expected from 

such practice due to the diminished diversity of images, meaning less aesthetic rules to 

learn and an increased ease to recognise patterns. For example, Tan et al. and Lee et al. 

reaching respectively 87.10% and 87.98% of correct classification on different subsets of 

photos of landscapes and nature from the AVA dataset (Lee et al., 2017; Tan et al., 2017). 

Following a similar approach of developing an aesthetic classifier for a specific 

photographic theme, the query-dependent aesthetic model by Tian et al. is not directly 

comparable to universal aesthetic models due to the use of tags to actively recognised the 

semantic content of photographs (Tian et al., 2015). Regarding pre-selection, borders 

surrounding photographs are sometimes cropped out or images containing borders 

excluded. While highly aesthetic images and borders seem to correlate, this bias may be 

explained by the fact that borders may have a role in aesthetic appreciation of 

photographs. To conclude about suggested good practices for easier comparisons, it is 

essential to make aesthetic classification results more trustworthy to assess aesthetic 

classifiers based on their inputs and designs rather than the percentage of correct 

classification only. One proposed solution is to balance classes and when not possible, 

provide the percentage of correct classification for each class. Then, classifiers designed 

for particular subsets should be tested against the entire original datasets, to shape a link 
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with existing works and to avoid implications that a proposed method is better when only 

assessed over a particular subset. 

4.2.  Method: Brain-inspired visual feature extraction and machine 

learning 

This section describes the set of low-level visual features extracted from images and the 

different machine learning algorithms that will be combined to learn aesthetic 

preferences. The algorithms to extract this new set of visual features have been designed 

and developed as part of this thesis. However, as the machine learning algorithms are 

issued from third-party implementations, the description will be focusing on the 

architecture and hyperparameters selected. 

4.2.1. Gradient orientation distribution 

The first set of features extracted represents orientation preferences in the visual system. 

Proofs of preferences for specific orientations do not only exist in humans, but also in 

other mammals such as ferrets or monkeys (Blasdel, 1992; Chapman & Bonhoeffer, 1998; 

Girshick et al., 2011). The human visual system has demonstrated preferences for cardinal 

orientations (horizontal and vertical) and those preferences have an impact on aesthetic 

evaluation.  

To observe the impact of orientation distribution in images as a factor of aesthetic quality, 

a customised version of the Histograms of Oriented Gradients algorithm, also called 

HOG, is employed to estimate the dominant orientation of gradients present in each area 

of an image (Dalal & Triggs, 2005). When processing the original HOG algorithm, a grid 

formed of 16x16 pixels squares, called cells, is applied onto the selected image and a 

histogram of oriented gradients is then processed for every cell. A modification of the 

original HOG algorithm has been made so the dominant orientation out of 32 possible 
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orientations is detected for each cell before calculating the percentage distribution of 

orientations for the entire image. The 32 orientations are spread evenly over 180° and 

each orientation is distributed in bins representing a 5.625° angle. The conversion to 

percentage is made to normalise the results considering that the pictures do not have the 

same number of pixels and that cells are defined by a number of pixels. 

4.2.2. Distribution of local curvature 

In the same manner as orientation preferences, some studies have investigated preferences 

for curvature in visual stimuli. For instance, it has been demonstrated that humans, as 

well as great apes, have preferences for rounded corners over squared corners (Munar et 

al., 2015). It implies that the preference emerges from some neurological structure in the 

primate brain and it was suggested to be due to a negative response to sharp corners. 

Moreover, this negative response would be triggered by activity in the amygdala, causing 

fear and arousal (Bar & Neta, 2007). However, another recent study has shown through 

several experiments that curved lines are also visually preferred over straight lines, and 

visual information complexity had no impact in this aesthetic judgement (Bertamini et 

al., 2016). Therefore, it can be suggested that curved lines and rounded corners are 

favoured over sharp corners and straight lines, without the preference having emerged 

from a dislike for sharp corners. 

When processing HOG of an image, the estimated orientation of each pixel is calculated 

by combining the differences between greyscale values of horizontally and vertically 

adjacent pixels, as depicted in Figure 4.1 (Dalal & Triggs, 2005). Therefore, the same 

process used to detect orientation is applied a second time for each pixel, combining the 

differences between estimated orientations of adjacent pixels to detect orientation 

changes. It can be considered as a measure of curvature due to the analogy with the 
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approximation of the second derivative. This process averages the change of gradient 

orientation between the pixels situated vertically and horizontally of the selected pixel. 

Again, similarly to the processing of gradient orientation, the dominant type of curvature 

is selected for each 32 by 32 pixel cell, before calculating the percentage distribution of 

the different types of curvature. The feature extracted represents the distribution of the 

most dominant changes in gradient orientation for each 32 by 32 pixel cells (assuming 

that the cells are organised under the form of a grid). To summarise, the image is split 

into squares of pixels where the dominant type of curvature is extracted, and the 

percentage distribution of those different types of curvature is then calculated. 

 

Figure 4.1: Extraction of orientation and curvature distributions. The data displayed in 

this figure is purely illustrative. 

 

4.2.3. Global symmetry 

Studies in neuroaesthetics have shown that symmetric patterns can prime positively 

viewers (Pecchinenda et al., 2014). However, not all types of symmetry have the same 

effect. Electroencephalograms (EEG) studies have looked at reflectional symmetry and 

displayed stronger reactions than for rotational or translational symmetry, implying an 
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ease to detect this particular type of symmetry (Makin et al., 2012). It is then suggested 

that symmetry is unconsciously processed and is one of the many factors involved in 

aesthetic pleasantness. 

The measure representing global symmetry consists of using the HOG algorithm on all 4 

quarters of each image (split through the middle vertically and horizontally), and then 

subtracting respective histograms from one corner to another (vertically, horizontally and 

diagonally). All the values of the resulting histogram are then averaged. The lower the 

average is, the more likely the image is to contain reflectional symmetry.  

4.2.4. Colour: hue, saturation, and brightness 

Colours are processed in the retina and also later in the primary visual pathway. Knowing 

that people tend to consciously have favourite colours, it seems logical that colours have 

a direct impact on our appreciation of visual information. However, as demonstrated by 

Ou et al., colours meanings can change depending on the gender and cultural background 

on the viewer (Ou et al., 2004a). While those results may underline the impact of one’s 

personality on visual preferences, it also shows that specific colours are preferred among 

populations. As shown in Romero et al. computational experiment, colour channels for 

brightness, hue and saturation can be used as reliable predictors of aesthetic appreciation, 

with up to 75.81% of correct classification on the Datta et al. dataset (Romero et al., 

2012).  

In a similar approach as the other measures, colour hue, saturation, and brightness (HSB) 

were extracted for each pixel, before calculating the respective percentage distributions 

for each colour characteristic. 
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4.2.5. Parameter selection for feature extraction algorithms 

As mentioned previously, the features extracted from the photographs are designed to 

represent visual features in the early human visual process while providing some level of 

data abstraction. It intends to prevent the classifier from relying extensively on hints of 

context or semantic content present in images. As discussed by Hughes, the peaking 

phenomenon states that for a finite data sample, feeding additional features into a pattern 

recogniser becomes counterproductive past a certain point and may result in more 

classification errors (Hughes, 1968; Sima & Dougherty, 2008; Trunk, 1979). This means 

that the number of features must be carefully selected to keep superficial information as 

low as possible. On the other hand, it may reduce feature extraction and training times. 

The algorithms for extraction of orientation and curvature distributions used in this paper 

have been developed and calibrated on Datta et al.’s dataset. In this case, increasing the 

number of distribution bins for these two types of features leads to increased feature 

extraction time, as well as training time. A series of computational experiments is 

conducted with an increasing number of bins to find the saturation point where additional 

bins do not improve classification performances. It was observed that the number of bins 

providing the best classification scores is 32 bins for orientation distribution. Following 

the same process, the number of bins for curvature distribution displaying the best 

classification results is 16 bins. Regarding the features representing colours, the number 

of bins only affects training time and classification performances due to the algorithm 

extracting colour distribution having a negligible processing time. Applying the same 

method as for orientation and curvature, the number of distribution bins selected for each 

colour characteristic (hue, saturation, brightness) is 20 bins, as classification 

performances do not increase with additional bins. Finally, the number of features 

representing symmetry is fixed due to the number of symmetries possible between the 4 
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quarters of an image. Therefore, the total number of features fed into the machine learning 

algorithms reaches 114 inputs (32 for orientation distribution, 16 for curvature 

distribution, 6 representing symmetry, 20 for colour hue distribution, 20 for colour 

saturation distribution, 20 for colour brightness distribution). 

4.2.6. Neural network architectures and parameters 

In most previous works focusing on the visual feature extraction approach, the most 

represented machine learning algorithms used by the community have been Support 

Vector Machines (SVM) and Multilayer Perceptrons. To link previous works and recent 

approaches using deep learning, SVMs and multilayer perceptrons are studied, as well as 

two different deep neural architectures.  

Concerning the more traditional machine learning algorithms, SVMs and multilayer 

perceptrons experiments were run thanks to the implementations from WEKA, a data 

mining software with pre-implemented machine learning algorithms (Hall et al., 2009).  

The SVM selected for the computational experiments utilises a polynomial kernel and the 

following parameters: C=10.0, ε=10-12. The multilayer perceptron is conceived, simply, 

of a single hidden layer with 11 units, a learning rate set to 0.1 and a momentum set to 0. 

Regarding the two deep learning models, the code was developed in Python, which 

allowed the use of Google’s deep learning library, Tensorflow (Abadi et al., 2016). The 

first architecture tested is a traditional fully-connected deep neural network (DNN) with 

3 hidden layers, respectively 250, 140 and 80 units. The second one is a novel architecture 

presented in Figure 4.2, comparable to the one used in the computational experiment by 

Lu et al., is based on multi-column deep neural networks, since it has been suggested that 

visual information may be processed in parallel (Lu et al., 2014; Zeki, 2015). It is referred 

to as 6CDNN, for 6-Column Deep Neural Network. It could possibly increase 
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performances as aesthetic measures tend to overwrite each other during training, leading 

to minor measures having a disproportionally small impact on the outcome. The 

architecture consists of separating the network’s layers depending on the aesthetic 

measure they represent. Therefore, each measure is trained separately before converging 

towards a common final layer and has the opportunity to influence the final decision. The 

two deep neural networks are set with the hyperparameters described in Table 4.1, with 

regularisation achieved by using dropout and early stopping. Despite the similarities in 

structures and hyperparameters in the two architectures, both have been conceived and 

tuned by trial and error to reach the best correct classification scores on separate 

validation sets. 

Finally, a Convolutional Neural Network is used as a control and is fed raw RGB images 

instead of the proposed set of features. The role of this classifier is not to challenge state-

of-the-art results but to offer a comparison between the solutions presented in this chapter 

and machine learning algorithms not requiring prior data filtering. Images are only 

warped into 128x128 inputs with the 3 RGB channels. The CNN is composed of 2 

convolutional layers of respectively 32 kernels of size 5x5x3 and 64 kernels of size 

3x3x32, followed by a fully-connected layer of 1024 units providing with the 

classification decision as output. Both convolutional layers are followed by a max pooling 

layer. The CNN used similar hyperparameters as the two other deep neural networks, 

except for a learning rate of 0.001 and a dropout probability of 0.5. 

To refer to previous works using the Datta et al. dataset, it was decided to first extract 

visual features from this dataset, before working with a similarly sized sample from the 

AVA dataset, and finally, using the entire AVA dataset. Results are processed using an 

average of 10 distinct 5-fold cross-validation runs for the two smaller datasets, while an 
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average of 10 runs of percentage split (60% training, 10% validation, 30% testing) is used 

for the AVA dataset.  

 

 

Table 4.1: Parameters for DNN and 6CDNN, created using Tensorflow. 

 

 

Figure 4.2: Representation of the 6CDNN architecture. 

  

Parameters Choice 

Learning rate 0.01 

Optimiser Adam 

Activation function (hidden layers) Rectified Linear Units (ReLU) 

Activation function (output layer) Softmax 

Dropout probability (input layer) 0.2  

Dropout probability (hidden layers) 0.3 
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4.3.  Machine learning models for aesthetic classification 

4.3.1. Classification results 

The main reason for running this first computational experiment is to evaluate whether 

the size of the dataset by Datta et al. that is used in many previous works is large enough 

to learn aesthetic preferences from low-level features. Results for the Datta et al. dataset 

using traditional classifiers such as support vector machines (SVM) and multilayer 

perceptrons do not surpass state-of-the-art results (Table 4.2). While SVM appears to 

perform as well as the other proposed neural network architectures on the smaller 

datasets, it does not benefit from a larger dataset. Overall, both deep neural architectures 

not only outperform Datta et al.’s features but also outperform all other architectures 

tested on all datasets, with a significant improvement seen when using the entire AVA 

dataset (Datta et al., 2006). The difference between the correct rates of classification on 

the small sample and the entire AVA dataset implies that the whole dataset is more 

representative of users’ average visual preferences and allows better generalisation 

altogether. Nonetheless, when comparing to the convolutional neural network, it confirms 

that measures representing photography rules or low-level visual features may be more 

efficient on small datasets. The CNN shows the highest performance increase between 

the small sample and the entire AVA dataset, meaning it was the most affected by the 

lack of data. 

To finish, the DNN and 6CDNN architectures showed similar results, implying that the 

hidden layers’ segregation to simulate parallel processing had little effect on aesthetic 

classification. 
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Table 4.2: Results for each dataset with different classifiers and percentages of correct 

classification for aesthetically good, aesthetically poor images and total average. 

4.3.2. Locating the border between aesthetic classes 

The previous results were obtained by selecting only images in the top and bottom 10% 

of the rating distribution of each dataset. Instead of arbitrarily selecting borders for good 

and poor aesthetic classes, the border is implicitly drawn by selecting equally sized 

samples of images in both the top and bottom end of the rating distribution. For all further 

computational experiments, the AVA dataset is selected due to the amount of data 

available and classification is attempted using the more traditional fully-connected DNN 

architecture.  

As mentioned previously, aesthetic classifiers have been comparable only on their 

percentages of correct classification. The following computational experiment shows 

further details about the impact of the gap in ratings between the two aesthetic classes. 

The samples of images represent 10% of the top and bottom of the rating distribution, 

with a sample expansion of 10% towards the median rating for each test. As it can be 

observed in Figure 4.3, in the case with the largest gap, images with poor aesthetic proved 

to be slightly more challenging to classify than highly aesthetic images.  

Classifiers   Dataset   

 Datta et al.  AVA (4000-sample)  AVA 

 Avg Good Poor  Avg Good Poor  Avg Good Poor 

SVM 69.76 67.90 71.61  69.58 69.55 69.59  70.82 69.60 72.08 

Multilayer Perceptron 68.49 66.63 70.34  69.00 69.39 68.63  74.07 76.14 72.00 

DNN 71.63 70.10 71.58  71.87 73.90 69.84  78.81 79.76 77.86 

6CDNN 71.31 67.63 74.99  71.15 71.10 71.19  77.46 80.97 73.98 

Conv. Net. 61.43 61.62 61.25  58.01 48.32 67.70  69.83 70.23 69.42 
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Regarding the gap between the two aesthetic classes, the first 20% of images on each side 

of the median rating cannot be classified accurately. The rates of correct classification 

neighbouring chance (50% for binary classification tasks), it is possible that visual 

features present in the highest and lowest aesthetic images generate confusion when 

classifying images close to the border (Figure 4.4). Moreover, this poor performance 

could imply that this part of the dataset is represented by another aesthetic class.  

As the previous results of binary classification showed that the classifier performs at 

chance level around the class border, it could hint at another class including images of 

“average” aesthetic level in the middle of the rating distribution, as well as it could simply 

be caused by the complexity and ambiguity of classifying this type of images. The 

implementation of an additional class for regular images proves to be inconclusive. 

Despite all three classes being balanced during training, no image is classed as regular 

and aesthetically high and low images are privileged. The classification of aesthetically 

high and low images reaches similar correct classification rates as in the binary task while 

regular images are entirely ignored by the classifier. It indicates that the training for 

recognition of regular images is ineffective and it solely creates ambiguity between 

classes and around class borders. 
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Figure 4.3: Percentage of correct classification depending on the percentage of images 

selected from the top or bottom of the aesthetic rating distribution also called respectively 

aesthetically good and poor images. For example, 50% represents images from one end 

of the rating distribution to the median rating. 
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Figure 4.4: Percentage of correct classification where samples only represent 10% of the 

total images (around 25,000 images) on each side of the median rating. Each test uses two 

samples of aesthetically good and aesthetically poor images, selected from the top and 

bottom end of the rating distribution. While results represent correct classification for the 

test set on a 10% sample, the training process took into account all images above the 

bottom limit (meaning that the result for the sample of images from 20% to 30% on both 

sides of the median rating actually trained on all images in the top and bottom 30%). 

 

4.3.3. Cross-dataset performance and comparison with existing works 

As mentioned initially, comparing current results with existing studies is a complex task 

due to the number of datasets and the various class borders. In Table 4.3, the performance 

of the proposed classifier and the convolutional neural network are affected in a similar 

manner by the different dataset settings. It can also be observed that the proposed 

classifier displays similar results as Sun et al. obtained when splitting the AVA dataset 

using the median rating. However, while the proposed solution and the tested 

convolutional neural network both perform slightly better when shifting the class border 
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to mid-scale, Sun et al.’s results dramatically escalate. Due to the proposed solution being 

trained on a balanced dataset unlike previous works, it seems that all results obtained 

using unbalanced training sets and mid-scale class border are too biased for comparison. 

To finish on the comparison between Sun et al. and the proposed solution, Sun et al. gave 

classification results for a subset of around 40k photos with each half issued from the top 

and bottom of the AVA dataset. Despite having more fundamental features, the proposed 

method provides significantly better results. Beside Sun et al.’s results, only works by Lo 

et al. (2012) and Mavridaki et al. (2015) have been found to be directly comparable due 

to their training and testing phases run on balanced datasets, and the proposed solution is 

shown to outperform both.  

When comparing the efficiency of other existing classification systems, Mavridaki et al.’s 

(2015) system utilises 1323 inputs against only 114 inputs for the proposed classifier. 

While Lo et al.’s classifier only requires 24 inputs, its results on the AVA dataset are far 

below the proposed classifier’s results. Nonetheless, it does display a shorter processing 

time with an averaged 0.26s per image of width and height below 480pixels, against an 

averaged 0.41s for the proposed method (configuration: Linux, Intel i5-4210U CPU at 

2.40GHz, 16GB RAM). Sun et al.’s experiment is the most competitive in terms of 

approach and results but averages a processing time of 33.45s per image over 500 images 

of 640 by 480 pixels, while the proposed method reaches a much shorter 1.04s. Therefore, 

the proposed method is an attractive compromise between good efficiency compared to 

works with related approaches and higher accuracy than other previous systems focusing 

on efficiency.  

After selecting AVA as the best dataset for training, the results shown in Table 4.3 

demonstrate satisfying cross-dataset performance when testing the “AVA-trained” 

classifier over the Datta and CUHK datasets. It brings additional evidence that the 
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reported level of performance is not due to overfitting the data (Datta et al., 2006; Tang 

et al., 2013). While the CUHK dataset was not initially selected due to its arbitrary 

photograph categorisation, aesthetic classification tests were run to link the comparison 

from the results on the AVA dataset to other previous studies while demonstrating the 

cross-dataset capabilities of the proposed solution. Despite a non-negligible performance 

loss, the results are reasonably close to comparable works which have the advantage of 

being trained and tested on the same photograph datasets. While all known works show 

similar classification rates on aesthetically high and low images when testing on the native 

dataset, significant differences could be seen when testing the proposed classifier on Datta 

et al.’s (high: 89.79%, low: 50.76%) and CUHK datasets (high: 60.14%, low: 91.68%). 

This imbalance in performance between the two aesthetic classes may imply that the 

community of photo.net is more elitist than the DPchallenge.com community, while the 

arbitrary categorisation by the authors of the CUHK dataset show to be more tolerant. 
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Classifiers  Datasets tested 

 

(Datta 

et al., 

2006) 
 

AVA (Murray et al., 2012)  

CUHK (Tang 

et al., 2013) 

 

Mid-

scale      

± 0.8  
 

Mid-

scale 

Median 

rating 

20% 

top & 

bottom 

10% 

top & 

bottom 

20k 

top & 

bottom  

Authors’ 

categorisation 

Proposed classifier 70.28* 
 

65.84** 64.03 74.89 78.81 79.80  75.91* 

 Conv. Net. 64.84* 

 
 58.31** 56.75 64.50 69.83 71.17  62.83* 

(Datta et al., 2006)  70.19 
 

- - - - -  - 

(Romero et al., 2012) 75.81 
 

- - - - -  - 

(Lo et al. 2012) -  - - 62.14 66.60 -  77.25 

(Mavridaki et al. 2015) -  - - 74.35 77.08 -  82.41 

(Murray et al. 2012) - 
 

66.7 - - - -  - 

(Lu et al., 2014) - 
 

74.46 - - - -  - 

(Wang et al., 2016) - 
 

76.8 - - - -  - 

(Sun et al. 2017) -  73.41 64.24 - - 76.28  - 

*classifier originally trained on the AVA dataset     ** mid-scale border with equally distributed classes in the training 

set.  

Table 4.3: Trained only on the AVA dataset, the proposed classifier and a convolutional 

neural network used as control are both tested on 3 datasets and compared against 

previous works trained and tested on the same datasets, with occasionally, different 

border between “good” and “poor” aesthetic classes 

4.3.4. Visual preferences of the aesthetic classifier and differences 

between the average features of each class 

One additional advantage to using such sets of low-level visual features is that it makes 

datasets for computational aesthetics easily understandable and interpretable due to its 

direct relationship with the human visual system. The features can be manipulated to 

study the differences between aesthetic classes in a dataset. It allows to investigate the 

visual preferences of a rating community, creating the possibility of comparing visual 

preferences across communities. For both classes of the AVA dataset, average features 

of over 127,000 images are calculated to compare their values and highlight the best 

factors of good aesthetics. The same process is also applied to the Datta et al. dataset to 
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confirm whether the extracted features are representative of human visual preferences 

across datasets. In both datasets, vertical lines represent 16% of all line orientations with 

no significant change (using an independent samples t-test) between the two aesthetic 

categories. As presented in Figure 4.5, a significant increase is observed in horizontal 

lines (t(254522)=28.79, p<.001, d=0.11) from aesthetically poor (M=20.56%, S=.11) to 

good photographs (M=21.88%, S=.12) for the AVA dataset, as well as a similar 

significant increase in the Datta et al. dataset (t(17288)=12.24, p<.001, d=0.18) from 

aesthetically poor (M=20.41%, S=.10) to good photographs (M=22.39%, S=.11). While it 

could mean that horizontal lines are dominantly detected by the HOG algorithm in 

aesthetically pleasant images, it could also imply a visual preference for horizontal lines 

within the online community who rated the datasets. In Figure 4.6, a strong preference is 

observed in the AVA dataset for gradient orientation changes of around 45° within a 

32x32 pixels square (t(255030)=19.15, p<.001, d=0.076), as well as a preference for 90° 

gradient orientation change (t(255511)=27.20, p<.001, d=0.11). Again, a similar 

observation was made for the Datta et al. dataset, with an increase approaching 

significance for 45°-orientation changes (t(17144)=1.58, p<.08, d=.027) and a significant 

increase of 90°-orientation changes (t(17108)=10.87, p<.001, d=.16). Regarding colours 

in the AVA dataset, Figure 4.7 displays a significant growth in the shares of red 

(t(255396)=16.04, p<.001, d=0.063) and blue (t(254349)=7.20, p<.001, d=0.029) in 

pleasing images, with an opposite and significant trend for yellow (t(255331)=16.72, 

p<.001, d=0.066). While aesthetically pleasing images of the Datta et al. dataset display 

a significant increase of blue (t(16989)=2.45, p=.01, d=0.04), no evolution was observed 

for yellow and the colour red was also significantly less present (t(16872)=5.15, p<.001, 

d=0.074). Previous behavioural experiments on the aesthetics of colours displayed an 

average preference for blue and dislike for yellow (Ball, 1965; McManus et al., 1982; 
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Palmer et al., 2013), which both appear in the AVA dataset in Figure 4.7. However, only 

the visual preference for blue was seen in the Datta et al. dataset. The presence of the 

colour red is also contrasted between the AVA and Datta datasets, with respectively 

27.87% and 35.74% in bad photos against 29.91% and 33.15% in good photos, showing 

some possible conversion towards a right distribution of red. Moreover, the AVA dataset 

showed a preference for proportionally more unsaturated images, but an inverse tendency 

has seen in the Datta et al. dataset. The features also reveal preferences for proportionally 

darker images in both datasets. It is also possible that the colours with a hue value of 0° 

are on the black and white spectrum and may relate to the distribution of greyscale images 

in the datasets and in both aesthetic classes.  

 

Figure 4.5: Differences between the average features representing orientations of 

aesthetically high and low images for Datta et al. and AVA datasets. The illustrations 

below the x-axis are examples of orientations within a cell for the given orientation (16 

by 16 pixels). 
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Figure 4.6: Differences between the average features representing curvature of 

aesthetically high and low images for Datta et al. and AVA datasets. The x-axis represents 

the average change of gradient orientation within a cell. The illustrations below the axis 

are examples of orientation change within a cell for the given change of orientation. 

 

Figure 4.7: Differences between the average features representing colour hues of 

aesthetically high and low images for Datta et al. and AVA datasets. 

4.4.  Discussion 

Based the previous results shown in Table 4.3, the proposed classifier appears to be a 

good compromise between performance and efficiency, while displaying robust cross-

dataset capabilities. The results in cross-dataset classification show an imbalance in the 
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illustrate the visual preferences of the community rating these smaller datasets. In 

agreement with Kong et al.’s conclusion on the poor skill transferability across datasets 

between AVA and their own dataset, the rate of correct classification per class may be 

influenced by a difference in raters’ aesthetic taste and the different types of images 

composing the dataset (Kong et al., 2016). It is suggested that the robust cross-dataset 

performances are due to the low level of the presented features, allowing to learn visual 

preferences that are more universal than photographic rules. Furthermore, using low-level 

features allows a focus on universal human visual preferences partly removed from 

cultural or personal biases. As the community of DPchallenge.com appears to be mainly 

westerners with at least 73.45% of visitors connected from English-speaking countries 

such as the United States, United Kingdom and Canada (data collected from 

similarweb.com for June 2017), this hypothesis could be confirmed by testing the 

aesthetic classifier with a dataset rated by people with a drastically different culture of 

aesthetics, such as East Asian populations for example. 

From a method point of view, the previous computational experiments emphasise the 

importance of reporting performance per class and different ranges of image samples to 

afford better comparison between aesthetic classifiers in the future. While the features 

and the classifier presented here seem to perform well on images at the top and bottom 

end of the rating distribution, it barely performed better than chance on the 20% of images 

on both sides of the median rating, which represent around 100,000 images of the AVA 

dataset. It is likely that images from this sample contain features that are too ambiguous 

to be distinguished. However, another potential source of classification error for any 

image of the dataset is due to the nature of the dataset and the rating process. The current 

data collection process assumes that some wisdom of the crowd phenomenon happens for 

aesthetic ratings, but it is plausible that the community can occasionally make mistakes 
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(Mollick & Nanda, 2015). The community of DPchallenge.com is asked to rate images 

on their aesthetic qualities, but it seems natural that many images are rated due to their 

intense semantic content, or due to the photographer’s popularity. Estimating the impact 

of those biases on aesthetic ratings is complicated, future datasets could require people to 

rate the meaningfulness of an image to assess the probability of an image to cause 

controversy.  

While the extracted features seem to represent some visual preferences accurately, it is 

hard to tell whether they truly model aesthetic preferences of the human visual system in 

general or only aesthetic preferences for photographs. For instance, with the AVA dataset, 

the horizontal orientation preference is demonstrated by the extracted features while the 

vertical orientation preference is missing. Similarly for colours, the appreciation for the 

colour blue and the dislike for yellow are both represented in the extracted features as 

mentioned in the literature (Ball, 1965; McManus et al., 1982; Palmer et al., 2013), but 

an undocumented preference for red can also be observed. Despite the results being 

statistically significant, it is important to point out that the effect sizes, represented by 

Cohen’s d, indicate that the phenomena are relatively small (J. Cohen, 1988). 

Nevertheless, limited effect sizes do not imply that the observed phenomena are not 

impactful as the combination of the tested variables in this experiment could contribute 

to the final decision in aesthetic judgement. 

4.5.  Conclusion 

This chapter shows that simple brain-inspired measures of visual information can still 

perform as well as methods following a machine learning approach for computational 

aesthetic classification of photographs while providing analysable results. The features 

extracted from images in the AVA dataset demonstrated visual preferences in the rating 
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community that were observed in previous experiments. It also shows that datasets such 

as Datta et al.’s may be too small to determine aesthetic rules from low-level visual 

features. The tested deep neural architectures provide better results than traditional 

machine learning algorithms such as SVM and multilayer perceptron, but the minimal 

difference between DNN and 6CDNN also points out that parallel processing for aesthetic 

classification may not be the most optimal solution. Considering that aesthetic evaluation 

is a by-product and not a direct goal of the visual system, it is also complicated to make 

any conclusion about the architecture of our visual system yet. In the future, other features 

could be added to complete the existing set with, for example, a feature representing 

motion in images. Motion has been proven to be correlated with aesthetic pleasantness, 

even in static 2D images (Thakral et al., 2012). One way to estimate motion in images 

would be to detect the amount of blur. By starting with low-level features, it makes the 

set of features extremely modular and it is now simple to build up onto the current 

proposed solution.  

To conclude, this biologically inspired design allows to avoid overlaps in feature 

extraction, and despite requiring a considerable amount of data to learn to distinguish 

good and poor aesthetic characteristics in photographs, the present results demonstrate 

that teaching simple visual preferences to a classifier can outperform complex 

photography rules. Moreover, the set of features has been designed to carry limited 

semantical hints from spatial organisation, which questions the contribution of such 

information to the generalisation of aesthetic preferences for a universal aesthetic model. 

While some query-dependent aesthetic classifiers have shown that semantics and 

contextual information can boost performance, the aesthetic preferences learnt by the 

proposed classifier illustrates empirical data and reaches state-of-the-art results compared 

to other universal aesthetic models. It challenges the received idea that semantics 
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embedded in visual information and its aesthetic value are tightly related. It is still 

complicated to quantify the influence of semantic information in aesthetic judgement, but 

it could be beneficial to include photographic style recognition tests alongside aesthetic 

classification tests when introducing new aesthetic classifiers in the future. 
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Chapter 5                                            

Computational Aesthetic Classification Beyond 

Photographs 

The domain of computational aesthetics traditionally focuses on digitised photographs. 

As the first dataset by Datta et al. (2006) was built at a time when the infrastructure of 

internet was significantly less performant, photographs appeared as the ideal medium to 

build the first datasets. The popularisation of high-speed internet has facilitated the use 

and sharing of bandwidth-greedy media, allowing the development of new datasets 

composed of high definition videos. Moreover, the increasing use of high definition 

videos makes investigations in visual preferences strongly relevant to filter, as for 

example, hundreds of hours of videos are uploaded to the streaming website, YouTube, 

every minute. Even though recommendation systems already suggest videos based on 

textual tags, speech analysis, or semantic analysis, little has been done to offer aesthetic-

based filters. The current lack of video suggestions using aesthetic criteria is mostly due 

to the limited size of existing datasets. Despite recent efforts to build large datasets of 

videos, such as YouTube 8M, no video dataset for aesthetic video classification reaches 

similar scales in terms of number of items as existing datasets for computational aesthetic 
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classification of photographs (Abu-El-Haija et al., 2016). The largest dataset of videos 

with aesthetic ratings known to date is the recently published dataset by Tzelepis et al., 

which is composed of 700 short videos collected on YouTube and matched with aesthetic 

ratings (Tzelepis et al., 2016).  

While previous works have focused on computational aesthetic classification of short 

videos, “The Colors of Motions” by Charlie Clark illustrated the change in dominant 

colours over several feature films (Clark, 2014; Niu & Liu, 2012; Tzelepis et al., 2016; 

Yang et al., 2011). Moreover, Jason Schulman’s “Photographs of Films” offers novel 

ways of looking into the aesthetics of films as they overlap all frames from a film to obtain 

a single merged image (Shulman, 2017). The computational system previously proposed 

was developed and trained to classify photographs depending on their aesthetics, whereas 

this chapter introduces the cross-media capabilities of this aesthetic classifier on the video 

dataset published by Tzelepis et al. In addition to the tests on Tzelepis et al.’s dataset, the 

aesthetic classifier is used on films to observe particular aesthetic patterns over time and 

points out the potential weaknesses and strengths of such classifier on both photographs 

and videos. At the end of the chapter, the classifier is tested using YouTube videos by 

Casey Neistat, a filmmaker and daily vlogger (Neistat, 2016). In the form of a case study, 

potential links between aesthetic prediction and video quality are investigated by looking 

at the evolution of aesthetics across years of work. 

5.1.  Training of the aesthetic classifier 

In order to compare the behaviour and performance of aesthetic classification systems in 

photographs and videos, the machine learning-based system previously designed to 

classify images based on aesthetics that achieves state-of-the-art results on different 

datasets is selected. The aesthetic classifier is first trained on a large scale photograph 
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dataset called AVA (Murray et al., 2012). The AVA dataset is superior for learning 

aesthetic preferences as it provides one rating per image, compared to only one rating per 

video in Tzelepis et al.’s dataset, which can be considered as a collection of sequences of 

still images. As stated previously, visual information is defined as aesthetically pleasant 

if it has the potential to induce a positive response among the average observer, which is 

represented in existing datasets by the rating community’s self-reports. The AVA dataset 

is also superior in terms of representation of human visual preferences, as every image 

has received at least a hundred ratings according to aesthetic criteria, against only 5 

ratings per video for Tzelepis et al.’s dataset. Training for aesthetic classification per 

image (and therefore per frame) allows a deeper understanding of videos as sequences 

and scenes can be isolated and analysed. In fact, aesthetic classification systems are 

usually trained and tested with still images, mainly due to the complexity of collecting 

aesthetic ratings for video streams.  

Previous works have proven to be effective aesthetic classification solutions with, for 

example, algorithms scoring images based on photography rules (rule of thirds, leading 

lines, etc.), or more computation-based approaches such as image descriptors and 

convolutional neural networks linking visual features to expected classifications (Datta et 

al., 2006; Lu et al., 2014; Marchesotti et al., 2011; Romero et al., 2012). As a reminder, 

the aesthetic classifier used in this chapter extracts measures of orientation distribution, 

curvature distribution, HSB colour distribution (Hue, Saturation, Brightness), and 

reflectional symmetry on cardinal and diagonal axes. A deep neural network composed 

of 3 hidden layers is then used to learn visual preferences and obtain state-of-the-art 

results across several datasets such as Datta et al., CUHK and AVA (Datta et al., 2006; 

Murray et al., 2012; Tang et al., 2013). This classifier is selected due to its cross-dataset 

performances and the fact that the low-level visual features extracted illustrate 



Computational Aesthetic Classification Beyond Photographs 

79 

fundamental preferences in the human visual system. Therefore, it is suggested that low-

level visual preferences can provide better cross-media performance as they tend to be 

less influenced than higher-level preferences by cultural and personal experiences. 

5.2.  Experiment 1: Aesthetic classification of video clips by Tzelepis 

et al. 

5.2.1. Method 

Aesthetic classes in the AVA dataset are defined for each photograph by the average 

rating of all the human aesthetic ratings provided with the dataset. As no ground truth is 

available for the individual frames composing the videos of Tzelepis et al.’s dataset, all 

further predictions on new images or video frames are considered as a display of the 

aesthetic preferences of AVA dataset’s rating community. The dataset of Tzelepis et al. 

is composed of 700 short videos downloaded from YouTube and rated in terms of 

aesthetic quality by a jury composed of 5 people. Due to each member of the jury giving 

a binary answer for each video, a video is associated with an average rating between 0 

and 1. In this computational experiment, the previously trained aesthetic classifier is used 

to categorise each individual frame as aesthetically low or aesthetically high in a video 

stream. This allows to obtain the number of aesthetic high frames over the whole length 

of a video. It will be represented as a percentage of aesthetically high frames due to videos 

not being of the same length.  

Once all videos have their percentage of aesthetically high frames calculated by running 

the classifier on every frame, it allows to compare the average percentage of aesthetically 

high frames depending on the jury’s rating. Such comparison highlights whether the 

aesthetic classifier is able to dissociate aesthetically low and high video frames despite its 
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training of photographs. Therefore, it is hypothesised that videos that received a higher 

rating from the human jury contain a higher percentage of aesthetically high frames. 

The percentage of aesthetically high frames is then used as an input to a multilayer 

perceptron that is trained using the videos’ aesthetic ratings. While using a multilayer 

perceptron may be excessive for such a simple classification problem with one input, it 

will potentially allow to easily implement additional measures in the future. The method 

allows comparison with the existing video aesthetic classifier designed by Tzelepis et al. 

The results are compared in terms of accuracy (correct predictions out of all videos tested) 

and precision (correct predictions out of positive samples tested). The precision and 

accuracy are averaged out of 1,000 repetitions and the training set (300 videos) and testing 

set (400 videos) are randomly sampled for each repetition.  

5.2.2. Results 

When comparing the percentage of aesthetically high frames in function of the rating 

given by the human jury, the two values appear to be strongly linked. The linear 

regression model displayed in Figure 5.1 presents a significant increasing slope of 0.12 

(t(698)=5.11, p<.001), meaning that a greater number of aesthetically high frames are 

detected in the best-rated videos.  
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Figure 5.1: Mean percentage of aesthetically high frames detected in a video by the 

aesthetic classifier depending on the average human rating of the given video. 

Despite a considerable difference in performance with the original results achieved by 

Tzelepis’ solution, the proposed solution achieves results significantly above chance, as 

seen in Table 5.1. This transfer of skill from photograph to video classification 

demonstrates the cross-media capabilities of the aesthetic classifier and that the 

percentage of aesthetically high frames in a video can be a relatively efficient predictor 

of aesthetic pleasantness. This task also allowed to test the proposed binary classifier 

against another version which gave a continuous output. While the first version decides 

between the two aesthetic classes (low and high aesthetics), the second version estimates 

aesthetics on a scale from 1 to 10, as given in the AVA dataset. However, the percentage 

of aesthetically high frames estimated by the second version did not show any relationship 

with the human ratings, and the classification of videos depending on aesthetics was only 

slightly above chance, implying that the binary classification version is much more 

reliable, even though it has a limited scale. 

 

 

0%

5%

10%

15%

20%

25%

30%

35%

40%

0 0.2 0.4 0.6 0.8 1

M
ea

n
 p

er
ce

n
ta

g
e 

o
f 

ae
st

h
et

ic
al

ly
 

h
ig

h
 f

ra
m

es

Average human rating



Computational Aesthetic Classification Beyond Photographs 

82 

 (Tzelepis et al., 2016) Proposed classifier 

Top 5% 82.00 64.54 

Top 10% 82.00 64.74 

Top 15% 83.33 64.89 

Top 20% 81.50 64.80 

Accuracy 68.14 54.60 

Precision 69.97 56.38 

Table 5.1: Precision for the top-n (5,10,15,20) percent highest-rated videos with average 

accuracy and precision (in %). 

5.3.  Experiment 2: Using the trained aesthetic classifier to evaluate a 

film’s frames 

5.3.1. Method 

Due to the limited number of datasets available for aesthetic classification of videos, the 

aesthetic classifier is tested using feature films. The high number of frames per second 

present in videos allows to have several images depicting the same visual content from 

possibly different points of view. Most recent films last between 90 and 180 minutes at a 

rate of 24 frames per second on average, which means that extracting visual features of 

all frames implies an extensive amount of processing. The image resolution of the 

processed films is 720p (1280×720 pixels), which offers a good compromise between a 

reasonable image size for meaningful feature extraction and processing speed. Only one 

frame per second is extracted in order to limit the number of frames to process. 

In the following computational experiment, two different types of measures are tested, 

both based on the proposed aesthetic classifier. The first measure is the percentage of 

aesthetically high frames over an entire film, like the one tested in the previous 
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experiment. Several films from different directors are evaluated with the aesthetic 

classifier in order to investigate whether some known characteristics of films can be 

linked to its percentage of aesthetically high frames. Testing the measure on films also 

allows to verify whether it works as well as the video clips in the previous experiment, as 

it can be expected that feature films are highly aesthetic. 

The second measure represents the aesthetic average over time. Also calculated from the 

predictions of the aesthetic classifier, it applies a moving average on the series of binary 

predictions resulting from the application of the aesthetic classifier on the film’s frames. 

This moving average does not only estimate the aesthetic quality of the visual content 

over time, but the different points of view observed across frames allow to distinguish 

sequences containing frames with a normal aesthetic level, despite the fact that the binary 

classification focuses on low or high levels. Indeed, sequences in which the distribution 

of the frames’ classes is close to chance (50% low, 50% high) implicitly shows that the 

frames are close to average levels of visual aesthetics, based on the previously learnt 

visual preferences. This provides additional information regarding the classifier’s 

confidence in its decision; in a binary classification task, this is a significant advantage 

compared to other existing classifiers. Nonetheless, biases in aesthetic classification may 

appear due to differences between the norms of photography and videography. 

Furthermore, in comparison to photographs, videos include additional semantic content 

due to auditory and motion information. This may mean that even self-reports may not 

correlate with the aesthetic classifier’s predictions, as it focuses purely on visual 

information. 
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5.3.2. Results 

Scoring feature films by different directors using the aesthetic classifier, Wes Anderson, 

with his focus on symmetry, has made films reaching rates of aesthetically high frames 

such as 56.16% for The Grand Budapest Hotel, 22.0% for Moonrise Kingdom, 20.60% 

for Fantastic Mr. Fox and 58.83% for The Royal Tenenbaums. On another hand, Stanley 

Kubrick, known for his shots in depth, directed Full Metal Jacket which presents 12.10% 

of aesthetically high frames, A Clockwork Orange with 17.75%, The Shining with 14.12% 

and Space Odyssey with 16.21%. Although percentages of aesthetically high frames 

possibly indicate some of the aesthetic classifier’s visual preferences, reducing a whole 

feature film to a single score is a highly limiting analysis. Due to having too few films to 

obtain significant statistics, further investigations on the aesthetic classifier’s preferences 

between the two film directors is difficult, particularly with potential influences from film 

types or years of release. It is, however, intriguing that the percentage of aesthetically 

high frames varies so much in comparison to the short videos by Tzelepis et al. (2016) 

from the previous experiment. 

Moving averages of aesthetic prediction are then used to provide insight into how 

aesthetics may evolve through a feature film. Entire films are processed such as for 

example, Tarantino films, and some interesting patterns are observed. One film, The 

Hateful Eight (2015), particularly stands out because of the aesthetic prediction averaging 

zero in the second part of the film despite a normal amount of aesthetically high frames 

in the first part in comparison to other films. This drop seems to be correlating with the 

switch from outdoor scenes to indoor scenes in the film, and it was confirmed by showing 

a strong positive correlation (r=.82, p<.001) over the entire film between aesthetic 

prediction and the feature representing the distribution of pixels with normal brightness 

values (Figure 5.2). Considering the number of other features involved in the processing 
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of aesthetic prediction, this high correlation score shows that the aesthetic classifier 

trained on photos is extremely biased by the high level of darkness present in the film. 

The results displayed by the classifier support the assumption that using photographs for 

training will create a bias in the learnt aesthetic preferences as for example, high levels 

of darkness are more acceptable to a human eye watching films due to motion. 

In another example (Figure 5.3- left), the aesthetic prediction curve of Django Unchained 

(2012) shows a vertical symmetry centred on the middle of the film. The pattern is 

relevant knowing that Quentin Tarantino designed the film with two parts. It can be 

speculated that Tarantino knowingly wrote the scenario and organised camera shots to 

generate a symmetric pattern between those two parts. After removing the credits, the 

axis of symmetry was found in order to compare the two parts using this axis as a splitting 

point. As shown in Figure 5.3 (right), when mirroring the aesthetic prediction over time 

of the second part over the y-axis, a strong correlation (r=.85, p<.001) is found between 

the two parts that contained over 4,000 frames. Such a strong correlation score seems to 

indicate intentions from the film director. As the curve of aesthetic prediction does not 

appear to correlate with the different types of shot scales and the types of scenes 

(dialogue, action, etc.), it implies that the apparent pattern must be generated by an 

abnormal value in one of the features, similarly to the outdoor-indoor scene observation 

made for The Hateful Eight film. As suggested by the field of film theory and its auteur 

theory, the visual aspect of films can be heavily influenced by their director as they 

represent the major creative force in control of all audio and visual elements (Stam, 2017). 

While no definite factor is identified as the origin, such pattern may be influenced by 

easily manipulable features such as symmetry and colours during filming or altered in 

postproduction by Robert Richardson, the film’s cinematographer. 
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Relying on IMDb.com’s ratings, films considered as of poor quality are also processed 

such as Birdemic, Batman and Robin or Kill Bill. Not all analysed films display interesting 

moving averages of aesthetic prediction, but all cases appear to be influenced by the 

beginnings and ends of sequences present in a film. Considering that the aesthetic 

classifier is trained on photographs, the influence of film sequences on the aesthetic curve 

may be due to static dialogue scenes complying more with the rules of good aesthetics in 

photography than dynamic action scenes. The presented examples expose two advantages 

of such experiments. First, it allows to test visual preferences of the trained classifier and 

evaluate the extent of the cross-media capabilities of a photograph-trained aesthetic 

classifier. Second, it allows to analyse and investigate emerging patterns and styles 

generated by film directors.  

 

Figure 5.2: Plot displaying the correlation between brightness and aesthetic prediction in 

the film The Hateful Eight (2015). 
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Figure 5.3: Aesthetic prediction over time, represented by a moving average over 500 

frames. Left: Comparison of the aesthetic prediction over time (implied by frame number) 

of the first half of Django Unchained and the mirrored aesthetic prediction of the second 

part on the y-axis. Right: Aesthetic prediction of the film, Django Unchained (2012) 

directed by Quentin Tarantino. 
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shot in studio and contain 26.4% of aesthetically high frames in average, against only 

20% of aesthetically high frames for the rest of the videos which were shot spontaneously. 

The difference in the detection of aesthetically high frames between videos filmed in 

studio and on-the-go appears to be statistically significant (p<.001). Overall, videos 

reaching over 60% and up to 77% of aesthetically high frames were exclusively shot in 

studio with professional lighting and framing, emphasising the accuracy of the classifier 

on highly aesthetic videos. Surprisingly, no correlation exists between the percentage of 

aesthetically high frames categorised by the aesthetic classifier and any of the metadata 

variables available indicating the popularity of a video, such as the number of views or 

the average user rating. The measure is a satisfying but still fragile predictor for aesthetic 

video quality. It can be suggested that video content creators could use such tools to 

improve their contents by selecting particular sequences or shooting their videos in 

different conditions to match the suggested standards emerging from the aesthetic 

classifier’s training mimicking a population’s preferences. 
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Figure 5.4: Percentages of aesthetically high frames in each video of the different seasons 

of vlogging by Casey Neistat. 
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content creator’s decisions and the aesthetic classifier’s preferences, which is a new 

approach in the domain of computational aesthetic prediction of videos. The first two 

tests in this chapter focused on the creative product as a whole and in its content 

respectively. The third experiment on vlogging videos establishes a new method to 

investigate video content creators over time. The approach offered by this chapter is novel 

due to its focus on meaningful decisions from the content creator rather than traditional 

computational classification tasks. One application of this approach is to support video 

content creators in decisions based on aesthetic criteria during the editing and 

postproduction process, giving them an immediate estimation of their audience’s visual 

appreciation. Furthermore, it could be developed into assisting technology for visually 

impaired people willing to share their experiences and communicate through videos. 
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Chapter 6                                                           

Analysis of Visual Features in Paintings and 

Logos 

6.1.  Evolution of low-level visual features in influential painters’ 

careers 

In recent years, the contribution of computer vision to the understanding of visual art 

contemplation has shown rapid growth. Larger and larger datasets of photographs have 

been manipulated to investigate the influence of particular visual parameters over human 

aesthetic preferences (Datta et al., 2006; Murray et al., 2012; Romero et al., 2012). While 

datasets of photographs can provide a large amount of data, it is far more complicated to 

put together datasets composed of other visual media, such as films or paintings, as they 

generally require more resources and time to produce. The digitisation processes and 

sharing of films and paintings over the internet are not as straightforward as for 

photographs due to copyrights and file sizes, making datasets harder to assemble and 

distribute. Nonetheless, photographs associated with their human aesthetic ratings only 

allow the investigation of art contemplation. 
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Strongly linked to the phenomenon of contemplation, visual art creation has received little 

attention from the domain of computer vision. Some preliminary works have attempted 

to establish guidelines to assess paintings from technical and emotional point of views, 

but no outstanding results were found regarding key factors for aesthetic pleasantness 

specifically in paintings (Stork, 2009; Yanulevskaya et al., 2012). The current and quickly 

evolving trend in painting analysis using computer vision algorithms is aimed at 

automating artist or style classification of paintings, as well as generation of paintings 

according to a given artist or style (Arora & Elgammal, 2012; ING et al., 2016; Saleh et 

al., 2016).  

In order to investigate the evolution of aesthetics in paintings, three main types of 

measures are used: gradient orientation distribution, curvature distribution, and colour 

distribution. Previous neuroscience and psychological experiments, as well as empirical 

art studies,  have demonstrated significant preferences for cardinal lines (horizontal and 

vertical orientations) in terms of visual processing but possibly also in term of aesthetics 

(Blasdel, 1992; Chapman & Bonhoeffer, 1998; Girshick et al., 2011; Latto & Russell-

Duff, 2002). Regarding the shape of edges, it has been shown that smooth curves were 

preferred over straight lines and angles (Bertamini et al., 2016; Munar et al., 2015). 

Studies looking at human preferences for colours have concluded a universal dislike for 

shades of orange and yellow, and a preference for shades of cyan, blue and purple (Ball, 

1965; McManus et al., 1982; Ou et al., 2004a; Shimamura & Palmer, 2012). High levels 

of saturation and brightness have been demonstrated as preferred, regardless of the 

colour’s hue (Camgö et al., 2002). 

The hypothesis is that abstract painters have significantly more aesthetic changes along 

their careers compared to representational painters. The greater amplitude in changes may 

be due to the lack of constraints linked to the representation of real-world scenes, allowing 
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for more experimentations. The second hypothesis investigated in this chapter is that 

visual features preferred by the human visual system (cardinal lines, curves, shades of 

blue) are used in significantly different quantities when influential abstract artists gain 

painting expertise or experiment with new styles, possibly emphasising a link between 

preferences in art contemplation and creation. Of course, this does not imply that all artists 

are consciously aiming at producing more aesthetically pleasing works but that the 

freedom of aesthetic experimentation leads to more aesthetically pleasant choices to the 

average observer. Moreover, while this study primarily appears to focus on expertise in 

artists, it also provides preliminary research in user perception using digitised artworks. 

This chapter attempts to reflect on the fact that many paintings were initially created to 

be experienced within a real-world environment and now find their audience in another 

context and format. To proceed, two new datasets of digitised paintings are conceived. 

The first dataset consists of influential abstract artists of the western world from the 20th 

century, while the second dataset is composed of landscape painters from the 19th century. 

Low-level features are extracted for each painting, using the extraction algorithms 

previously developed and described in Chapter 3. The features allow the comparison of 

aesthetic modification over the career of an artist. 

6.2.  Extracting low-level visual features from paintings 

Inspired by features processed in the human visual system, algorithms have been 

developed to extract low-level visual information. It allows analysis from a basic aesthetic 

point of view while providing some level of abstraction from context and semantic by 

removing hints from spatial organisation. Originally, the visual features extractor was 

built for computational aesthetics research, meaning that the extracted visual information 

was used to categorise photographs depending on their aesthetics and determine possible 

preferences from the human visual system. The training process involved the AVA 
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dataset, which includes over 250,000 photographs each provided with a rating from at 

least 100 people (Murray et al., 2012). However, in the specific case of paintings, it is 

complicated to obtain aesthetic ratings from a population over thousands of works due to 

their heavy cultural meanings and popularity causing a bias. The extracted visual features 

are analysed to widen the understanding of aesthetic preferences when acquiring painting 

expertise. 

An algorithm based on the Histogram of Oriented Gradients (HOG) algorithm is used to 

detect the dominant orientation (in degrees from horizontal) in each area (shaped as 

multiple 8x8 pixel squares organised as a grid) of an image, before calculating the 

percentage distribution for each orientation (out of 32 possible orientations detected with 

~5.6° accuracy)(Dalal & Triggs, 2005). With the HOG-based algorithm providing an 

estimated gradient orientation for each pixel, it is then used to calculate the difference in 

estimated orientation of pixels surrounding a given pixel. This can be considered as an 

approximation of curvature for a given pixel space. Once applied to all pixels in a pixel 

area, it allows to determine the dominant category of orientation change for the pixel area. 

Similarly to orientation distribution, this process is applied to each pixel area covering 

the image (organised as a grid of pixel squares), and the different categories of changes 

in orientation, occasionally called curves as a simplification, are distributed into 16 bins 

before calculating the percentage distribution for each category.  

Colour distribution was simply processed by extracting the hue, saturation, and brightness 

(HSB) values of each pixel in an image. For each image, hue, saturation and brightness 

distributions are then calculated and shared between 20 bins. By storing and analysing 

hue, saturation and brightness separately, results can easily be compared to previous 

empirical findings. However, information is lost regarding the relationships between 
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these 3 characteristics, meaning that it is impossible to know if specific levels of 

saturation and brightness are favoured by artists for a given hue, and vice versa. 

6.3.  Preliminary tests: use of cardinal lines over an artist’s career 

Pilot tests are run on datasets consisting of digitised paintings by popular artists, Wassily 

Kandinsky and Pablo Picasso. Their careers are different on many levels, Kandinsky 

being professionally active for 48 years while Picasso dedicated his entire life to it, 

totalling 83 active years, with respectively 502 and 1065 paintings available and dated 

online. Kandinsky’s paintings were downloaded from wassilykandinsky.net, and 

Picasso’s works were retrieved from wikiart.org (“WassilyKandinsky.net,” 2018; 

“WikiArt,” 2018).  

Tests on Wassily Kandinsky’s work demonstrates an increase in the presence of cardinal 

orientation of lines in his paintings, which is not observed in Picasso’s work (Figure 6.1). 

The use of cardinal lines by Picasso fluctuates between 15% and 25% while Kandinsky 

shows a progression from 20% to up to 38%. Picasso had a longer career with more 

renowned works of art, which may bias the comparison as the accuracy of each data point 

relies on those two parameters. The developing style of the artist can also be an important 

source of aesthetic changes, meaning drawing any conclusion on a larger scale is not 

possible at this stage. To investigate the broader picture, two datasets are, therefore, 

assembled with two-dimensional visual arts by many renowned artists from the 19-20th 

century era of western tradition. 



Analysis of Visual Features in Paintings and Logos 

96 

 

Figure 6.1: Percentage of lines with cardinal orientations in paintings by Wassily 

Kandinsky and Pablo Picasso through their respective career. Each plot starts at the 

beginning of their career and stops at their last painting, meaning that the data points are 

not plotted over the same time frame in real life. The number of paintings for each data 

point also varies due to the different numbers of total paintings for each artist. 

6.4.  Data filtering 

When building a dataset of digitised artworks, one of the main issues is that the selected 

period profoundly influences the quality of the digitisation process. It is partly due to the 

varying preservation of the works but also to the attention received and technology used 

during the scanning process. The selected period must include a large number of artists 

with overlapping active years, who produced many paintings in order to obtain significant 

results from the experiment. Moreover, it also requires a broad enough time span for the 

artists to modify their painting styles or expertise level. The technology involved in the 

colouration of painting and the making of canvases have also changed dramatically over 

the centuries, with some colours being more expensive to produce (Barnett et al., 2006). 

Regarding art movements, influential artists in representational arts and abstract arts are 

selected due to the movements being highly different and to the proximity of both time 
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periods. It allows to control for any bias caused by the nature of the subjects represented 

in works of art. 

Studying the evolution of a phenomenon taking place over a lifetime, mental and physical 

health problems must be controlled as they can significantly alter artistic work and 

progression. Mental and physical health problems have a demonstrated impact on the 

visual content of an artist’s work (Forsythe et al., 2017). Therefore, artists with diagnosed 

diseases known to have modified their artistic process are discarded in order to not 

influence the outcome of this study. For instance, Van Gogh’s work has been 

demonstrated to be highly influenced by his mental health difficulties (Aragón et al., 

2008). Experts have also debated over the possible impact of Alzheimer’s disease on 

Willem De Kooning’s work. Some of his most renowned paintings were actually created 

after he had been diagnosed with Alzheimer’s disease (B. L. Miller et al., 1998; B. L. 

Miller & Hou, 2004). Henri Matisse is discarded from the list of studied artists due to the 

fact that he was left seriously weakened by cancer. The disease triggered the production 

of his collages, such as The Snail, thus being an example of physical health issues that 

altered an artist’s style (Stirling, 1993). Nonetheless, Salvador Dalí, who had Parkinson’s 

disease in his final years, is kept in the dataset due to the proportionally small number of 

paintings from this period present in the dataset (Gibson, 1997). The symptoms appeared 

only in 1980 while the last painting available on wikiart.org dated from 1983. Despite 

controlling for diseases that could influence artists in their practice development, artists 

diagnosed with depression are not excluded from the dataset as there is a known history 

of depression among artistic populations and the disease has no direct physiological effect 

on the human visual system (Sussman, 2007).  

Regardless of time periods and health issues, complementary criteria are needed to label 

an artist as influential or successful. While the Google Search Ranking allowed us to 
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establish the initial list of “famous abstract painters”, abstract artists were required to be 

recognised by the Museum of Modern Arts (MoMA), in New York, United States. Of 

course, not all abstract artists fitting the multiple criteria had online digitised paintings 

available due to copyright issues, or to an extremely low number of available works of 

art on wikiart.org (“WikiArt,” 2018). 

6.5.  Dataset composition 

Two datasets representing abstract and landscape painters are assembled. The first dataset 

includes 50 famous abstract painters of the western world from the 20th century and a 

total of 6,348 dated paintings (Table 6.1). With an average life expectancy of 70 years 

and average career length of 44 years, the first artist started his career in 1890 while the 

latest active artist of the dataset was until 2011, therefore covering a time window of 121 

years. The number of paintings per artist ranges from 17 to 1067 with a median of 63. A 

second dataset composed of landscape painters from the 19th century is created to offer a 

comparison with artists focusing on real-world aesthetics (Table 6.2). 3,312 paintings 

from 33 different artists were retrieved, with a median of 64 paintings per artist and 

between 16 and 446 paintings per artist. This second dataset is not covering the same 

period as the first dataset due to most of the influential landscape painters with digitised 

works available online living in the 19th century. With an average life expectancy of 68 

years and average career length of 38 years, the first artist started their career in 1820 

while the latest active artist of the dataset was until 1942, which covers 122 years of 

landscape painting. Hence, both datasets present relatively similar parameters despite not 

being in the same time period. They also contain a significant majority of male painters 

of 90% and 97% for the dataset of abstract and landscape painters, respectively. 
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Table 6.1: Abstract artists present in the dataset. 

Name 

Number of 

paintings Birth Death 

Career 

Start 

Career 

End Art movement 

Alfred Manessier 48 1911 1993 1935 1982 Art Informel 

Andy Warhol 134 1928 1987 1954 1987 Pop Art 

Antoni Tapies 54 1923 2012 1945 2011 Art Informel 

Arshile Gorky 62 1904 1948 1922 1948 Surrealism 

Asger Jorn 38 1914 1973 1940 1972 Art Informel 

Barnett Newman 76 1905 1970 1944 1970 Abs. Expressionism 

Clyfford Still 45 1904 1980 1934 1976 Abs. Expressionism 

Cy Twombly 98 1928 2011 1948 2011 Abs. Expressionism 

Elaine De Kooning 33 1918 1989 1917 1964 Abs. Expressionism 

Fernand Léger 315 1881 1955 1900 1955 Cubism 

Francis Picabia 100 1879 1953 1898 1951 Dada 

Franz Kline 20 1910 1962 1940 1958 Abs. Expressionism 

Franz Marc 115 1880 1916 1902 1914 Expressionism 

Giacomo Balla 64 1871 1958 1900 1925 Futurism 

Hans Hartung 21 1904 1989 1921 1989 Tachisme 

Hans Hofmann 100 1880 1966 1902 1965 Abs. Expressionism 

Jackson Pollock 78 1912 1956 1934 1953 Abs. Expressionism 

Jean Arp 43 1886 1966 1912 1966 Abstract Art 

Jean Dubuffet 53 1901 1985 1942 1985 Haute Pâte  

Jean Michel Basquiat 134 1960 1988 1980 1988 Neo-Expressionism 

Joan Miro 186 1893 1983 1912 1983 Surrealism 

Joan Mitchell 62 1925 1992 1950 1992 Abs. Expressionism 

Josef Albers 53 1888 1976 1915 1976 Constructivism 

Karel Appel 22 1921 2006 1946 2005 Art Informel 

Kazimir Malevich 291 1879 1935 1900 1934 Suprematism 

Lee Krasner 22 1908 1984 1938 1974 Abs. Expressionism 

Louis Marcoussis 45 1878 1941 1914 1941 Cubism 

Marcel Duchamp 78 1887 1968 1901 1968 Dada 

Mark Rothko 131 1903 1970 1925 1970 Abs. Expressionism 

Marsden Hartley 31 1877 1943 1908 1943 Abstract Art 

Max Ernst 343 1891 1976 1909 1975 Dada 

Morris Louis 110 1912 1962 1948 1962 Abs. Expressionism 

Natalia Goncharova 55 1881 1962 1900 1935 Cubo-Futurism 

Nicolas De Stael 30 1914 1955 1947 1955 Art Informel 

Pablo Picasso 1067 1881 1973 1890 1972 Cubism 

Paul Klee 195 1879 1940 1903 1940 Expressionism 

Philip Guston 55 1913 1980 1930 1980 Abs. Expressionism 

Piet Mondrian 65 1872 1944 1892 1944 De Stijl 

Robert Delaunay 24 1885 1941 1904 1940 Orphism(Simultanism) 

Roberto Matta 17 1911 2002 1936 2002 Surrealism 

Roy Lichtenstein 112 1923 1997 1951 1997 Pop Art 

Salvador Dali 1047 1904 1989 1917 1983 Surrealism 

Sonia Delaunay 43 1885 1979 1907 1972 Orphism(Simultanism) 

Stuart Davis 19 1892 1964 1912 1964 Cubism 

Theo Van Doesburg 152 1883 1931 1899 1931 De Stijl 

Umberto Boccioni 83 1882 1916 1902 1916 Futurism 

Wassily Kandinsky 216 1866 1944 1896 1944 Expressionism 

Willi Baumeister 82 1889 1955 1905 1955 Abstract Art 

William Scott 41 1913 1989 1938 1982 Abs. Impressionism 

Wyndham Lewis 40 1882 1957 1897 1946 Vorticism 
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Table 6.2: Landscape painters present in the dataset. 

Name 

Number of 

paintings Birth Death 

Career 

Start 

Career 

End Art movement 

Albert Bierstadt 188 1830 1902 1850 1900 Romanticism 

Aleksey Savrasov 221 1830 1897 1840 1894 Realism 

Alfred Sisley 446 1839 1899 1865 1897 Impressionism 

Anna Ostroumova-Lebedeva 81 1871 1955 1900 1942 Art Nouveau 

Arkhip Kuindzhi 131 1842 1910 1869 1908 Realism 

Armand Guillaumin 56 1841 1927 1867 1917 Impressionism 

Charles-François Daubigny 60 1817 1878 1844 1878 Realism 

David Bates 23 1840 1921 1873 1907 Realism 

David Johnson 65 1827 1908 1851 1890 Romanticism 

Eugene Von Guerard 73 1811 1901 1852 1882 Romanticism 

Franklin Carmichael 20 1890 1945 1920 1939 Art Nouveau 

Frederic Edwin Church 45 1826 1900 1847 1891 Romanticism 

Fyodor Vasilyev 92 1850 1873 1863 1873 Realism 

Gustave Loiseau 168 1865 1935 1889 1930 Post-Impressionism 

Hans Heysen 20 1877 1968 1904 1929 Realism 

Homer Watson 16 1855 1936 1879 1932 Realism 

Isaac Levitan 406 1860 1900 1875 1900 Realism 

Ivan Shishkin 370 1832 1898 1854 1898 Realism 

James E. H. Macdonald 33 1873 1932 1909 1932 Art Nouveau 

Jose Maria Velasco 112 1840 1912 1860 1911 Realism 

Joseph Farquharson 32 1846 1935 1867 1915 Realism 

Jules Dupré 18 1811 1889 1835 1870 Realism 

Knud Baade 22 1808 1879 1828 1879 Romanticism 

Martin Johnson Heade 38 1819 1904 1840 1904 Realism 

Richard Parkes Bonington 39 1802 1828 1820 1828 Romanticism 

Robert Julian Onderdonk 70 1882 1922 1901 1922 Impressionism 

Theodore Clement Steele 64 1847 1926 1882 1922 Impressionism 

Théodore Rousseau 79 1812 1867 1829 1867 Realism 

Thomas Cole 127 1801 1848 1825 1848 Romanticism 

Thomas Moran 36 1837 1926 1855 1926 Romanticism 

Willard Metcalf 109 1858 1925 1877 1924 Impressionism 

William Hart 29 1823 1894 1849 1881 Romanticism 

William Leighton Leitch 23 1804 1883 1835 1882 Romanticism 
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6.6.  Method 

Visual features are extracted from all the paintings in each dataset. The visual features 

represent the distribution of gradient orientation, the distribution of changes in gradient 

orientation and HSB-encoded colours. As the number of paintings per artist varies, visual 

features are averaged for the paintings created in the first and second half of the career of 

each artist. This method attributes as much importance to each artist, regardless of the 

number of known paintings they produced. Splitting an artist’s career into 2 periods 

allows for an accurate average of visual features in each period while smaller periods, 

similar to regression analysis, would mean highly variable values due to painters 

sometimes not producing any work for years. It is then possible to compare average visual 

features between the two halves of a career, the breakpoint being the year of the median 

of the first and last painting ever dated for a given artist (Equation 1).  

In order to test for statistical significance of the different visual features related to human 

visual preferences, some extracted features are selected and categorised. A paired sample 

t-test is run for each category of features to compare the features used in the first and 

second half of the painters’ careers. The two tested samples represent average features for 

both periods. The categories represent the percentage of cardinally oriented lines, straight 

lines, curved lines, shades of blue, shades of orange and yellow, desaturated colours and 

brighter colours. The category for cardinal lines incorporates extracted features 

representing horizontal and vertical lines. The categories for straight lines and curves are 

opposites, with all lines with an orientation change different from 0° considered as curves. 

The category for shades of blue include features representing hues between 198° and 

252°, while the shades of orange and yellow consist of hues from 18° to 72°. The 

categories regarding colour saturation and brightness incorporate respectively pixels with 

a saturation greater than 0.90 and pixels with brightness over 0.90.  
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To finish, one of the reasons for using such lists of artists is due to the availability of the 

digitised works online, as well as their reputation. It is therefore essential to be careful 

with the results as the selected artists were extraordinarily successful and influential, and 

so, may not be representative of the average artist. Moreover, while the datasets of 

landscape and abstract painters are both composed of a large number of subjects, it is 

complicated to establish what exact painting styles and what distribution of painting styles 

would represent perfectly the average influential artist from the western world. 
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Equation 1. Equation describing the process of calculating the average difference for a 

given feature 𝜹𝑭. 𝑵𝒂: Number of artists; 𝑵𝒂,𝒆: Number of early paintings for an artist a; 

𝑵𝒂,𝒍: Number of late paintings for an artist a; F(x): Feature for painting x; 𝑷𝒂,𝒙,𝒊: Painting 

of the artist numbered a during the period x (e: early; l: late) and their painting numbered 

i. 

6.7.  Results 

Before looking at the two datasets of paintings side by side, an additional comparison is 

set to evaluate the impact of the types of representation, which are photographs and 

paintings, on the presence of the studied visual features. Figure 6.2 illustrates how both 

datasets of landscape and abstract paintings contain different percentages of the particular 

sets of features related to visual preferences, with another set of 1,000 landscape 

photographs from the dataset by Datta et al. used as a comparison (Datta et al., 2006). 

While it is expected to have differences in low-level features distributions between photos 

and paintings of natural landscapes, it is surprising that abstract paintings have closer 

distributions to landscape photos than landscape paintings. It demonstrates that the 
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differences in production and aesthetic rules in media, such as photographs and paintings, 

have a significant role in the distributions of low-level features, emphasising why 

comparison can only be made with datasets of the same visual medium. 

 

Figure 6.2: Average representation of specific features in landscape photos, landscape 

paintings, and abstract paintings. 

 

While it has been shown that gradient orientations and the quantity of cardinal lines 

influence the aesthetic assessment of photographs, results similar to these findings are 

shown regarding the evolution of gradient orientations distribution in paintings over 

famous abstract painters’ careers in Figure 6.3. The average differences in gradient 

orientation distribution over an abstract painter’s career display a significant increase of 

3.9% in vertical lines from early (M=.15, SD=.06) to late paintings (M=.19, SD=.08); 

t(49)=4.78, p<.001, d=0.54. It is paired with a significant increase of 3.3% in horizontal 

lines from early (M=.14, SD=.05) to late paintings (M=.17, SD=.07); t(49)=5.21, p<.001, 

d=0.52. Overall, there is a significant increase in cardinal lines use, displayed in Figure 
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6.8, between early (M=.30, SD=.10) and late paintings (M=.37, SD=.14); t(49)=5.53, 

p<.001, d=0.57. However, when comparing to landscape painters, no evolution is 

observed except for a small significant loss in vertical lines use (t(32)=2.71, p=.01, 

d=0.31). The current results support the hypothesis that artistic expertise in abstract visual 

art influences the usage of preferred visual features in paintings. 

   

Figure 6.3: Differences in the distribution of gradient orientations between early and late 

works in landscape and abstract paintings. Left: Plot with all gradient orientations. Right: 

Plot for cardinal orientations with error bars representing standard error. 

 

Designing a measure of curvature for digital images raised an issue regarding the scale of 

the visual representation. In a digital image, curves can be interpreted as a change in 

gradient orientation over a certain pixel area. A fixed size is selected for all local pixel 

areas observed within an image. Curvature distribution is calculated by detecting the 

dominant type of curvature in each local pixel area. This allows the comparison of items 

depending on how they are displayed on a screen, rather than depending on the scale of 

representation. Moreover, the pixel sizes of images between the two categories do not 

significantly vary for the average artist (t(49)=0.59, p=0.55). In Table 6.3, it is shown that 

existing image datasets used for aesthetic analysis in photographs are similar in pixel size. 
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-1%

0%

1%

2%

3%

4%

5%

90 67.5 45 22.5 0 -22.5 -45 -67.5

D
if

fe
re

n
ce

s 
in

 f
ea

tu
re

 

d
is

tr
ib

u
ti

o
n

 (
%

)

Gradient orientation from horizontal (in °)

Landscape

Abstract

-2%

-1%

0%

1%

2%

3%

4%

5%

6%

Vertical Horizontal

Landscape Abstract



Analysis of Visual Features in Paintings and Logos 

105 

contains 2.46 times more pixels on average. The defined local pixel area is then modified 

from 32x32pixels to 80x80 in order to make the results potentially comparable with other 

datasets in the future. The two different local pixel area sizes are both tested for 

comparison, but no significant change is noticed in terms of results. 

Figure 6.4 displays results for abstract painters only, as no significant evolution was 

observed for landscape painters regarding curvature distribution. There is a 6.7% increase 

of flat angle (0° orientation change within the observed pixel area) and a 1.9% decrease 

of 48° orientation change within the observed pixel area over an average abstract artist’s 

career. As illustrated in Figure 6.8 summarising major results, when comparing the 

progress in the use of straight lines and curves over a career, there is a significant increase 

of straight lines from early (M=.25, SD=.13) to late paintings (M=.32, SD=.18); 

t(49)=4.44, p<.001, d=0.49. There is also a significant decrease in the amount of curves 

in early (M=.75, SD=.13) and late paintings (M=.67, SD=.18); t(49)=4.50, p<.001, 

d=0.50. While the results contribute to the hypothesis that abstract painting expertise 

impacts the distributions of low-level visual features contained in works of art, the 

category of visual features displaying an increase in use is not known to be visually or 

aesthetically preferred by the human visual system. 

 

Table 6.3. Description of datasets in terms of number of images and their average pixel 

size. 

Dataset source Number of images Average width 

(pixels) 

Average height 

(pixels) 

Photo.net 17,453 611.62 567.46 

DPChallenge.com 255,529 606.99 534.37 

Wikiart.org 9,660 912.63 873.95 
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Figure 6.4: Differences in the distribution of gradient orientation changes between early 

and late abstract paintings. The pair of sets is composed of paintings of the beginning of 

famous abstract artists’ careers against the end of their career. 

In Figure 6.5, it can be observed that the amount of orange and yellow colours decreases 

by over 4.0% in landscape paintings and 6.1% in abstract paintings, while shades of blue 
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and yellow from early (M=.50, SD=.13) to late paintings (M=.43, SD=0.13); t(49)=2.80, 

p<.01, d=0.46.  
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t(49)=2.32, p=.02, d=0.42. Moreover, a significant increase is displayed in the number of 

pixels with bright colours between early (M=0.16, SD=0.09) and late paintings (M=.21, 

SD=.12); t(49)=2.79, p<.01, d=0.45 (Figure 6.7). To summarise, hue and brightness 

evolutions over time follow the predictions. The only significant result for saturation is a 

rise for highly desaturated colours over time, leading to more pixels belonging to the 

black and white spectrum. In regards to the effect size represented by Cohen’s d, all  

significant results also display effect sizes that can be defined as medium-sized, according 

to Cohen’s guidelines (J. Cohen, 1988). 

 

   

Figure 6.5: Differences in the distribution of colour hue between early and late works in 

landscape and abstract painting. Left: Plot with all colour hues. Right: Plot for shades of 

orange/yellow and shades of blue with error bars representing standard error. The colour 

hue scale given is set with constant saturation=1 and brightness=1. 
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Figure 6.6: Differences in the distribution of colour saturation between early and late 

abstract paintings. The colour saturation scale given is set with constant hue=0 and 

brightness=0.6. 

 

Figure 6.7: Differences in the distribution of colour brightness between early and late 

abstract paintings. The colour brightness scale given is set with constant hue=0 and 

saturation=0. 
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Figure 6.8: Percentage of use of different visual features in an average painting by a 20th-

century abstract artist. All early-late differences displayed are statistically significant. 

Error bars represent standard error. 

6.8.  Discussion 

Overall, the results show that landscape painters have little aesthetic changes in their 

painting style across their careers, which is in clear contrast with the progression of 

abstract painters. The aesthetic experimentations in paintings by influential abstract artists 

across their careers match some of the common human visual preferences pointed out by 

previous neuroscience, psychology, psychophysics and empirical arts studies. While 

orientation preferences, colour hues and colour brightness align with previous findings, 

it is more complicated to interpret the results of curvature distribution and colour 

saturation along the careers of abstract artists (Bertamini et al., 2016; Blasdel, 1992; 

Girshick et al., 2011; McManus et al., 1982; Munar et al., 2015; Ou et al., 2004a). Flat 

angles and 48° changes in orientation within an 80x80 pixel square are the two dominant 

types of orientation changes overall. The increasing amount of straight lines coupled to 

the loss of curved lines may go against the previous suggestion that aesthetic 

experimentations by abstract artists are purely based on aesthetic pleasantness. 
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Considering that the extracted features are measured as a percentage over the surface of 

an image, curved lines represent a high percentage of all lines as observed in Figure 6.8. 

This can imply that aesthetic experimentations do not always consist of increasing the 

amount of preferred visual elements. Otherwise, it may mean that artists converge 

towards a distribution of straight lines and curved lines being more balanced and therefore 

more pleasing to the eye. 

The relationship between abstract painting expertise and human visual preferences can be 

translated in two ways. Firstly, the development and expertise in the practice of abstract 

painting allow the creation of works of art with a greater quantity of specific aesthetically 

pleasant features. Secondly, it could mean that some kind of feedback process allowed 

the selected artists to be more consciously aware of the visual preferences of their 

audiences. As demonstrated in a recent study looking at the relationship between colour 

composition in paintings and their observers’ preferences, when asked to select missing 

colours of a pre-existent painting, observers unknowingly select the same colour as the 

original artist despite seeing the paintings for the first time (Nascimento et al., 2017). This 

study also shows that it was true even in abstract paintings with unnatural colour 

composition, underlining the fact that expert abstract painters manage to agree with lay 

people and visually please their audience. While the development of such skill is 

expected, it is surprising that a dataset of 50 of the most successful abstract artists displays 

such compliance to the potential preferences of their audience.  

The dataset also plays a vital role for understanding the results, as it was built to list two-

dimensional visual arts created by humans, with, in the case of abstract painters, works 

of art distinguishing themselves from real-world representations. In consequence, it 

proves that evolution of visual features over time is not directly linked to external 

perturbations from the outside world or technical innovation in representational arts (e.g., 
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new techniques for perspective drawing or human proportions). It is also not common 

practice for abstract painters to be especially focused on aesthetic quality, meaning that 

the evolution of visual features may be a by-product of their painting expertise or the 

development of their practice. 

Regardless of all conclusions in respect of human perception, the outcome of this 

computational experiment could help to design an artificially intelligent system 

estimating the level of expertise of the author of some visual content, whether it is a 

physical or a digital work of art. Moreover, it could also provide guidelines to creative 

computational systems and eventually provide a new way of testing whether those 

systems are gaining expertise or experimenting new styles by checking if the visual 

features’ evolution match human aesthetic preferences. 

6.9. Applying low-level feature analysis on brand logos’ history  

After leading investigations about the important factors in aesthetic judgement of 

photographs and the evolution of low-level features in abstract and landscape paintings 

through an artist’s career, a similar low-level feature analysis is created with brand logos. 

Logos are designed by companies to display the personality of the brand, by including its 

name in a stylised font and often accompanied by a symbol. To clarify on the terminology 

and the studied objects in this paper, the word “logo” is used to define the brand name in 

stylised letters, as well as any additional symbol (Brownlee, 2014). The designs are meant 

to be functional to fit on diverse backgrounds and supports while attracting the attention 

of the audience and staying distinguishable to increase the value of the brand and the 

performance of the company (Park et al., 2013; Schechter, 2010). As companies get a 

wider audience and spread around the world, more abstract ways of displaying brands are 

required for countries with different alphabets, leading to the popularisation of symbols 
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representing brands. In recent years, logos have been subjects to more scrutinised 

designing process, fed by studies looking at the effects of aesthetics on consumer 

perception. Pieters et al. present a study of complexity in advertising and introduced two 

categories which are feature complexity and design complexity (Pieters et al., 2010). 

Feature complexity is about colours and edges while design complexity is about global 

structures such as symmetry. In accordance with the trend, Pieters et al. demonstrate that 

feature complexity reduces likability and attention while design complexity was 

correlated with appreciation. Grinsven et al. complete further testing on design 

complexity and finds that simple logos are easier to recognise on the short term, but more 

complex logos end up more likeable on the long-term (van Grinsven & Das, 2016). One 

particular study explores how colour hue, saturation, and brightness influence brand 

personality (Labrecque & Milne, 2012). It exposes that some colours score exceptionally 

high for some brand personality. For example, red scores high for excitement, blue for 

competence, black for sophistication and brown for ruggedness. 

One of the main issue when attempting to compare the evolution of logos of different 

companies is that the numbers of logo changes across time vary, as well as the date of 

logo changes. Therefore, some old companies developed in the 19th century such a Skoda 

have known only 6 logos in the company’s history, in contrast to companies such as 

Smart, set up in 1993, and with the exact same number of logo changes. This issue arises 

due to significantly more funding being dedicated to neuromarketing since the 1990s. It 

is, therefore, logical to have more logo changes as companies are relying on science to 

improve their image through advertisement. 
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6.9.1. Dataset 

Digitised logos from 55 companies are retrieved from the internet with a total of 399 

items with an average size of 198 by 140 pixels (Table 6.4). All logos are provided with 

the year they came into use, while companies without accurate entry dates for their logos 

are discarded. Companies have an average of 7.25 logos across their history. While no 

existing dataset was available and ancient logos are not widely published on the internet 

or in books, studied companies are primarily selected due to the availability of the data. 

In the case where a company presents several options of alphabets for their logos, the 

Latin alphabet version of the logo is used. When multiple logos (logotype, logomark or 

combined version) were available, the version containing the brand name and a symbol 

is selected as it contains more visual content and is more likely to express the aesthetic 

chart of the company. 

6.9.2. Method 

The method consists of establishing two periods for which features present in logos are 

averaged, to then analyse the difference between the two periods. Two different types of 

tests are run. The first one consists of splitting data using the median year of each 

company’s history. The median year corresponds to the year halfway between the first 

and the last logo update. Following this method, the average split year for all companies 

is 1968. As additional information, the very first logo in the list was established in 1850, 

and the latest one was produced in 2016.  

A second test, aiming at highlighting eventual effects from neuromarketing studies, 

computer use and the internet in the 1990s, split the data on the year 1990. The split year 

being later than in the first method, some differences can be expected in the presence of 

features due to the use of computers in logo design. Before 1990, the studied companies 
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have had 4.82 logo changes on average, against only 2.44 between 1990 and the present 

days. Of course, all companies studied had logos established before and after the 1990 

split to make the comparison fair between the two tests. 

When talking about both conditions, logos before the year split are defined as “early” 

while logos updated after the year split are defined as “late”. 

6.9.3. Results 

In the first condition, no statistical significance is found in the use of cardinal lines despite 

the differences observed in Figure 6.9. Regarding Figure 6.10, the changes in gradient 

orientation are not shown to be statistically significant. In terms of colour hues which are 

represented in Figure 6.11, a significant decrease in red between early (M=66.15, 

SD=25.99) and late logos (M=56.78, SD=21.53) is observed (t(54)=2.04, p<.05, d=0.40). 

It is intriguing that another shade of red, itself represented on the end of the colour hue 

scale, significantly increases between early (M=2.8, SD=6.12) and late logos (M=6.37, 

SD=11.61) (t(54)=2.0, p<.05, d=0.38). An increase in shades of blue (from 189 to 245) 

between early logos (M=8.43,SD=11.96) and late logos (M=14.59,SD=14.46) is observed 

and statistically significant (t(54)=2.41, p=.02, d=0.46). Regarding saturation (Figure 

6.12), both extremes on the saturation scale seem to display changes, but the evolution of 

the feature representing low-saturated colours is not statistically significant. The feature 

representing highly saturated pixel colours increases between early (M=3.37,SD=5.30) 

and late logos (M=6.8,SD=7.83) (t(54)=2.67, p<.01, d=0.52). To finish, no significant 

differences in brightness is detected, as illustrated in Figure 6.13. 

In the second condition, none of the orientation and curvature preferences observed 

display statistical significance. Again, as in the first condition, statistical significance for 

colour hues are similar. The presence of red pixels decreases from early 
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(M=64.24,SD=24.54) to late logos (M=55.10,SD=20.80) (t(54)=2.08, p<.05, d=40). 

Shades of blue also increase from early (M=9.43,SD=11.71) to late logos 

(M=16.44,SD=16.12) (t(54)=2.59, p=.01, d=0.49). The feature representing highly 

saturated pixel colours increases between early (M=3.84,SD=4.93) and late logos 

(M=8.33,SD=9.81) (t(54)=3.01, p<.01, d=0.57). Surprisingly, the only difference 

obtained is in the percentage of dark pixels, with a decrease between early (M=6.41, 

SD=7.52) and late logos (M=2.99, SD=5.20) (t(54)=2.74, p<.01, d=0.52). 

 

Figure 6.9: Evolution of gradient orientations in logos over two different time settings. 

 

 

Figure 6.10: Evolution of gradient orientation changes in logos over two different time 

settings. 
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Figure 6.11: Evolution of colour hues in logos over two different time settings. 

 

Figure 6.12: Evolution of colour saturation in logos over two different time settings. 

 

Figure 6.13: Evolution of colour brightness in logos over two different time settings. 
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Table 6.4: List of companies and brands studied. 

Company Name First published logo Last published logo Number of logos 

Adidas 1949 2005 4 
AmericanAirlines 1934 2013 5 
Apple 1976 2014 7 
ATT 1889 2005 8 
Audi 1932 2009 2 
BMW 1916 2000 6 
Bouygues 1972 2015 3 
BP 1921 2000 7 
Buick 1904 2002 15 
Chevrolet 1911 2011 9 
CocaCola 1886 2007 12 
DELL 1984 2010 3 
DisneyChannel 1983 2014 8 
Doritos 1964 2013 8 
Dove 1955 2003 4 
Fanta 1940 2016 9 
Fiat 1899 2006 10 
Ford 1903 2003 8 
GeneralElectric 1892 2004 8 
HP 1954 2012 5 
Intel 1968 2005 2 
KFC 1952 2006 5 
KLM 1919 2011 9 
Kodak 1907 2006 7 
Lays 1965 2007 5 
Lego 1934 1998 11 
Mazda 1934 1998 7 
McDonald's 1940 2003 7 
Mercedes 1902 2011 8 
Microsoft 1975 2014 6 
MountainDew 1950 2008 5 
Nestle 1868 1995 5 
Nike 1971 1995 4 
Nokia 1865 1992 5 
Opel 1900 2002 9 
Pepsi 1898 2008 11 
Peugeot 1850 2010 10 
Reebok 1958 2008 8 
Renault 1900 2015 11 
Seat 1950 2012 7 
Shell 1900 1999 10 
Siemens 1899 2001 9 
Skoda 1895 2011 6 
Starbucks 1971 2011 4 
Target 1902 2004 8 
Total 1954 2003 5 
Toyota 1955 2012 14 
Umbro 1924 1994 8 
UPS 1916 2003 4 
Visa 1976 2014 5 
Vodafone 1984 2006 4 
Volswagen 1937 2012 12 
Walmart 1962 2008 6 
Xerox 1906 2008 11 
Yamaha 1898 2016 10 
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6.9.4. Discussion on low-level features in logo designing 

Comparing to the evolution of the distribution of the selected low-level features in 

abstract painter’s careers, it is surprising to see so little differences over 55 companies 

across over a century of logo designing. Despite a recent tendency to simplify logos to 

improve recognition, it does not appear that the distribution of edges in logos has changed 

much. Only colour hues and saturation levels display alterations in both conditions, with 

darkness level significantly decreasing in the second condition underlining modification 

in the last couple of decades. Both conditions show a sharp decrease in shades of red and 

a small but significant increase in blue. Knowing that red is matched with excitement for 

consumers and blue with trust, it could be explained by the fact that companies adopt 

aesthetic charts on a long-term approach instead of looking for consumers to buy 

impulsively (Labrecque & Milne, 2012). Due to the HSB colour information being 

decomposed to make the analysis more manageable, it is not possible to verify if the 

decreasing shade of red characterised by the 0° on the hue scale is typically saturated and 

bright. It could, therefore, mean that the decrease in red is correlated with low-saturated 

colours. Indeed, the decrease in red hue is by about 10%, which is far higher than the 

significant drop in saturation and brightness. A strong and significant correlation between 

the feature representing red and the feature representing low saturation is found in the 

images; (r=.87,p<.001). 

While previous papers looked at preferences of low-level visual features in photographs, 

videos, and paintings, investigating such evolution of visual features and applying a 

similar approach to logos is complicated for many reasons. First, building the dataset from 

scratch is influenced by the availability of the data, and it is possible that studied 

companies are the ones with the highest investment in public outreach, meaning a 

particular focus on successful marketing strategies rather than the global evolution of low-
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level visual features across all logos. Moreover, logos often being conceived by design 

teams instead of individual artists and each iteration being treated as an independent 

project, it is essential to keep in mind that this computational experiment does not 

investigate into individual visual preferences in the creative process but rather in the 

society’s visual preferences in the creative process. 

6.10. Conclusion 

These two computational experiments offer insight into how artistic expertise and 

aesthetics evolve over time in popular culture. The results contribute to the hypothesis 

that visual art creation in influential abstract artists is subject to influences from human 

visual and aesthetic preferences, despite an unnatural context where aesthetic 

pleasantness is not always the primary goal. While most visual features preferred by 

humans seem to appear in more significant quantities as a painter gains experience and 

experiment new styles, the evolution of the number of curved lines and desaturated 

colours goes against this hypothesis. Preferred features that do not evolve as expected 

over the artists’ careers are already present in high quantities in early career. It can be 

suggested that visually preferred features do not maintain their aesthetic attribute past a 

specified distribution and that artists look for a balance between aesthetically pleasing 

and less stimulating visual features. Future works could also include different artistic 

movements or offer a comparison with oriental artists to strengthen the findings while 

highlighting the effects of cultural background on visual artists. While the results on logo 

designing do not allow to make any definite conclusion, it is interesting to see how little 

significant changes have been achieved in the domain in terms of low-level aesthetics. 
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Chapter 7                                                            

Proof of Concept: Psychological Games and Real-

World Applications with an Aesthetic Classifier 

7.1.  Human performances on aesthetic classification tasks 

To comprehend the order of magnitude of the aesthetic classifier’s performances, a brief 

experiment is set up to compare an aesthetic classifier with human performances. An 

aesthetic classifier is trained using 225,000 images of the AVA dataset (Murray et al., 

2012). As stated in previous chapters, each image is rated by at least 100 people according 

to its aesthetics. Images are classified as aesthetically high or aesthetically low depending 

on the average of the community’s ratings and 25,000 images are kept as test images and 

are not shown to the aesthetic classifier. Participants are shown 20 images from the test 

set and asked to match the rating community’s opinion. For each image, feedback is given 

with both the answers from the aesthetic classifier and the community, as displayed in 

Figure 7.1. After the last answer is given, the scores for both the participant and the 

aesthetic classifier are disclosed, as shown in Figure 7.2. This pilot experiment was run 

during Off The Lip 2016 in Plymouth, UK, and 10 volunteers participated while being 

engaged in a discussion over the different implications of automated aesthetic 

classification. Off The Lip 2016 was a public engagement event that aimed at introducing 
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to the public the research produced by fellows and investigators of the CogNovo doctoral 

programme. 

 

Figure 7.1: Screenshot of the interface used in the classification task for human 

participants to challenge the aesthetic classifier at Off The Lip 2016, Plymouth 

University, United Kingdom. 

 

Despite the challenge between human and machine only being a pilot, the results shown 

in Table 7.1 lead to believe that the classifier performs at similar levels as the average 

person. However, it is important to keep in mind that the participants were randomly 

selected and volunteered, meaning they may not have any expertise in aesthetics 

appreciation but still express interest in such a task. Also, the results displayed in Table 

7.1 are slightly higher than previously reported, which is assumed to be due to a sample 

too small to be fully representative. Therefore, it would be interesting to control for art 

expertise in future iterations of such experiments. Nevertheless, when looking at 

performances on individual images, human participants appear better at classifying 

images incorporating aesthetic criteria not treated by the classifier. For example, it was 



Proof of Concept: Psychological Games and Real-World Applications with an Aesthetic 

Classifier 

122 

observed that some aesthetically good images with blur and reflections are rightly 

classified by people but are not appreciated by the aesthetic classifier. 

 

 

Table 7.1: Correct classification rates by the average human participant and the aesthetic 

classifier on images issued from different parts of the rating distribution 

 80% of images around 

the median rating 

10% of images in the top and 

bottom of the rating 

distribution 

Average participant 64.20% 76.32% 

Aesthetic classifier 66.05% 84.21% 

 

 

Figure 7.2: Screenshot of the final page displaying the participant and the aesthetic 

classifier’s scores, compared to the DPChallenge.com community’s aesthetic 

judgements. 
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7.2. PikPik: Android app for aesthetic filtering of photographs 

The computational aesthetic research conducted throughout the thesis has been adapted 

into an Android app. The smartphone application was an entry for an artificial intelligence 

contest organised by Qualcomm. The app, named PikPik (for “Picture Picker”), aims at 

reducing the long chore of sorting photographs on smartphones by applying visual 

preferences learnt from the AVA dataset, but also by trying to define a user profile. The 

app is one of the first using TensorFlow for Android, which is a deep learning library 

optimised for the Qualcomm Snapdragon 835, provided by the contest’s organisers. 

Therefore, the app development was not only a technological challenge but also a 

programming challenge, due to the limited documentation available online at the time, 

except a couple of tutorials.  

  

Figure 7.3: Screenshots of the initial page of PikPik. The user can select a folder to 

have its images filtered by the aesthetic classifier. 
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In comparison to the traditional task of binary aesthetic classification studied in the 

domain of computational aesthetics, the app mainly aims at having strong confidence 

when rejecting images instead of being trained to be both good at predicting aesthetically 

high and aesthetically low photographs. Therefore, the aesthetic classifier selected to be 

integrated into the app displays the highest precision on the validation set, instead of the 

highest accuracy. Precision is a ratio of true positives over all positives, while accuracy 

is a ratio of all trues over all items. It implies that the deep neural network is chosen for 

their high classification scores at detecting images with high aesthetics. All photographs 

selected by the classifier are automatically included in the final selection, without any 

possible alterations from the user. However, rejected photographs are available for 

review, in order to save potentially misclassified photographs. In this case, photographs 

are not only misclassified due to learning errors but also due to differences between the 

taught visual preferences generalised from the DPchallenge.com community and the 

subjective visual preferences of the user. While it may seem unfair to the user to not be 

able to review the photographs accepted by the classifier, it is the founding stone that 

allows the sorting process to be faster and hopefully, more efficient. Indeed, the app is 

designed to be reliable on a majority of photographs (in this case, the most aesthetically 

pleasing photographs) instead of being performant at classifying photographs of all 

aesthetic classes, so the user’s opinion may only be needed on the most ambiguous or 

poorly looking photographs. Depending on the parameters of the aesthetic classifier and 

also the average quality of the photographs shot by the user, it can reduce the number of 

images requiring the user’s opinions significantly. 
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Figure 7.4: Screenshots of the page showing the images selected by the classifier (left) 

and the page allowing the user to confirm or disagree with the rejected photographs 

(right). 

 

The platform on which the app is developed also presents a major limitation in terms of 

machine learning. Indeed, Tensorflow for Android requires deep neural networks to be 

trained and saved on a machine compatible with the traditional version of Tensorflow. 

The lack of neural network training possibilities on Tensorflow for Android implies that 

the software design needed some adaptability to the user’s preferences. Consequently, the 

app is provided with 3 different classifiers that were trained on 3 subsets of the AVA 

datasets, which have higher or lower ratings representing the border with the two aesthetic 

categories. As a result, it makes the different classifiers more or less selective. In the 

review process, decisions from all 3 different classifiers are compared to the user’s 

feedback, regardless of the classifier initially selected. The app can then suggest whether 
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one of the classifiers would be more appropriate to the user’s preferences for future use, 

without necessitating training a new deep neural network. 

7.3.  Discussion 

The extracted features and the deep neural network developed in this thesis allow to 

efficiently classify photographs to state-of-the-art levels in the research domain of 

computational aesthetics, while also providing a tool for individual users. Some 

companies such as Xerox or regaind.io (bought by Apple in 2017) have been working on 

such implementations but only behind closed doors, implying an impossibility to compare 

academic results to products to be released shortly on the market (Marchesotti et al., 2011; 

Murray et al., 2012). One of the aims of human classification tasks and the PikPik app is 

to attempt linking results expressed in terms of correct classification rates to the potential 

satisfaction of a user on such automated photographs filtering tool. However, this task is 

difficult as the results presented in academic works are quantified over a population, while 

commercially-aimed products focus on a single user. Through the development of both 

projects and the feedback from participants, it appears that low-level visual features can 

only illustrate a person’s preferences to some extent, due to a high variance in terms of 

aesthetic preferences across people. To conclude, the set of low-level visual features 

allows to train an ensemble of aesthetic classifiers which present itself as a robust tool to 

predict the preferences of the average individual without any prior learning of this specific 

individual.  
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Chapter 8                                                     

Discussion and Conclusion 

8.1.  From low-level visual features extraction to experimental tool 

Relying on findings in neuroscience, psychology and psychophysics, the literature 

suggests that features in the early visual system may help to investigate human visual 

preferences due to diminished personal and cultural influences. On the other hand, 

computer algorithms to extract visual information from images were developed with a 

focus on a limited collection of photographs. Through the thesis, increments are made to 

ensure the performance of the aesthetic classifier on unseen datasets and unseen types of 

media. Because visual preferences are also displayed in creative products, datasets of 

paintings and logos were assembled for this thesis. While it was not possible to apply the 

proposed aesthetic classifier on such type of items due to the lack of reliable ground-

truthing, particular attention was brought to the evolution in use of the visual features 

across time and creative persons. The aesthetic classifier has been implemented into a 

phone application to offer quick sorting of photographs based on aesthetics. Both the 

developed features and the aesthetic classifier can be considered as experimental tools for 

investigating visual preferences among individuals, whether they are creating or judging 

visual content, over different time spans. 
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8.2.  Successes and shortcomings 

The computational experiments exposed throughout this thesis have demonstrated either 

equal or better results than other approaches to aesthetic classification, mainly thanks to 

its inspiration from the human visual system and its preferences highlighted by the 

literature. While it is the most attractive aspect of the thesis from the perspective of the 

computational aesthetics and computer vision community, this achievement was only a 

by-product of the initial plan to improve the understanding of human visual preferences 

and create a link between neuroaesthetics and computational modelling (Lemarchand, 

2017, 2018). The designed set of features and its coupling to a fully-connected deep 

neural network challenges existing works. Considering that other existing classifiers with 

state-of-the-art results rely on convolutional neural networks which take inspiration from 

the simple and complex cells in the human visual system, it can be suggested that brain-

inspired solutions lead to particularly efficient systems (Fukushima, 1980; Goodfellow et 

al., 2017). The main difference between existing CNN-based classifiers and the solution 

introduced in this thesis is that CNNs figure out key patterns, without the patterns having 

to match directly with aesthetic pleasantness and possibly recognising visual features 

present in objects likely to appear in aesthetically pleasant images. The proposed system, 

however, learns from the pre-selected set of features represented as percentage 

distribution, certifying a controlled and efficient learning process. Due to the little amount 

of innovation on the deep learning techniques, the results can be fully attributed to the set 

of brain-inspired features. This approach not only succeeded to reach state-of-the-art 

results, but it confirms that computational aesthetics should reconnect with the initial 

ideology shared by neuroaesthetics. 

Following the successful results on the classification of images issued from the AVA 

dataset, additional tests were arranged to evaluate the cross-dataset and cross-media 
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capabilities (Murray et al., 2012). After training on the AVA dataset, cross-dataset tests 

were run on Datta et al. and the CUHK datasets, matching results from existing classifiers 

which were entirely tuned and trained on these datasets (Datta et al., 2006; Tang et al., 

2013). Despite the average correct classification rate matching performances by existing 

systems, there are large differences between correct classification rates of aesthetically 

low and aesthetically high photographs. It indicates possible variations in terms of culture 

and expertise among the respective rating community of each dataset. Therefore, it would 

be useful for future datasets to control for the level of expertise and cultural background 

of the individuals rating the photographs. While performance on the dataset of videos by 

Tzelepis et al. showed to be satisfying but limited, it is essential to take into consideration 

the fact that the simple model used to adapt the proposed classifier to assess videos is 

potentially a source of performance loss (Tzelepis et al., 2016). A possible way to improve 

the results would be by using neural architectures optimised for time series data such as 

Long Short-Term Memory networks (LSTMs) (Hochreiter & Schmidhuber, 1997). This 

computational experiment also hints that the set of low-level visual features could be a 

valuable tool to detect aesthetic changes in videos, despite missing essential information 

about motion. Another advantage of having a pre-defined set of visual features is that it 

allows to run statistical analysis over the features present across the datasets and easily 

interpret the outcome.  

Following this proof of robustness of the proposed system on images sourced from 

different provenances and types of media, the set of features was used to analyse potential 

aesthetic changes over the length of famous abstract artists. Several significant changes 

in preferred low-level visual features have been observed in popular abstract artists’ 

careers such as an increase in cardinally-oriented lines or the colour blue. The goal of 

such experiment was not only to define whether artists used a great amount of visually 
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preferred features as they gain experience but also to determine whether the proposed set 

of low-level visual features can link the knowledge of aesthetic judgement during 

contemplation and creation. Along the different data analysis, it is essential to note that 

other statistical tests may have been better suited than Welch’s t-test as the features may 

be dependent on each other. Due to the study focussing on the distribution of different 

types of features, features such as colours must be implicitly linked to some extent. 

From a computational aesthetics perspective, this new and promising brain-inspired 

approach confirms that human visual preferences can be learnt from photographs that 

have simply been rated by online users. Even though the tests introduced along the 

chapters still lack comparable works, it is hoped that cross-datasets and cross-media tests 

such as the test on videos by Tzelepis et al. (2016) become a new standardised test. As 

the field has seen correct classification rates on the AVA dataset slowly reaching a 

plateau, it can be expected that studies approaching computational aesthetics as a pure 

machine learning problem will disappear unless a larger dataset with a controlled rating 

process is published in the near future (Lo et al., 2012; Lu et al., 2014; Mavridaki & 

Mezaris, 2015; Wang et al., 2016). While a lack of new dataset may negatively affect the 

field, it is hoped that it could incite future works to focus on possible brain-inspired 

solutions to improve their systems’ efficiency, as for example, in the recent work by Sun 

et al. (2018). 

Based on the computational experiments in this thesis, as well as the existing literature 

underlined in Chapter 2 and 3, a model is proposed in Figure 8.1 to reflect on the outcome 

of this thesis. Also inspired by other known models, this simple model has for main 

objective to highlight how the demonstrated results take place in the multi-disciplinary 

field of study of human visual preferences. It takes inspiration from Redies et al. (2015) 

which represent aesthetic experience as a perceptual and cognitive phenomenon. Despite 
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the fact that the set of low-level visual features introduced in this thesis attempt to ease 

the influence from semantic and contextual information on the final judgment of the 

model, including it into this model is a statement that the cognitive and emotional aspect 

of aesthetic appreciation should not be omitted. While the presented computational model 

performed well with perceptual information only, the model’s performances are only 

valid in comparison to the average opinion of a group of people. As addressed by Reber 

(2012), cultural and personal experiences is one of the main sources of variation in 

aesthetic judgment across individuals. The model proposed by Che et al. (2018) also 

argues that perceptual preferences are much more similar across individuals and cultures. 

Therefore, the computational aesthetics models that have been criticised previously for 

not focusing on brain-inspired solutions and not contributing to a better understanding of 

human visual preferences, may appear to be a good solution to build systems prediction 

individuals’ preferences instead of a group’s preferences (Kao et al., 2016; Simond et al., 

2015; Tian et al., 2015). 

 

Figure 8.1: Model of aesthetic judgement. 
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The concept of visual complexity is included in the model despite its weak neuroscientific 

background, due to the multiple demonstrations of its relationship with aesthetics in many 

scenarios (Forsythe et al., 2011; Osborne & Farley, 1970; Reinecke et al., 2013; Romero 

et al., 2012). As suggested by Forsythe et al. (2011), complexity estimation may happen 

during early visual processing. Such measure happening early in visual processing, and 

therefore, in the aesthetic judgment process, could give expectations on how fast a visual 

stimulus should be processed, linking to the concept of processing fluency. This leads to 

hypothesise that the feeling of processing fluency may be triggered by the difference 

between complexity estimation and the actual difficulty to perceptually and cognitively 

process the visual stimulus.  

To conclude, while the field of neuroaesthetics has been focusing on locating brain 

regions related to aesthetic appreciation, little work has been done from a bottom-up 

approach to study human visual preferences using the knowledge issued of the 

neuroscience of vision. The set of low-level features designed and tested through this 

thesis shows that computational aesthetics, as a field, would benefit from taking 

inspiration from the visual brain.  

8.3. Thesis contributions 

A new approach to computational aesthetics confirms a reliable link between a set 

of brain-inspired visual features and human visual preferences. The features can be 

coupled with various machine learning algorithms to investigate human visual 

preferences. It not only challenges the performance of state-of-the-art aesthetic classifiers, 

but it also offers fast visual information extraction and efficient encoding of human visual 

preferences into 114 features. The brain-inspired features demonstrate that the 

distribution of low-level visual information can provide sufficient hints of aesthetics 
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value to learn human visual preferences, questioning the role of semantic information in 

aesthetic judgement. Aspects of this work were published in Lemarchand (2018). 

The array of tests and analysis applied onto the proposed aesthetic classifier allows 

comparison between machine learning solutions and contributes towards a standard in 

the domain of computational aesthetics. Hereby, it addresses frequent and risky shortcuts 

in existing studies. The additional tests presented in the thesis improves the evaluation 

and comparison of the different photography datasets, as well as the aesthetic classifiers’ 

performances on them (Datta et al., 2006; Murray et al., 2012). It allows to observe the 

aesthetic classifier’s performance over different parts of the datasets, highlighting that a 

number of images seem virtually impossible to classify in a binary choice situation. A 

corresponding argument was published in Lemarchand (2018). 

Extracting low-level visual features from images allows to train an aesthetic 

classifier with cross-media capabilities, with the classification of videos for example. 

The proposed aesthetic classifier shows satisfying performances when classifying videos, 

despite not reaching the classification levels demonstrated by Tzelepis et al. with a system 

designed and trained specifically on videos (Tzelepis et al., 2016). It demonstrates that an 

aesthetic classifier designed for static scenes provide a reasonable indicator of aesthetic 

quality in a dynamic setting. Such cross-media tests also provide qualitative feedback on 

the proposed aesthetic classifier’s preferences by comparing aesthetic predictions with 

specific characteristics known to appear in selected films. This work was published as 

Lemarchand (2017). 

An experimental framework to study basic visual preferences in creative processes 

in the visual domain on a long-term scale. The experiment consists of a statistical 

analysis on abstract and landscape paintings which attempts to build a bridge between 
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aesthetic judgement processes modelled in the domain of computational aesthetics and 

creative artistic processes. With the increasing numbers of artificially intelligent agents 

imitating artistic processes such as AARON or the Painting Fool, investigations on low-

level visual features provide additional information on cognitive processes to design 

future artistic AIs (H. Cohen, 2002; Colton, 2012). As most of the known artistic AIs in 

the computational creativity literature are product-focused, further understanding of the 

creative process regarding visual aesthetics would help to make AI-generated works of 

art with a focus on the modelling of the cognitive process. 

The pilot experiment and prototype phone application provide quantitative and 

qualitative investigation tools to learn more about human visual preferences in 

individuals. Both accentuate how artificial the binary classification task attempted by the 

computational aesthetics community is. In fact, it helps to reflect on the ethical issues 

posed when learning visual preferences of individual, as it could be used as biometrics 

due to the subjectivity of preferences in any given person. Furthermore, the prototype 

phone application demonstrates that powerful neural network processing can be 

implemented locally on phone hardware, consequently addressing data leaks in client-

server protocols and users’ privacy concerns.  
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8.4.  Future work 

In the current state of this work and taking the most recent literature into consideration, 

three main promising opportunities are available to pursue the investigations: 

• Use the proposed low-level visual features as a base and implement higher-level 

features, leading towards the improved aesthetic classification of images 

containing blur and depth of field or dynamic visual information such as videos. 

• Develop a large-scale dataset with a controlled cultural background to confirm 

whether the findings of this thesis are specific to the western world. Finalising and 

releasing the photograph aesthetic filter application, for example on the Android 

platform, could provide valuable feedback from various cultures. 

• Develop a creative artificial intelligent agent to generate visual art using 

extensively the existing literature of studies on human visual preferences and 

aesthetics. This could offer an alternative to traditional rule-based art producing 

systems or deep learning solutions training on large datasets of paintings.  
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