1,089 research outputs found

    Prior Guided Deep Difference Meta-Learner for Fast Adaptation to Stylized Segmentation

    Full text link
    When a pre-trained general auto-segmentation model is deployed at a new institution, a support framework in the proposed Prior-guided DDL network will learn the systematic difference between the model predictions and the final contours revised and approved by clinicians for an initial group of patients. The learned style feature differences are concatenated with the new patients (query) features and then decoded to get the style-adapted segmentations. The model is independent of practice styles and anatomical structures. It meta-learns with simulated style differences and does not need to be exposed to any real clinical stylized structures during training. Once trained on the simulated data, it can be deployed for clinical use to adapt to new practice styles and new anatomical structures without further training. To show the proof of concept, we tested the Prior-guided DDL network on six different practice style variations for three different anatomical structures. Pre-trained segmentation models were adapted from post-operative clinical target volume (CTV) segmentation to segment CTVstyle1, CTVstyle2, and CTVstyle3, from parotid gland segmentation to segment Parotidsuperficial, and from rectum segmentation to segment Rectumsuperior and Rectumposterior. The mode performance was quantified with Dice Similarity Coefficient (DSC). With adaptation based on only the first three patients, the average DSCs were improved from 78.6, 71.9, 63.0, 52.2, 46.3 and 69.6 to 84.4, 77.8, 73.0, 77.8, 70.5, 68.1, for CTVstyle1, CTVstyle2, and CTVstyle3, Parotidsuperficial, Rectumsuperior, and Rectumposterior, respectively, showing the great potential of the Priorguided DDL network for a fast and effortless adaptation to new practice style

    An Investigation of Methods for CT Synthesis in MR-only Radiotherapy

    Get PDF

    Artificial Intelligence in Radiation Therapy

    Get PDF
    Artificial intelligence (AI) has great potential to transform the clinical workflow of radiotherapy. Since the introduction of deep neural networks, many AI-based methods have been proposed to address challenges in different aspects of radiotherapy. Commercial vendors have started to release AI-based tools that can be readily integrated to the established clinical workflow. To show the recent progress in AI-aided radiotherapy, we have reviewed AI-based studies in five major aspects of radiotherapy including image reconstruction, image registration, image segmentation, image synthesis, and automatic treatment planning. In each section, we summarized and categorized the recently published methods, followed by a discussion of the challenges, concerns, and future development. Given the rapid development of AI-aided radiotherapy, the efficiency and effectiveness of radiotherapy in the future could be substantially improved through intelligent automation of various aspects of radiotherapy

    Auto-Segmentation of Target Volume and Organs-at-risks for Radiotherapy in Breast Cancer patients

    Get PDF
    ๋ชฉ์ : ์œ ๋ฐฉ์•” ๋ฐฉ์‚ฌ์„  ์น˜๋ฃŒ์—์„œ ์น˜๋ฃŒ ์ฒด์ ์— ๋Œ€ํ•œ ์ •ํ™•ํ•œ ํƒ€๊ฒŸ ๊ทธ๋ฆฌ๊ธฐ๋Š” ์ค‘์š”ํ•˜๋‹ค. ํ•˜์ง€๋งŒ ๋ฐฉ์‚ฌ์„  ์น˜๋ฃŒ ๊ณ„ํš ๊ณผ์ •์— ํƒ€๊ฒŸ ๊ทธ๋ฆฌ๊ธฐ๋Š” ์˜๋ฃŒ์ง„์˜ ๋ถ€๋‹ด์„ ์ฃผ๊ณ  ์žˆ์œผ๋ฉฐ, ์˜๋ฃŒ์ง„ ๊ฐ„์˜ ํŽธ์ฐจ๋Š” ์กด์žฌํ•˜๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” Deep learning-based auto-segmentation (DLBAS)์˜ ์„ฑ๋Šฅ์„ atlas-based segmentation solutions (ABAS)์™€ ๋น„๊ตํ•˜๊ณ , ์ž„์ƒ ์˜์‚ฌ์˜ ๊ด€์ ์—์„œ ์œ ์šฉ์„ฑ์„ ํ‰๊ฐ€ํ•˜๊ณ , ์ตœ์ข…์ ์œผ๋กœ ์™ธ๋ถ€ ํƒ€๋‹น๋„ ์กฐ์‚ฌ๋ฅผ ํ†ตํ•˜์—ฌ ์œ ๋ฐฉ์•” ๋ฐฉ์‚ฌ์„  ์น˜๋ฃŒ์—์„œ ์ž๋™ ๊ตฌํšํ™”์˜ ๊ฐ€๋Šฅ์„ฑ์„ ๊ทœ๋ช…ํ•˜๊ณ ์ž ํ•œ๋‹ค. ๋Œ€์ƒ ๋ฐ ๋ฐฉ๋ฒ•: ์œ ๋ฐฉ์•” ๋ฐฉ์‚ฌ์„  ์น˜๋ฃŒ ์ฒด์ ๊ณผ ์ •์ƒ์žฅ๊ธฐ๋“ค์— ๋Œ€ํ•˜์—ฌ ํ•œ ๋ช…์˜ ์—ฐ๊ตฌ์ง„์— ์˜ํ•˜์—ฌ ๊ตฌํšํ™” ์ •๋ณด๋ฅผ ์ƒ์„ฑํ•˜์˜€๋‹ค. Convolutional neural network ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•˜์—ฌ auto-contours๋ฅผ ์ƒ์„ฑํ•˜์˜€๊ณ , Dice similarity coefficient (DSC) and 95% Hausdorff distance (HD)๋ฅผ ์ด์šฉํ•˜์—ฌ ABAS์™€ ๋น„๊ตํ•˜์˜€๋‹ค. DLBAS์— ์˜ํ•ด ์ƒ์„ฑ๋œ auto-contours์˜ ์งˆ์ ์ธ ํ‰๊ฐ€๋ฅผ ์กฐ์‚ฌํ•˜์˜€๊ณ , manual contours์™€ ๋ฐฉ์‚ฌ์„  ์น˜๋ฃŒ ์„ ๋Ÿ‰-์ฒด์  ํžˆ์Šคํ† ๊ทธ๋žจ์„ ๋น„๊ตํ•˜์—ฌ ์ฃผ์š” ์„ ๋Ÿ‰ํ‰๊ฐ€๋ถ„์„์„ ์‹œํ–‰ํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ 2๊ฐœ ๊ธฐ๊ด€์˜ 11๋ช…์˜ ์ „๋ฌธ๊ฐ€์—๊ฒŒ manual contour๋ฅผ ๊ทธ๋ฆด ๊ฒƒ์„ ์š”์ฒญํ•˜์—ฌ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜์˜€๋‹ค. ์™ธ๋ถ€ ์œ„์›ํšŒ๋ฅผ ํ†ตํ•ด ๊ฐ€์žฅ ์ตœ์ ์˜ ์น˜๋ฃŒ ์ฒด์ ์„ ์„ ์ •ํ•˜์˜€๊ณ , ๋‚˜๋จธ์ง€ 10๋ช…์˜ contour์™€ DLBAS์— ์˜ํ•ด ์ƒ์„ฑ๋œ auto-contour์˜ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜์—ฌ ์ˆœ์œ„ ํ‰๊ฐ€๋ฅผ ์‹œํ–‰ํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ: ์ œ์•ˆ๋œ DLBAS ๋ชจ๋ธ์€ ๋Œ€๋ถ€๋ถ„์˜ ์ฒด์  (ํŠนํžˆ, ์น˜๋ฃŒ ์ฒด์ ๊ณผ ์‹ฌ์žฅ ์„ธ๋ถ€๊ตฌ์กฐ)์—์„œ ABAS๋ณด๋‹ค ๋” ์ผ๊ด€๋œ ๊ฒฐ๊ณผ์™€ ๋†’์€ DSC์™€ ๋‚ฎ์€ HD ๊ฒฐ๊ณผ ๊ฐ’์„ ๋ณด์˜€๋‹ค. ABAS๋Š” ์—ฐ์กฐ์ง์˜ ์ •์ƒ์žฅ๊ธฐ์™€ ์กฐ์˜์ œ๋ฅผ ์“ฐ์ง€ ์•Š์€ ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ ์…‹์—์„œ DLBAS์— ๋น„ํ•ด, ์ œํ•œ์ ์ธ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ์งˆ์  ํ‰๊ฐ€๋ฅผ ์œ„ํ•œ ์„ค๋ฌธ์กฐ์‚ฌ๊ฐ€ ์‹œํ–‰๋˜์—ˆ๊ณ , ์ค‘์œ„์ˆ˜ 8์ ์œผ๋กœ manual contour์™€ auto-contour ์‚ฌ์ด์˜ ์ฐจ์ด๊ฐ€ ํฌ์ง€ ์•Š๋‹ค๊ณ  ๋Œ€๋‹ตํ•˜์˜€์œผ๋ฉฐ, ์ž„์ƒ์—์„œ ๋„์›€์ด ๋  ๊ฒƒ์œผ๋กœ ๋‹ต๋ณ€ํ•˜์˜€๋‹ค. ๋˜ํ•œ ์„ ๋Ÿ‰ํ‰๊ฐ€ ๋ถ„์„ ๊ฒฐ๊ณผ์—์„œ ์ฐจ์ด๋Š” ๋ฏธ๋ฏธํ•˜์˜€๋‹ค. ์™ธ๋ถ€ ๊ฒ€์ฆ ๊ฒฐ๊ณผ, 9๊ฐœ์˜ ์ •์ƒ์žฅ๊ธฐ๋ฅผ ๊ทธ๋ฆฌ๋Š”๋ฐ ํ‰๊ท  37๋ถ„์ด ๊ฑธ๋ ธ๊ณ , DLBAS๋Š” 6๋ถ„์ด ๊ฑธ๋ ธ๋‹ค. Auto-contour๋Š” ์ „์ฒด 12๊ฐœ ์ค‘ 1์œ„ manual contour์™€ ๋น„๊ตํ•˜์˜€์„ ๋•Œ ๊ฐ€์žฅ DSC์ƒ ์ฐจ์ด๊ฐ€ ์ ์—ˆ์œผ๋ฉฐ, HSD์ƒ 2๋ฒˆ์งธ๋กœ ์ฐจ์ด๊ฐ€ ์ ์—ˆ๋‹ค. ์ •์ƒ์žฅ๊ธฐ์—์„œ ๊ฐ€์žฅ ํŽธ์ฐจ๊ฐ€ ๋†’์•˜๋˜ ๋ถ€์œ„๋Š” ์œ ๋ฐฉ์ด์—ˆ๋‹ค. ๊ฒฐ๋ก : ์œ ๋ฐฉ ๋ฐฉ์‚ฌ์„  ์น˜๋ฃŒ ๊ณ„ํš์—์„œ DLBAS์˜ ์‹คํ˜„๊ฐ€๋Šฅ์„ฑ์€ ์ด๋ฒˆ ์—ฐ๊ตฌ์—์„œ ๋‹ค๊ฐ๋„๋กœ ๊ฒ€์ฆ๋˜์—ˆ๋‹ค. ์˜๋ฃŒ์ง„์˜ ์ตœ์ข… ์ˆ˜์ • ๊ณผ์ •์€ ํ•„์ˆ˜์ ์ด์ง€๋งŒ, ์•ž์œผ๋กœ DLBAS๋Š” ๋ฐฉ์‚ฌ์„  ์น˜๋ฃŒ๋ฅผ ๋„์šธ ์ˆ˜ ์žˆ๋Š” ํ›Œ๋ฅญํ•œ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค.open๋ฐ•
    • โ€ฆ
    corecore