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Abstract 

Each year in the UK, almost 50, 000 men are diagnosed with prostate cancer and of 

these approximately 30 % receive external beam radiotherapy (EBRT) as part of their 

treatment (Cancer Research UK, 2018). Treating prostate cancer patients therefore 

compromises a significant proportion of a typical EBRT centre’s total clinical workload.  

It has long been acknowledged that changes to the contents of the bladder, bowel 

and rectum can cause the prostate to move considerably within the pelvic cavity 

(Moiseenko et al., 2007; Hosni et al., 2017). To ensure that the malignant disease 

receives the prescribed EBRT dose under this positional uncertainty, a margin of 

healthy tissue that includes radiosensitive organs at risk (OAR) surrounding the prostate 

is generally also treated. Adaptive radiotherapy (ART) can ameliorate this situation by 

adapting the treatment to account for day-to-day changes in pelvic anatomy thereby 

allowing the disease to be targeted more accurately and reducing the irradiated volume 

(Nijkamp et al., 2008; Antico et al., 2019).  

Unfortunately, although ART techniques provide dosimetric and potential clinical 

benefits to patients, clinical adoption of ART is far from widespread. ART brings 

additional work to the radiotherapy treatment planning process, which is magnified 

over the large prostate cancer patient population such that it quickly becomes 

unmanageable in most centres.  

Automation therefore has an important role to play in ART workflows for prostate 

radiotherapy and hence is the focus of this thesis. Chapter 1 outlines and 

compartmentalises the current non-ART prostate radiotherapy treatment planning 

pathway and presents a literature review of published attempts to automate it. 

Subsequent chapters present individual studies that build on these published works and 

culminate in a fully-automated knowledge-based treatment planning workflow.  

Rigorous analyses of treatment plans generated using this fully-automated 

workflow show that they are generally of at least comparable quality to manually 

generated clinical treatment plans – although gross inaccuracies in auto-contouring of 

anatomical structures can be a limitation. Nevertheless, the proposed fully-automated 
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workflow could provide significant efficiencies for treatment planning departments, 

which could be exploited to aid with the implementation of ART techniques and provide 

patients with earlier access to their cancer treatments. 

Publication of the fully-automated knowledge-based treatment planning workflow 

and the data used to drive it would also allow treatment planning information and 

expertise developed over more than a decade at The Christie NHS Foundation Trust to 

be shared easily and quickly with other centres worldwide. 
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Chapter 1 
 

1 Literature Review 

1.1 Prostate Cancer Radiotherapy Treatment Planning 

This thesis considers the role of automation in prostate radiotherapy treatment 

planning. Prostate cancer accounts for almost 50, 000 new cancer diagnoses each year 

in the UK (Cancer Research UK, 2018) and radiotherapy plays in important role in the 

treatment of 30 % of prostate cancer patients (National Cancer Registration and Analysis 

Service, 2018). Current practice throughout the radiotherapy community is for patient 

specific treatment plans to be generated manually by experienced treatment planners. 

However, it is widely reported that manual treatment planning is time consuming and 

introduces variation into the quality and consistency of clinical treatment plans 

(Chanyavanich et al., 2011). Manual treatment planning is also not feasible for many 

approaches to adaptive radiotherapy (ART), which are reported to provide dosimetric 

improvements (Antico et al., 2019), as increased workload quickly becomes prohibitive. 

For busy centres, effective automation of the treatment planning process can 
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generate significant quality improvements and the required workload efficiencies to 

enable ART. It is therefore extremely desirable for clinical radiotherapy departments.  

Approaches to automating the prostate radiotherapy treatment planning process 

are presented abundantly in the literature but prior to reviewing this literature here, it is 

first important to introduce the existing prostate treatment planning pathway to provide 

context to where and how automation techniques can be applied. The standard 

radiotherapy treatment planning pathway is illustrated in Figure 1.1 and typically from 

‘Planning CT Scan’ to ‘Treatment’ takes approximately two weeks. Although different 

radiotherapy centres may implement the specifics of each box in Figure 1.1 differently, 

the fundamentals of the pathway remain the same. The following subsections briefly 

outline the essential requirements of each step in the pathway. 

 

 

Figure 1.1: Prostate radiotherapy treatment planning pathway. 

 

1.1.1 Target & Organ at Risk Delineation 

Following a prostate cancer diagnosis and radiotherapy referral, the patient undergoes a 

computed tomography (CT) scan in the intended treatment position. This CT scan is 

transferred from the scanner to the treatment planning system (TPS) where a consultant 

oncologist outlines the prostate and, depending on disease stage, seminal vesicles (SV). 

For standard prostate radiotherapy, prostate and SV form the clinical tumour volumes 

(CTV) (ICRU, 1999). After the prostate and SV have been delineated, a treatment 

planner outlines the organs at risk (OAR) to which dose must be minimised and 

reported (ICRU, 1999). OARs for prostate cancer are the rectum, bladder and femoral 
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heads and possibly the bowel and urethral bulb. 

Typically, delineation of these structures is performed manually on each slice of 

the CT scan and allows the therapeutic radiation dose distribution to be optimised and 

reported. Manual outlining of anatomical structures arguably constitutes the most 

significant bottleneck in Figure 1.1 and delays between the outlining stages can account 

for the majority of time it takes to complete the pathway. 

 

1.1.2 Treatment Plan Optimisation 

Once all necessary structures are outlined they are used to drive the optimisation of the 

patient specific treatment plan. Modern radiotherapy treatment planning follows an 

‘inverse planning’ approach as opposed to tradition ‘forward planning’ (Hristov et al., 

2002). Forward planning is a technique where treatment planners use their expertise to 

manipulate treatment machine parameters in the TPS (beam energy, gantry and 

collimator angles, MLC positions etc.) to achieve an optimal dose distribution. For 

complex intensity modulated radiotherapy (IMRT) and volumetric modulate arc therapy 

(VMAT), however, there are too many machine parameters and variables to adjust and 

optimise in this manner. Inverse planning is the alternative and uses an automatic 

optimisation algorithm in the TPS. The treatment planner defines the desired dose 

distribution in terms of achievable objectives for the algorithm. The algorithm then 

automatically optimises the machine parameters to give a treatment plan that best 

satisfies the objectives defined by the planner. 

Manually driven inverse planning for prostate VMAT is an iterative process 

whereby the treatment plan is increasingly improved with each optimisation until it 

meets some minimum dosimetric requirements and visually the dose distribution 

appears acceptable. The doses received by the outlined structures can be assessed using 

a number of parameters. 

Three basic metrics used to characterise radiation dose to a 3D structure are the 

minimum, maximum and mean doses. Despite the relative simplicity of these metrics, 

they succinctly capture whether a structure is being grossly under- or over-dosed. With 
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modern radiotherapy, however, these simple metrics are often insufficient to capture 

whether the dose to a critical structure is fully optimised. ICRU report 83 (ICRU, 2010) 

introduced dose volume histogram (DVH) reporting which provides information of how 

optimally the dose is distributed within a volume. 

Figure 1.2 shows a differential DVH on the left for a PTV where most of the 

volume has received a dose close to the 6000 cGy prescription. This can be converted 

into the cumulative DVH shown on the right using equation 1.1 (ICRU, 2010). 

 
 

DVHcumulative(𝐷𝐷) = 1 −
1
𝑉𝑉
�

𝑑𝑑𝑉𝑉(𝐷𝐷)
𝑑𝑑𝐷𝐷

𝑑𝑑𝐷𝐷
𝐷𝐷max

0
, 1.1 

 

where V is the volume of the structure, Dmax is the maximum dose to the structure and 

the integrand is the rate of change of the differential DVH with respect to dose. 

Cumulative DVHs make it easy to compare the dose to a structure from different 

treatment plans. DVH data can also be used to generate quantitative dose statistics and 

ICRU report 83 defines the nomenclature for these. The minimum dose, D, that is 

received by the fractional volume of a structure, V, is written as DV (for example, D95 % is 

a minimum dose that covers 95 % of the structure). Volume may also be specified in 

absolute terms such as D1 cc. Similarly, the volume that receives at least some absorbed 

dose is written as VD (for example, V6000 cGy is the volume of the structure that receives at 

least 6000 cGy). 

 

 

 

 

Figure 1.2: Differential (left) and cumulative (right) DVHs for a PTV. 

 



 

 23 

DVH statistics provide a quick and easy means to assess and compare dose 

distributions. However, when a 3D dose distribution is collapsed into a 2D graphic, 

information about the spatial distribution of dose is lost and so visual inspection of the 

dose distribution using isodose lines overlaying the 3D CT scan is required. 

 

1.1.3 Quality Assurance & Machine Preparation 

Following the Towards Safer Radiotherapy recommendations (The Royal College of 

Radiologists et al., 2008), all prostate VMAT treatment plans that are generated by 

trained treatment planners are independently checked as a means of quality assurance. 

This well established quality assurance procedure checks that the TPS parameters and 

settings are correct and appropriate and checks that the dose distribution has been 

sufficiently optimised. In addition, a consultant clinical oncologist also reviews the plan 

to ensure the dose is clinically acceptable. Plans that fail either the physics or clinical 

quality assurance are returned to the treatment planner for correction. 

In addition to the treatment plan quality assurance, an independent check of the 

TPS dose calculation is also performed. Potential inaccuracies with the clinical dose 

calculation can generally be characterised as systematic and random errors. Systematic 

errors are caused by insufficiencies in the TPS beam model and dose calculation 

algorithm such that it does not represent the behaviour of the actual treatment machine. 

For example, if the TPS beam energy spectrum does not reflect the radiation emitted 

from the treatment machine, the TPS will systematically get its calculations incorrect. 

Random errors occur when the TPS does not perform its calculation as expected. These 

may be the result of, amongst other causes, data corruption or instability of the TPS 

software or hardware. 

TPS dose calculation quality assurance involves comparison of the TPS 

calculation with an independent measurement and calculation to eliminate the 

possibility of systematic and random errors. Gamma analysis (Low et al., 1998) is a 

commonly used means of quantifying the similarity between different dose distributions 

– i.e. the primary TPS calculation and the independent calculation or measurement. It 
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considers simultaneously the dose difference between corresponding voxels in the 

distributions and also the distance to agreement (DTA). Some pass-fail criteria are 

specified and the percentage of pixels passing the analysis gives a measure of similarity. 

Figure 1.3 illustrates the gamma analysis technique in 2D. The x-y plane in Figure 

1.3A represents the plane of the two overlaid dose distributions with the origin centred 

on the current voxel being analysed. The yellow shaded region shows the DTA radius. In 

Figure 1.3B, the vertical axis gives the pixel-by-pixel percentage difference between the 

dose distributions and the gamma analysis dose difference criteria is represented by the 

dark blue arrows. Gamma analysis combines the DTA and dose difference criteria by 

generating an ellipsoid of acceptance as shown in yellow in Figure 1.3C. If the 

percentage dose difference surface does not intersect this ellipsoid, the pixel fails the 

gamma analysis. This process is repeated for every pixel in the reference distribution 

and the final reported value is the percentage of pixels passing the gamma analysis. 

On successful completion of all the quality assurance, the final preparations for 

clinical treatment delivery are made by treatment radiographers. 

 

 

Figure 1.3: Gamma analysis illustration. A) shows the DTA acceptence radius shaded 
in yellow. B) adds the dose difference acceptance criteria. C) shows the ellipsoid of 

acceptance as the shaded yellow ellipsoid. 
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1.1.4 Treatment Delivery & Plan Adaptation 

The Royal College of Radiologists’ recommends treating intermediate- to high-risk 

prostate cancer (T1b-T3aN0M0) with radiotherapy prescribed as 6000 cGy in 20 

fractions treated daily (excluding weekends) over four weeks (The Royal College of 

Radiologists, 2016). A regular cone-beam CT (CBCT) online imaging protocol is often 

followed to review anatomical changes or differences from the CT scan used for 

radiotherapy treatment planning. When differences are noted by treatment 

radiographers they are reviewed dosimetrically and clinically by the radiotherapy 

physics and clinical oncologist teams. Where it is required, a new treatment planning CT 

scan is acquired and the treatment planning process starts anew to generate a revised 

treatment plan for the remainder of treatment. This review and re-planning process is 

represented by the dashed purple line in Figure 1.1 

 

1.2 Auto-Segmentation 

Segmentation of a medical image refers to the identification of anatomical structures 

within it. As discussed in section 1.1.1, manual-segmentation is performed by drawing 

around each structure on a computer screen on each slice of the CT image. This is time 

consuming, however, and suffers from significant inter- and intra-observer variation 

(Han et al., 2008; Collier et al., 2003). To minimise these variations, peer review of 

clinical structures is increasingly common within hospitals and the Royal College of 

Radiologists recommend using target volume definition protocols ‘across a clinical 

network and ideally nationally’ (Royal College of Radiologists, 2017). Although these 

measures help, they do not fully remove inter- and intra-observer variations and 

international protocol consensus certainly does not exist for the majority of treatment 

sites. 

Auto-segmentation of CT images can address these issues by replacing the time 

consuming manual-segmentation and by providing consistency to the segmented 

structures. Unfortunately, auto-segmentation presents a number of challenges. First is 

the poor soft tissue contrast, noise and artefacts observed in CT images (Li et al., 2016). 
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Poor soft tissue contrast and noise are illustrated in Figure 1.4 where a central anterior-

posterior plot of CT number shows little variation other than noise as the profile runs 

through muscle, adipose tissue, bladder (yellow), prostate (red) and rectum (blue). A 

larger difference is seen between the soft tissues and bone. 

 

 

Figure 1.4: A pelvis CT image with an anterior-posterior plot of CT number along the white 
dashed line. Little variation in the CT number is observed between adipose tissue, bladder, 
prostate and rectum. A larger difference is observed between these soft tissues and bone. 

 

The second major challenge of automatic segmentation is the variation of organ 

shape (and to some extent density) between patients (Bzdusek et al., 2012). This is 

illustrated in Figure 1.5, where six prostate cancer patient CT scans are shown that have 

been manually segmented and show significant variations in muscle and fat composition 

and prostate (red), seminal vesicles (blue)†, rectum (brown) and bladder (yellow) size 

and shape. 

For structures where there is sufficient contrast at boundaries (such as bone, 

lungs or the whole body), a threshold CT number can be specified and the structure can 

be semi-automatically outlined based on this value (Özsavas et al., 2014). Alternatively, 

for structures where there is little variation in the shape between patients (such as the 

femoral heads) a simple model-based approach can be applied (Seim et al., 2008). In the 

pelvis, however, where little soft tissue contrast is seen and where there is large 

variation of the soft tissue structures, more sophisticated approaches need to be 

employed. These are considered in the following subsections. 
 

† Not all of the CT slices in Figure 1.5 display seminal vesicles as slices containing prostate, 
seminal vesicles, rectum and bladder do not always exist. 
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Figure 1.5: CT images demonstrating significant variations in pelvic anatomy where the prostate, 
SV, bladder and rectum and outlined in red, blue, yellow and brown respectively. 

 

1.2.1 Atlas-Based Segmentation 

Atlas-based auto-segmentation is defined by Han et al. (2008) as ‘the process of 

performing segmentation on novel data using the knowledge of a prior segmentation – a 

dataset that has had the structures of interest already labeled (sic)’. Typically, 

deformable image registration (DIR) is used to map the atlas image to the novel image 

and produce a deformation vector field (DVF) (Castadot et al., 2008). The DVF can be 

applied to the atlas structures, which are then transferred to the novel image – thus 

auto-segmenting the anatomy in the novel image. This process is illustrated in Figure 
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1.6. The majority of auto-segmentation work reported in the literature in recent years 

has relied on atlas-based approaches (Aljabar & Gooding, 2017). 

Aljabar et al. (2009) writes that the performance of atlas-based auto-segmentation 

is dependent on the accuracy of the DIR, the quality of the atlas segmentation and the 

similarity of the atlas image to the novel image. Han et al. (2008) describes the first of 

these dependencies as the most critical component of atlas-based auto-segmentation – if 

the deformed atlas is not well matched to the novel dataset, the propagated contours 

will not overlie their respective anatomical structures. Collier et al. (2003) considers the 

second dependency and reports significant inter- and intra-observer variations in 

manually drawn clinical structures which limit the quality of any atlas-based auto-

segmentation – inaccuracies and disagreements in the atlas segmentation are 

transferred to the novel dataset. For the final dependency, Han et al. (2008) suggests 

that atlas-based auto-segmentation accuracy degrades with dissimilarity between the 

atlas and the novel image. These dissimilarities can be both anatomical and image 

characteristic such as noise, artefact, etc.. 

 

 
 

Figure 1.6: Atlas-based auto-segmentation. The atlas image is first mapped to 
the novel image using DIR. Atlas contours are then deformed with the same 

deformation vector field and transferred to the novel image. 
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The use of multiple atlases has been shown to improve the performance of atlas-

based auto-segmentation significantly (Acosta et al., 2017; Aljabar et al., 2009). In a 

multi-atlas approach, either the single atlas that is most similar to the novel image is 

selected for auto-segmentation from a database of atlases or multiple auto-

segmentations are performed and the resulting segmentations are combined in some 

way – such as with the STAPLE algorithm (Warfield, Zou & Wells, 2004). 

A criticism of atlas-based auto-segmentation is that selection of the most suitable 

atlas from a database is computationally demanding and so in practice this means the 

number of atlases in a database is typically restricted to 10-20 (Peressutti et al., 2016). 

When a novel dataset that needs to be segmented deviates significantly from any of the 

available atlases, the performance of atlas-based approaches is fundamentally limited.  

 

1.2.2 Deep Learning-Based Segmentation 

Deep learning is a type of machine learning, where input data are used to drive model 

parameters with the aim of minimising differences between the model output and 

observation. A detailed discussion of machine and deep learning is beyond the scope of 

this thesis, but a brief overview is provided below. A more thorough discussion can be 

found in Litjens et al. (2017).  

Machine learning methods generally have an artificial neural network (ANN) as 

their basis. An ANN consists of layers of software units called neurons where each layer 

receives an input from the previous layer and performs a process before passing an 

output to the next layer. Neurons have an activation, a set of weights and a set of biases 

that describe the behaviour of a particular model parameter. The activation, weights and 

biases are optimised in a training process using existing data. A simple ANN is 

illustrated in Figure 1.7, where there are two ‘hidden’ layers linked by weighted 

connections. Where the ANN has many hidden layers between the input and output 

layers, it is referred to as ‘deep’ and hence can be used for ‘deep learning’. 
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Figure 1.7: A simple artificial neural network (ANN) used for machine learning. The input layer 
(purple) passes information to the first hidden layer (yellow). This is then passed to the second 
hidden layer (also yellow) before the final output is realised at the output layer (green). Sets of 

weights and biases between layers, which are optimised in the training process are represented by 
left-right arrows. Based on Figure 2 in Litjens et al. (2017) 

 

Convolution is a common image processing technique and Aljabar & Gooding 

(2017) write that incorporation of convolution into deep learning frameworks, with a 

convolution neural network (CNN), has ‘yielded very impressive results’ for generating 

feature maps and hence for automatic segmentation. These results have led to a surge of 

interest in the field. Indeed, Litjens et al. (2017) present a survey on the use of deep 

learning for medical image analysis where over 300 papers were reviewed mostly from 

2016 and 2017 and they state that ‘segmentation is the most common subject of papers 

applying deep learning to medical imaging’.  

Deep learning models need to be trained with large clinical datasets to optimise 

up to 100 M activations, weights and biases. Although this training process is 

computationally demanding and time consuming, once trained, deep learning models 

can segment new data rapidly. 

 

1.2.3 Performance Metrics 

Evaluations of auto-segmentation techniques that are reported in the literature use a 

number of parameters to assess geometric accuracy. These range from qualitative 
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judgements, where clinicians score auto-contours on a pre-defined scale (Stapleford et 

al., 2010; Hardcastle et al., 2013; Thor et al., 2011) to quantitative metrics that 

numerically score the similarity of one contour to another. The following subsections 

describe the two most commonly used quantitative performance metrics in the 

literature. 

 

1.2.3.1 Volume-based 

Volume-based metrics calculate the overlap of two contours as a fraction of their total 

volume (Sharp et al., 2014). Dice similarity coefficient (DSC) (Dice, 1945) is the most 

commonly used volume-based metric in the literature. It ranges from 1, where the 

contours are identical, to 0 where there is no overlap. It is calculated using equation 1.2 

where 𝑉𝑉𝑎𝑎 and 𝑉𝑉𝑏𝑏 are the volumes of the contours being compared. A 2D illustration of 

DSC is shown in Figure 1.8. 

 
 

DSC =
2(𝑉𝑉𝑎𝑎 ∩ 𝑉𝑉𝑏𝑏)
|𝑉𝑉𝑎𝑎| + |𝑉𝑉𝑏𝑏| 1.2 

 

Sharp et al. (2014) suggests that the strength of DSC lies in its simplicity and ease 

of understanding. However, they criticise its sensitivity to fine details in large structures. 

They also suggest it is inappropriate for very small structures where significant overlap 

cannot be achieved and where small discrepancies in the surfaces can dramatically 

affect the volume. 

 

 

Figure 1.8: DSC is based on the fractional overlap of two contours. 
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1.2.3.2 Surface-based 

Surface-based metrics quantify the distance from the surface of one contour to the 

surface of another. For each point a on a surface A the minimum distance to agreement 

(DTA) with point b on surface B is calculated using equation 1.3. 

 
 DTA(𝑎𝑎,𝐵𝐵) = min

𝑏𝑏∈𝐵𝐵
‖𝑎𝑎 − 𝑏𝑏‖ 1.3 

 

If equation 1.3 is used for all points on surface A, a DTA histogram is produced 

and from this a number of surface-based metrics can be obtained (Sharp et al., 2014). 

This is illustrated in Figure 1.9 where a square with side 10 cm is compared with a circle 

of radius 5 cm. 

 

 

Figure 1.9: Minimum DTA between the two surfaces is calculated and plotted as histogram. 

 

The most commonly used surface-based metrics are the mean and median DTA. 

DTA is sometimes called the Hausdorff distance (HD) in the literature but, to avoid 

confusion in this thesis, DTA will be used throughout. Sykes (2014) states that although 

surface based metrics quantify the similarity of two different contours, interpreting the 

clinical significance of discrepancies is difficult. 

 

1.2.4 Commercially Available Packages 

At the time of writing this literature review, a number of packages that perform atlas-
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based auto-segmentation are available commercially and their performances are 

evaluated in the literature. Auto-segmentation literature tends to focus on studies in the 

head and neck, arguably because there are more structures to delineate, which makes 

for greater potential efficiency savings and because the structures tend to suffer less 

from the variations described in section 1.2. 

DLCExport (Mirada Medical, 2021) is the single package that uses a deep learning 

approach that is available commercially. However, this is relatively new to the market 

and evaluations of its performance have not been published at the time of writing. A 

review of three of the atlas-based auto-segmentation packages (SPICE (Bzdusek et al., 

2012), Mirada RTx (Mirada Medical, 2017) and ABAS (Elekta, 2013)) is presented below. 

 

1.2.4.1 SPICE 

SPICE is an atlas-based auto-segmentation approach that uses ‘several deformable 

image registration algorithms with model-based segmentation and probabilistic 

refinement’ (Bzdusek et al., 2012). It is a fully automated system within the Pinnacle3 

TPS and claims to segment normal and target tissues accurately in head and neck, 

thorax, prostate and abdominal CT images.  

Qazi et al. (2011) gives an in-depth description of the SPICE pelvic auto-

segmentation pipeline, which is broken into three steps. In the first step a translation, 

rotation and scaling registration is performed to register trained tissue probability 

atlases to the patient CT scan. Organs are then positioned as surface mesh models on 

the CT scan using organ specific probability maps. The final step then adapts the surface 

meshes to trained image features using model-based segmentation. 

The atlases and models used by SPICE cannot be customised by individual centres 

to match local (or even national if they exist) outlining protocols. Rather, a number of 

variations are provided from which the planner or clinician selects the most appropriate 

contour.  

Zhu et al. (2013) reports the performance of SPICE in the male pelvis where the 

bladder, bilateral femoral heads, rectum and prostate were auto-segmented on 30 
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patient CT scans. DSCs for all of these structures were relatively consistent at ~0.8 and 

mean DTA varied from 0.5 cm for femoral heads to between 0.8 cm and 1.0 cm for the 

rectum, bladder and prostate. Although Qazi et al. (2011) state that a strength of SPICE 

is its ability to operate in low soft tissue contrast, comparison of the male pelvis results 

of Zhu et al. to similar studies of head and neck structures (Thomson et al., 2014; Zhu et 

al., 2013) suggest that low soft tissue contrast may be a challenge for SPICE.  

 

1.2.4.2 ABAS 

Atlas-Based Auto-Segmentation (ABAS) is a stand-alone software package available 

from Elekta that is not integrated into a particular TPS (Elekta, 2013). It takes a DICOM 

CT image input and outputs a DICOM structure file that can be imported into any TPS. 

Registration atlases are fully customisable by individual centres although ABAS is 

supplied with an atlas library. 

The ABAS auto-segmentation process is divided into three steps (Han et al., 2008). 

As the algorithm runs through these steps, the degrees of freedom for the registration 

are increased and each step is used as an initialisation for the next. The first step is a 

mutual information linear registration (translation, rotation and scaling) of the patient 

and atlas images to correct for global differences in position, orientation and scaling. 

The second step takes this registration and uses the structures to be segmented to drive 

an affine transformation based registration (Arsigny et al., 2006). Large structures are 

broken down into smaller structures as a single affine transformation is insufficient to 

account for large inter-patient variation. The final step is a shape constrained dense 

deformable registration and mapping of atlas structures’ boundary points on to the 

novel image to achieve auto-segmentation of the novel image. 

Published literature reporting evaluations of ABAS focusses primarily on head and 

neck auto-segmentation (Teguh et al., 2011; Speight et al., 2014; Lim & Leech, 2016). 

Although these papers report that the ABAS auto-contours required manual editing prior 

to clinical acceptance they also suggest that this modification is quicker than outlining 

all of the structures de novo.  
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Greenham et al. (2014) present the only study in the literature that evaluates the 

ability of ABAS to auto-segment structures in the male pelvis. Unfortunately, this 

evaluation is limited to a qualitative assessment of the structures and a comparison of 

the overall volumes of the auto- and corresponding manual-contours. For the qualitative 

assessment, clinical oncologists scored the auto-contours on a 7 point scale from 

‘structure acceptable to treat ‘as is’’ to ‘No resemblance to the clinical structure or 

> 75 % slices needing edit’ and for the volume comparison, Pearson’s product-moment 

correlation coefficient was used to assess the correlation between auto-contours and ‘as 

treated’ volumes. They claim that femoral heads, bladder, rectum and prostate auto-

contours were clinically acceptable in 90 %, 80 %, 50% and 20 % of cases respectively 

without manual modification and present strong correlations between auto- and 

manual-contour volumes. Interestingly, they write that inclusion of more atlases in a 

multi-atlas approach (ranging between 2 and 10 combined using STAPLE) did not 

consistently improve the volume correlation and the best results were obtained using 

the built-in demo atlas. This is in contrast to the work of Acosta et al. (2017) and Aljabar 

et al. (2009) where it is claimed that increasing the number of available atlases improves 

segmentation accuracy. 

It is unfortunate that Greenham et al. do not report standard geometric accuracy 

metrics (DSC and DTA as discussed in section 1.2.3) for the ABAS contours and do not 

consider the utility of the auto-contours for treatment plan optimisation and dose 

reporting. Voet et al. (2011) does conduct such as study (albeit for head and neck rather 

than prostate cancer patients) and suggest that geometric inaccuracies in auto-

contoured targets cause significant under-dosage of the target but similar inaccuracies 

in OARs do not lead to statistically significant dose differences.  

Referring back to Figure 1.1, the outlining process is divided into two: ‘outlining 

target volumes’ and ‘outlining organs at risk’. Since these two processes are performed 

separately and, in some cases, up to a week apart, it is important that the utility of auto-

segmentation for targets and OARs is considered separately. 
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1.2.4.3 MIRADA RTx 

Mirada Medical Ltd. offers a number of image registration and auto-segmentation 

products. These products are stand-alone packages and not specific to any TPS. Mirada 

RTx offers rigid and deformable image registration with CT, MRI and PET images 

(Mirada Medical, 2017). Manual target contouring can be performed within Mirada RTx 

on multi-modality datasets simultaneously in any plane through the image. Atlas-based 

auto-segmentation can also be performed with customisable segmentation atlases. 

Workflow Box is an additional product offered by Mirada Medical Ltd. to perform 

‘Zero-Click Contouring’. In Figure 1.1, Workflow Box would sit between ‘Planning CT 

Scan’ and ‘Transfer CT to TPS’. Images exported from the scanner to Workflow Box 

have the structures segmented automatically before being forwarded to the TPS.  

As with ABAS described in section 1.2.4.2, the majority of published evaluations of 

Mirada RTx in the literature focus on auto-segmentation of head and neck structures 

(Larrue, Kadir & Gooding, 2013; Gugyeras et al., 2017). Although the results of these 

studies are generally positive and demonstrate similar geometric accuracy results to 

SPICE and ABAS, they cannot provide any indication of the performance of Mirada RTx 

in the male pelvis. 

 

1.3 Knowledge-Based Treatment Planning 

Knowledge-based (KB) treatment planning automatically incorporates prior experience 

into the treatment planning optimisation process (Nwankwo et al., 2015). This can make 

treatment planning more consistent within a radiotherapy centre and can generate 

workflow efficiencies by removing some of the time consuming human interventions. 

For small, inexperienced centres, where IMRT plan quality has been shown to be poorer 

than in larger experienced centres (Chung et al., 2008), KB treatment planning 

potentially offers a way to disseminate experience indirectly and rapidly. 

Nwankwo et al. (2014) write that prostate radiotherapy treatment planning is the 

most common site for KB treatment planning research and the following sections 

review the literature. 
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1.3.1 Optimisation Class-Solutions 

Perhaps the simplest form of KB treatment planning is the use of a rigid class-solution 

(Wood et al., 2016). An ideal class-solution consists of a list of optimisation objectives 

and standard beam parameters that can be used to generate clinically acceptable and 

dosimetrically optimal treatment plans regardless of the specifics of a patient’s 

anatomy. Typically, class-solutions are developed by generating treatment plans for a 

representative group of patients and taking the average of the final optimisation 

objectives. While this is KB treatment planning to a degree, it really only offers a starting 

point for manual optimisation and so is not considered further here.  

 

1.3.2 Search and Retrieve 

Search and retrieve approaches to KB treatment planning generally consist of a number 

of manually generated treatment plans that ideally cover the full range of anatomical 

variation that is seen within the patient population. Given a new patient, some 

quantitative characterisation of the anatomy is performed and the most similar patient 

from the KB is identified. The treatment planning parameters used to generate the KB 

treatment plan are then used to optimise the new treatment plan. Selection of the ‘most 

similar patient’ can be difficult, however, and the following subsections describe the 

two most commonly used approaches. 

A danger of the search and retrieve approach is that it assumes the single KB 

treatment plan on which the new treatment plan is based is fully optimised. It is widely 

accepted in the literature that manual treatment plan optimisation is subjective and 

often treatment planners accept plans before they are fully dosimetrically optimal 

(Chanyavanich et al., 2011). Since search and retrieve approaches select a single 

instance from the KB, the degree to which the new plan is optimal is dependent on the 

degree to which the KB treatment plan was optimised. This propagation of 

dosimetrically sub-optimal treatment plans is difficult to prevent. Counters to this are to 

peer review each treatment plan rigorously prior to inclusion in the KB but this is time 

consuming and ultimately limits the number of plans that can be included. 
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1.3.2.1 Overlap Volume Histograms 

Wu et al. (2009) describe a search and retrieve KB treatment planning methodology that 

uses overlap volume histograms (OVH). An OVH describes the proximity of the OAR to 

a target and provides a way to infer the likely DVH based on previously optimised 

treatment plans. The aim of Wu et al. was to quality assure expert-optimised treatment 

plans rather than to automate the optimisation process. An OVH example is illustrated 

in Figure 1.10 where the OVH has been calculated using equation 1.4 for the Target and 

each OARi (based on Fig 1 from Wu et al., 2009). 

 
 

OVH(𝑟𝑟) =
|{𝑝𝑝 ∈ OAR𝑖𝑖|𝑑𝑑(𝑝𝑝, Target) ≤ 𝑟𝑟}|

|OAR𝑖𝑖|
, 1.4 

 

where 𝑑𝑑(𝑝𝑝, Target) is the signed distance between a point p within OARi and the Target 

boundary. Although the OARs in Figure 1.10 are the same size and shape they have 

different geometric relationships to the target and thus markedly different OVHs. Wu et 

al. (2009) write that, for a conformal dose distribution, the OVH of an OAR is directly 

related to its DVH. Therefore after expert manual optimisation, querying a database of 

previous OVHs and corresponding DVHs and comparing the retrieved results with the 

current plan can highlight if the current plan meets existing quality standards. 

 

 

Figure 1.10: Illustration of the OVH concept based on Wu et al. (2009). 

 

OVH analysis using a database of previous generated treatment plans is reported 

to provide a reliable KB quality assurance technique for new treatment plans (Wu et al., 
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2009; Janssen et al., In press; Wang, Heijmen & Petit, 2017). Petit et al. (2012) extended 

the use of OVHs from retrospective treatment plan quality assurance to prospective 

prediction of achievable OAR doses to drive treatment plan optimisation automatically. 

They demonstrated that selection of optimisation objectives from a KB of prior 

treatment plans can, in the majority of cases, generate superior treatment plans 

compared to those generated manually. 

 

1.3.2.2 Beam’s Eye View Projections 

Chanyavanich et al. (2011) and Good et al. (2013) present search and retrieve 

approaches where KBs are queried based on 2D beam’s eye view (BEV) projections of 

anatomical structures. In both studies, BEV projections of the new plan are compared 

with each plan in the KB using mutual information (MI). The treatment planning 

parameters from the most similar plan are then used directly to drive the optimisation of 

the new plan. MI is relatively similar to the concept of DSC discussed in section 1.2.3.1 

and is calculated using equation 1.5.  

 
 

MI�𝑂𝑂𝑟𝑟𝑟𝑟𝑟𝑟;𝑂𝑂𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟𝑛𝑛� = � � 𝑃𝑃�𝑂𝑂𝑟𝑟𝑟𝑟𝑟𝑟;𝑂𝑂𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟𝑛𝑛�log2
𝑃𝑃�𝑂𝑂𝑟𝑟𝑟𝑟𝑟𝑟;𝑂𝑂𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟𝑛𝑛�
𝑃𝑃�𝑂𝑂𝑟𝑟𝑟𝑟𝑟𝑟�𝑃𝑃(𝑂𝑂𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟𝑛𝑛)𝑂𝑂𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑂𝑂𝑟𝑟𝑛𝑛𝑟𝑟

, 1.5 

 

where 𝑃𝑃�𝑂𝑂𝑟𝑟𝑟𝑟𝑟𝑟� and 𝑃𝑃(𝑂𝑂𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟𝑛𝑛) are the marginal distributions and 𝑃𝑃�𝑂𝑂𝑟𝑟𝑟𝑟𝑟𝑟;𝑂𝑂𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟𝑛𝑛� the joint 

probability distribution of projections of the reference and novel organ, O. Figure 1.11 

illustrates the MI comparison technique. 

Both Chanyavanich et al. (2011) and Good et al. (2013) present studies of the 

application of the BEV projection search and retrieve method to prostate IMRT 

treatment planning. Both report that KB treatment plans were typically at least 

comparable dosimetrically (and generally superior) to those generated manually. 

Chanyavanich et al. also adds that the approach has the potential to improve treatment 

planning efficiency. The work of these two studies, however, is based on either step-

and-shoot or dynamic IMRT treatment planning and the MI similarity index was 

computed for each of seven fixed beam angles. It is not clear from either study whether 
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this approach could be generalised to work for VMAT treatment planning where the 

subtleties of OAR and target configuration viewed over a full 360° arc might not be 

captured from a selection of static beam angles. 

 

 

Figure 1.11: Illustration of mutual information (MI) comparison of 2D BEV structure projections. 

 

The test cases used in Good et al. (2013) were taken from a small community 

hospital where prostate IMRT had recently been adopted. Although the results suggest 

that KB treatment planning can be used to transfer experience from larger, experienced 

centres to smaller, inexperienced centres, it does not specifically benchmark the KB 

treatment plans generated for the community hospital against the manually generated 

treatment plans generated in the larger research centre. Therefore it is not clear 

whether the improvement in treatment plan quality for the community hospital made 

them comparable to the manual plans generated at the centre of Good et al. (2013). 
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1.3.3 Machine Learning 

The application of machine learning to various aspects of the radiotherapy pathway is 

becoming increasingly common. Machine learning approaches to KB treatment planning 

aim to learn patterns from the KB that can be generalised and used to plan or quality 

assure new treatment plans. Arguably, this offers advantages over the search and 

retrieve techniques discussed in section 1.3.2 as optimisation is not based solely on one 

prior treatment plan but on the whole KB population. 

Yang et al. (2013) present a machine learning KB treatment planning approach 

where rectum DVH and OVH relationships are evaluated over a population (albeit 

limited to 21 patients). They suggest relatively strong correlations exist between rectum 

D15 %, D20 %, D25 %, D35 % and D50 % and L15 %, L20 %, L25 %, L35 % and L50 % respectively (where LX % 

refers to the distance from the PTV surface that encompasses X % of the OAR). Yang et 

al. contend that automatically generated treatment plans optimised based on 

predictions using these correlations are superior to those generated manually using an 

iterative trial-and-error approach. 

The 21 plans used by Yang et al. (2013) to generate the KB may be insufficient to 

fully encompass the range of patient anatomy seen amongst a population of prostate 

cancer patients (recall Figure 1.5) and the variation in the degree of optimisation seen in 

manual treatment planning. Full details of the inclusion- and exclusion-criteria are not 

provided in the paper and so the reported correlations may be unfairly biased towards a 

specific group of patients and may not include the noise expected from a larger cohort 

of clinical prostate treatment plans. However, machine learning approaches benefit 

from ongoing refinement of the KB. For example, as the variation in optimisation 

reduces the KB can be influenced by these plans to improve the reliability of the 

relationships on which the optimisation is informed. 

Zhu et al. (2011) and Yuan et al. (2012) present similar but more complex 

approaches to machine learning KB treatment planning than Yang et al. (2013). They use 

principal component analysis (PCA) to identify sources of variation in DVH and OVH 

data. PCA is a statistical technique that takes multi-dimensional data and finds 
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relationships between linear combinations of the dimensions that account for the most 

significant sources of variation.  

A simple case of PCA is illustrated in Figure 1.12, where the 2D plot in Figure 

1.12A shows no correlation between the variables x and y. This lack of direct x-y 

correlation does not necessarily mean that the variables are not related in a higher 

dimensional space. Figure 1.12B shows that with the addition of variable z, the 3D data 

may sit on the plane shaded in yellow. PCA aims to evaluate this plane by creating a new 

coordinate system with its origin at the centre of the plane. The axes are the principle 

components (PC1 and PC2) and are shown by the green arrows in Figure 1.12B. Figure 

1.12C shows the data plotted in this manipulated coordinate system and it is apparent 

that the greatest variation in the data is in the direction of PC1 followed by PC2. Here, 

the 3D distribution of x, y and z has been fully characterised by a lower 2D model in 

terms of PC1 and PC2 and a 1D approximation of the model could be given solely in 

terms of PC1. 

 

 

Figure 1.12: Illustration of principal component analysis (PCA). 
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Zhu et al. (2011) and Yuan et al. (2012) plot large numbers of bladder and rectum 

DVHs and OVHs in up to 50 dimensions and claim these can be reduced to either two or 

three principal components. They then use machine learning algorithms to identify 

features in the OVHs that allow the corresponding DVH to be predicted. Although the 

testing of the DVH predictions for treatment plan optimisation were limited to 14 test 

cases in Zhu et al. (2011) and 24 in Yuan et al. (2012), both papers report that the PCA 

method generates accurate DVH predictions. 

Nwankwo et al. (2014) criticise approaches to KB treatment planning that only 

predict likely DVHs for OARs and do not describe the specific spatial distribution of 

dose. They present a method that predicts the dose to each voxel within an OAR and a 

metric to evaluate the accuracy of the prediction compared to the dose actually 

achieved by manual treatment planning. Each voxel within the rectum and bladder 

contours for 95 prostate IMRT treatment plans was characterised in terms of its 

Cartesian coordinates, reference dose, distance to PTV and slice level (zero on slices 

containing PTV and greater than zero otherwise). Models of rectum and bladder 

dosimetry were generated from the voxel characterisation data and used to predict 

voxel-by-voxel doses of 33 validation cases. They report that on average 18 and 28 of the 

33 predictions for the bladder and rectum respectively were within 5 % of the PTV dose 

from a manual treatment plan and conclude that their KB method is an effective means 

of quality assuring new treatment plans. A further study by Nwankwo et al. (2015) 

concludes that the algorithm also shows promise as a prospective treatment planning 

approach. 

 

1.4 Treatment Plan Complexity 

The advantage of IMRT or VMAT treatment planning over 3D conformal radiotherapy 

(3D-CRT) is the degree to which dose can be conformed to an irregularly shaped target 

whilst simultaneously avoiding healthy OARs. By dividing beams into multiple segments 

(either as static field IMRT or dynamic arc VMAT), regions of a treatment field can be 

selectively shielded or exposed to modulate the radiation intensity over the exposed 
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aperture. As the intensity of the beam becomes increasingly modulated, smaller more 

irregularly shaped beam segments are required and such segments are typically less 

accurately modelled in the TPS than larger more open segments (Du et al., 2014).  

When generating IMRT treatment plans, a compromise has to be made between 

segmenting fields to give sufficient high dose conformality and limiting the 

segmentation so that confidence can be placed in the deliverability. One approach to 

managing this compromise that is much discussed in the literature is the quantification 

of treatment plan complexity. 

To some extent, complexity can be assessed using simple metrics such as total 

treatment plan monitor units (MU) on the basis that increased modulation generates 

increased MLC blocking and hence increased MU to deliver the treatment dose. 

However, such metrics are described in the literature as ‘crude’ (Du et al., 2014) as they 

do not account for natural variation of total MUs between patients and do not indicate 

the form of the complexity. 

More sophisticated complexity metrics are generally divided into two categories: 

fluence map-based and aperture-based. These are considered in the following sections. 

It is worth noting here that a number of authors try to correlate complexity 

metrics with dose measurements or patient specific quality assurance results (Du et al., 

2014; Younge et al., 2012). Although some papers report weak correlations, Du et al. 

writes that a single metric cannot reveal the complete complexity of an IMRT or VMAT 

treatment plan. Moreover, agreement between the TPS and machine is dependent on the 

accuracy of the TPS beam model and dose calculation algorithm, which is not 

necessarily related to aperture or fluence map complexity. For example, a beam model 

that contains an inaccurate off-axis profile will systematically get off-axis calculations 

wrong irrespective of aperture complexity. The same beam model may perform on-axis 

calculations extremely accurately even for highly complex beam apertures. 

Complexity metrics are therefore unreliable measures of whether the TPS is likely 

to have performed its calculation accurately. Correlations between complexity metrics 

and dose measurement results are therefore not considered in detail in this thesis. 
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1.4.1 Fluence Map-Based Metrics 

Fluence map-based metrics quantify the variation in photon fluence between 

neighbouring pixels in a beam fluence map. Llacer et al. (2001) describe the fluence map 

complexity (FMC) index, which is calculated for a beam using equation 1.6, where 𝑎𝑎𝑗𝑗 is 

the fluence of the j th pixel in the beam fluence map, 𝜆𝜆𝑘𝑘 and 𝑎𝑎𝑘𝑘 are the weighting and 

fluence of the 𝑘𝑘th nearest neighbour respectively, and Nj is the set of nearest neighbours 

being considered in the FMC calculation. 

 
 

FMC = ��𝑎𝑎𝑗𝑗
𝑗𝑗

�

−1

× ���𝑎𝑎𝑗𝑗 − 𝜆𝜆𝑘𝑘 � 𝑎𝑎𝑘𝑘
𝑘𝑘∈𝑁𝑁𝑗𝑗

�

2

𝑗𝑗

. 1.6 

 

For a perfectly uniform fluence map, FMC is zero and increases positively as the 

fluence map becomes increasingly non-uniform – thereby scoring complexity. 

Webb (2003) criticises FMC because although it successfully characterises local 

variation in fluence, it does not relate this to overall beam variation. Overall beam 

fluence mean and standard deviation are possible ways to do this but Webb also argues 

that these are insufficient and proposes the modulation index as an alternative. 

Modulation index is computed by calculating differences between neighbouring pixels, 

∆𝑝𝑝, in the beam fluence map and considering the number of differences, N, greater than 

some fraction, 𝑓𝑓, of the overall beam fluence standard deviation, σ. This is then 

normalised by the total number of pixels, 𝑛𝑛, as shown in equation 1.7. 

 
 𝑍𝑍(𝑓𝑓) =

1
(𝑛𝑛 − 1)𝑁𝑁

(𝑓𝑓;  ∆𝑝𝑝 > 𝑓𝑓𝑓𝑓). 1.7 

 

𝑍𝑍(𝑓𝑓) then represents a distribution of differences within a fluence map, which is 

used to define modulation index using equation 1.8. 

 
 

Modulation Index = � 𝑍𝑍(𝑓𝑓) 𝑑𝑑𝑓𝑓
0.5𝜎𝜎

0

. 1.8 
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While fluence map-based metrics can be used to quantify modulation and hence 

complexity in some settings, they have also been criticised because they only assess the 

beam as a whole and not the modulation of the individual beam segments (McNiven et 

al, 2010). For example, a beam comprised of many small segments that sum to give a 

relatively uniform irradiation would have similar fluence map-based complexity scores 

to a uniform irradiation with a single open field. This criticism is arguably more relevant 

for VMAT, where the overall beam fluence map of a full 360 ° arc cannot contain the 

subtleties of individual segment complexity. 

 

1.4.2 Aperture-Based Metrics 

Qualitatively, it is relatively straightforward to view a field aperture and comment on its 

complexity relative to a different segment. For example, Figure 1.13 shows three 

isocentric field apertures for a 10 cm × 10 cm open field, a typical segment from a step-

and-shoot IMRT treatment plan and a VMAT control point and it is immediately 

apparent that aperture complexity increases from left to right. Reliably quantifying 

aperture complexity, however, is challenging but a number of metrics have been 

proposed in the literature.  

 

   

Figure 1.13: Qualitative characterisation of aperture complexity is relatively straightforward: in the 
examples above complexity increases from left to right. 

 
Aperture-based metrics assess complexity by analysing beam apertures based on 

MLC and jaw positions and MU weightings. These overcome the limitations of fluence 

map-based metrics discussed in section 1.4.1 and are arguably more relevant when 



 

 47 

considering the complexity of VMAT treatment plans.  

McNiven et al. (2010) introduced the modulation complexity score (MCS) which is 

calculated for an individual beam using equation 1.9. It ranges from 1.0 for an unblocked 

open field with no complexity down to 0.0 for an ‘infinitely complex’ aperture. 

 
 

MCS𝑏𝑏𝑟𝑟𝑎𝑎𝑏𝑏 = �AAV𝑖𝑖 × LSV𝑖𝑖 ×
MU𝑖𝑖

MU𝑏𝑏𝑟𝑟𝑎𝑎𝑏𝑏

𝐼𝐼

𝑖𝑖=1

, 1.9 

 

where MU𝑖𝑖 is the monitor units for the 𝑖𝑖  th segment and MU𝑏𝑏𝑟𝑟𝑎𝑎𝑏𝑏 is the total monitor units 

for the beam. LSV and AAV represent the leaf sequence variability and aperture area 

variability respectively and these are calculated using equations 1.10 and 1.11 based on 

the 𝐾𝐾 MLCs that define the field from each leaf bank (Sumida et al., 2017).  

 
 

LSV𝑠𝑠𝑟𝑟𝑠𝑠𝑏𝑏𝑟𝑟𝑛𝑛𝑠𝑠 =
1

(𝐾𝐾 − 1) × ∆X1max
× ��(∆X1max − |X1𝑘𝑘 − X1𝑘𝑘+1|)

𝐾𝐾−1

𝑘𝑘=1

� 

 

                                       ×
1

(𝐾𝐾 − 1) × ∆X2max
× ��(∆X2max − |X2𝑘𝑘 − X2𝑘𝑘+1|)

𝐾𝐾−1

𝑘𝑘=1

�, 

1.10 

  

 
 

 
AAV𝑠𝑠𝑟𝑟𝑠𝑠𝑏𝑏𝑟𝑟𝑛𝑛𝑠𝑠 =

1
𝐾𝐾 × (X1max + X2max) × �(X1𝑘𝑘 + X2𝑘𝑘)

𝐾𝐾

𝑘𝑘=1

. 1.11 

 

Equations 1.10 and 1.11 were originally presented in McNiven et al. but contained 

an error in the limits of the sum to 𝐾𝐾, which was corrected in Sumida et al.. MLC 

position nomenclature used here differs from Sumida et al. and McNiven et al. for 

consistency within this thesis. Figure 1.14 illustrates the nomenclature definitions. 
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Figure 1.14: MLC position nomenclature definitions used throughout this thesis. 

 

McGarry et al. (2011) present a comparison of various complexity metrics (both 

fluence- and aperture-based) and report that MCS outperforms MI and simple MU based 

metrics. However, the study was limited to six prostate IMRT patients.  

Du et al. (2014) write that a single metric cannot reveal the complete complexity 

of an IMRT or VMAT treatment plan. Instead they present a number of aperture-based 

metrics that aim to characterise complexity in terms of aperture area (AA), perimeter 

(AP) and irregularity (AI). For the 𝑗𝑗  
th segment of the 𝑖𝑖  th beam, these are calculated using 

equations 1.12, 1.13 and 1.14. 

 
 

AA𝑖𝑖𝑗𝑗 = �𝑡𝑡𝑘𝑘 × �X1𝑖𝑖𝑗𝑗𝑘𝑘 − X2𝑖𝑖𝑗𝑗𝑘𝑘�
𝐾𝐾

𝑘𝑘=1

, 1.12 

    

 
AP𝑖𝑖𝑗𝑗 = �|X1𝑘𝑘 − X1𝑘𝑘−1| + |X2𝑘𝑘 − X2𝑘𝑘−1| + 2𝑡𝑡𝑘𝑘

𝐾𝐾

𝑘𝑘=1

, 1.13 

   

 
AI𝑖𝑖𝑗𝑗 =

AP𝑖𝑖𝑗𝑗2

4𝜋𝜋 × AA𝑖𝑖𝑗𝑗
, 1.14 

 

where 𝑘𝑘 represents each leaf pair and 𝑡𝑡𝑘𝑘 is the thickness of the 𝑘𝑘  th MLC. 

From equations 1.12, 1.13 and 1.14, monitor unit weighted beam aperture area 

(BA) and irregularity (BI) metrics can be computed using equations 1.15 and 1.16. Beam 
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modulation (BM) can also be calculated using equation 1.17, where 𝑈𝑈�AA𝑖𝑖𝑗𝑗� is the union 

area of all of the segments of the 𝑖𝑖  th beam. 

 
 BA𝑖𝑖 =

1
MU𝑖𝑖

× ��MU𝑖𝑖𝑗𝑗 × AA𝑖𝑖𝑗𝑗�
𝑗𝑗

. 1.15 

    

 BI𝑖𝑖 =
1

MU𝑖𝑖
× ��MU𝑖𝑖𝑗𝑗 × AI𝑖𝑖𝑗𝑗�

𝑗𝑗

. 1.16 

   

 
BM𝑖𝑖 = 1 − �

1
MU𝑖𝑖 × 𝑈𝑈�AA𝑖𝑖𝑗𝑗�

× ��MU𝑖𝑖𝑗𝑗 × AA𝑖𝑖𝑗𝑗�
𝑗𝑗

�. 1.17 

 

 Finally, the complexity metrics at the beam level can be summed over all beams 

to give the plan complexity metrics plan aperture (PA), irregularity (PI) and modulation 

(PM). These are calculated using equation 1.18, 1.19 and 1.20. 

 
 PA =

1
MUtotal

×�(MU𝑖𝑖 × BA𝑖𝑖)
𝑖𝑖

. 1.18 

    

 PI =
1

MUtotal
× �(MU𝑖𝑖 × BI𝑖𝑖)

𝑖𝑖

. 1.19 

   

 PM =
1

MUtotal
× �(MU𝑖𝑖 × BM𝑖𝑖)

𝑖𝑖

. 1.20 

 

 

1.5 Aims & Objectives of this Thesis 

Bottlenecks in the treatment planning pathway illustrated in Figure 1.1, can prevent the 

widespread adoption of modern radiotherapy techniques, such as adaptive radiotherapy, 

and delay patient access to their cancer treatments. Automation of the pathway 

therefore has the potential to bring significant benefits to the clinic and the previous 

sections have reviewed attempts to automate various aspects of the pathway. 

Such attempts that are published in the literature have a tendency to focus on 
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technicalities and lack attention to how they fit into clinical practice. This is the 

rationale for this thesis: the role of automation in radiotherapy treatment planning for 

prostate cancer. 

Considering the pathway illustrated in Figure 1.1, immediately after the 

acquisition of the CT scan the image can be transferred to the TPS without delay so 

automation of this step offers little benefit. At the end of the pathway, ‘Quality 

Assurance & Machine Preparation’ tends to happen relatively quickly and given this step 

could be considered safety critical, automation may offer some benefit but with an 

associate risk that is unlikely to be accepted by many clinical departments. 

This leaves the intermediate stages of ‘Outline Target Volumes’, ‘Outline Organs at 

Risk’ and ‘Treatment Plan Optimisation’. These three stages are where each treatment 

plan spends the majority of time as it moves through the pathway. Most of that time is 

spent waiting for a clinical oncologist or treatment planner to add their contribution and 

this is the source of the major bottlenecks in the pathway. Attempts at automation 

therefore need to focus on these key stages and equally importantly focus on how these 

stages relate to each other. The following list gives the core aims and objectives of this 

thesis to address the gaps in the existing knowledge base: 

• To establish the geometric accuracy of auto-contours in the male pelvis and their 

impacts on treatment plan generation. 

• To develop a method of automatically generating optimal prostate radiotherapy 

treatment plans. 

• To redesign the treatment planning pathway to integrate automation and 

maximise its benefit for the clinic and prostate cancer patients. 
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Chapter 2 
 

2 Geometric Accuracy of Atlas-Based Auto-Segmentation 

Joseph Wood1, 2, Marianne Aznar2, Philip Whitehurst1, 2  

1The Christie NHS Foundation Trust 
2The University of Manchester 
 

2.1 Abstract 

This chapter presents an evaluation of the geometric accuracy of male pelvic auto-

contours generated with a range of atlas-based auto-segmentation packages. Geometric 

accuracy is quantified in terms of standard metrics, namely Dice similarity coefficient 

(DSC) and distance to agreement (DTA). All packages performed reasonably 

consistently although packages with customisable atlases achieved superior agreement 

with manual-contours. For all OARs (bladder, rectum and femoral heads) the 

relationships between DSC and DTA were found to be negatively correlated, which 

indicates both DSC and DTA are reasonably reliable scores of geometric accuracy. The 

limitations of using geometric accuracy to evaluate the performance of auto-
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segmentation packages are also addressed in relation to the inference of clinical utility. 

From the results presented below it is not possible to determine whether the auto-

contours could replace manual-contours directly. However, they do provide an 

important insight into the performance of atlas-based auto-segmentation in the male 

pelvis and a useful benchmark for future developments in the field of auto-

segmentation.  

 

2.2 Introduction 

Manual-segmentation of medical images, where trained experts manually draw around 

anatomical structures on each slice of the image, is time consuming and has been 

demonstrated to suffer from inter- and intra-observed variation (Han et al., 2008; Collier 

et al., 2003). Auto-segmentation is the process of automatically identifying anatomical 

structures in a medical image and has been much discussed in the literature. Atlas-based 

auto-segmentation is a common approach and a number of commercially available 

software packages are available (Han et al., 2008; Aljabar et al., 2009).  

Dice similarity coefficient (DSC) (Dice, 1945) and distance to agreement (DTA) 

(Sharp et al., 2014) are the two commonly used metrics that assess the similarity of two 

different structures. DSC and DTA are therefore often quoted in research studies that 

evaluate the geometric accuracy of auto-segmentation algorithms (Zhu et al., 2013; 

Teguh et al., 2011; Speight et al., 2014; Lim & Leech et al., 2016; Voet et al., 2011; Larrue, 

Kadir & Gooding, 2013; Gugyeras et al., 2017). The literature is biased towards 

evaluations of atlas-based auto-segmentation algorithms in the head and neck region 

and evaluations of their performance in the male pelvis are rare. Zhu et al. (2013) is the 

only quantitative study in the literature and this is limited to an evaluation using SPICE 

(Qazi et al., 2011) only. There certainly lacks a comparative study where the 

commercially available packages are benchmarked against each other using the same 

cohort of patients.  

This was the purpose of the work presented in this chapter. From the literature 

reviewed in section 1.2, it was not possible to predict how geometrically accurate the 
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auto-contours would be or indeed whether any of the auto-segmentation packages 

would significantly outperform the others. The hypothesis for this work, therefore, was 

that all of the auto-contours would differ from corresponding manual-contours and the 

aim was to evaluate the magnitude of these differences for the packages assessed. 

Langmack et al. (2014) present an inter-observer agreement study that gives DSCs 

for multiple manual-contours of male pelvic anatomical structures. Although it was not 

possible here to establish a priori a geometric accuracy threshold above which auto-

contours could be considered reliable for radiotherapy treatment planning, the DSCs 

described by Langmack et al. potentially provided a useful benchmark against which 

auto-contour inaccuracies can be assessed.  

The author performed all of the auto-segmentations described in this chapter and 

used the manual- and auto-contours to create overlap structures from which DSCs were 

calculated. They also wrote a program in Python to produce DTA histograms and 

related DTA statistics. All of the data analysis was performed by the author. 

An abstract was submitted to the 2019 European Society for Radiotherapy and 

Oncology (ESTRO) conference based on the work presented in this chapter and Chapter 

3. This was accepted for presentation as a poster and a reproduction of the poster is 

presented in section 3.8.2.   

 

2.3 Method 

Eleven prostate radiotherapy treatment planning (RTP) CT scans were randomly 

selected from a patient population and used to compare the performance of multiple 

auto-segmentation packages. On each of the 11 CT images an expert clinical oncologist 

had manually outlined the prostate and seminal vesicles (SV) and an experienced 

treatment planner had outlined the rectum, bladder and femoral heads according to 

local clinical protocols. Outlining was performed on RTP CT images only without MR 

fusion and all contours had been peer-reviewed and approved by a team of clinical 

oncologists. The model-based auto-segmentation tool that is included in the Pinnacle3 

treatment planning system (TPS) may have been used initially to outline the femoral 
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heads. These structures, however, generally require manual modification so for this 

work are considered to have been drawn manually. 

Three atlas-based auto-segmentation packages were used for this work based on 

availability at the author’s centre. It was acknowledged that this does not constitute an 

exhaustive list of available packages but is sufficient for a general evaluation of the 

atlas-based auto-segmentation approach in the male pelvis. 

SPICE, the Philips auto-segmentation package (Qazi et al., 2011), is integrated into 

Pinnacle3 and atlases for auto-segmentation cannot be customised. The built-in ‘Male 

Pelvis’ atlas was used to auto-segment each of the 11 prostate CT scans. Mirada RTx 

(Mirada Medical, 2017) and ADMIRE (Elekta, 2013) have customisable atlases so a 

‘leave-one-out’ approach was taken – where for each CT scan, the remaining 10 scans 

and structure sets were used as an atlas database. ADMIRE is a version of ABAS 

specific to the MR-Linac, which at the time of writing is not commercially available. 

However, it is still useful for this work, which just aimed to evaluate the geometric 

accuracy of the atlas-based auto-segmentation technique in the male pelvis using a 

range of different algorithms. The final segmentations from Mirada RTx were calculated 

using a majority vote based on each individual segmentation from the database. With 

ADMIRE, the STAPLE algorithm was used to combine the multiple atlas segmentations 

(Warfield, Zou & Wells, 2004). Although different methods to combine the 

segmentations were used, the specific approaches are the default options in each 

package and were therefore used to reflect manufacture recommendations. 

All of the auto-segmented structure sets were imported into their respective 

patient treatment plans in Pinnacle3. DSCs were calculated from the volumes of each 

auto-contour, the corresponding manual-contour and the overlap region using equation 

1.2. The calculated DSCs for each anatomical auto-contour was compared with a 

corresponding DSC reported in the inter-observer study of Langmack et al. (2014). 

DTA histograms were generated from the Pinnacle3 plan.roi file, where for each 

point in the manual-contour, the shortest distance to the auto-contour in 3D was found. 

This process was then repeated with the auto-contour as the reference to ensure all 
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large differences between the manual- and auto-contours were assessed. 

 

 

Figure 2.1: Rectum manual- and auto-contours shown as blue and red lines respectively. The 
shaded yellow and green regions show differences in their superior and inferior extents and the 

choice of reference contour determines the inclusion or exclusion from the DTA analysis. 

 

Figure 2.1 illustrates the importance of performing these two DTA analyses. The 

manual- and auto-contours of the rectum are shown as the blue and red solid lines 

respectively. The shaded yellow area represents the superior region of the manual-

contour that is missing from the auto-contour and this is included in the DTA analysis 

where the manual-contour is the reference. However, the shaded green region shows 

where the auto-contour extends further inferiorly than the manual-contour. This inferior 

auto-contour inaccuracy would not be reflected in the DTA analysis where the manual-

contour is the reference. When the auto-contour is the reference the reverse is true: the 

shaded green region is included in the analysis but the shaded yellow region is not. It 

was therefore important to perform and report both analyses. For each histogram the 

mean DTA was calculated and the means were averaged to give the average mean DTA. 

Following the calculation of DSC and average mean DTA, the reliability of the 

metrics as measures of geometric accuracy was assessed for each anatomical structure. 

For two structures that are identical, DSC is 1 and mean DTA is 0 mm (for both of the 

analyses described above). Any dissimilarities between the structures result in a 

reduced DSC and an increased mean DTA, where the size of the reduction or increase is 

dependent on the degree of dissimilarity. If DSC and mean DTA are reliable metrics of 
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geometric accuracy it is reasonable to expect a negative correlation between them 

across a range of patients and auto-segmentations. To evaluate this, for each auto-

segmented structure, DSC was plotted against average mean DTA and coefficients of 

determination calculated. 

 

2.4 Results 

Figure 2.2 presents box and whisker plots for the distributions of DSC for the auto-

segmented bladder, rectum, femoral heads (FHL and FHR), prostate and SV with SPICE, 

Mirada RTx and ADMIRE. The limits of the boxes represent the lower and upper 

quartiles of the data, the central horizontal line represents the median, the extent of the 

whiskers show the 5th and 95th percentiles of the data and outliers are represented by 

circular data points. 

 

 

Figure 2.2: DSC box and whisker plots for auto-segmented male pelvic structures. The limits 
of the boxes represent the lower and upper quartiles of the data, the central horizontal line 

represents the median and the extent of the whiskers show the 5th and 95th percentiles. 

 

Although box and whisker plots provide a convenient way to visualise variations 

of DSC between packages, patients and structures, reading detailed quantitative 

information from them is not possible. Therefore, the range, medians, means and 

standard deviations on which Figure 2.2 is based are presented in Table 2.1. For 

reference, the mean DSCs and standard deviations from the inter-observer variation 

study of Langmack et al. (2014) are also presented in Table 2.1 and to aid the 
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interpretation of the results the mean and standard deviation of the manual-contour 

volumes for each structure are also included. 

 

Table 2.1: DSC data for auto-contoured structures in the male pelvis. For reference 
the DSCs from the inter-observer study of Langmack et al. (2014) are also provided 
and to aid interpretation the mean and standard deviation of the manual-contour 

volumes are included with the structure names. 

Structure 
(Volume / cc) Package 

Range 
DSC 

Median 
DSC 

Mean ± SD 
DSC  

Langmack et al. 
(2014) DSC 

Bladder 
(91.8 ± 43.0) 

SPICE 0.68-0.92 0.87 0.85 ± 0.08  

0.88 ± 0.05 Mirada RTx 0.50-0.92 0.87 0.81 ± 0.14  
ADMIRE 0.61-0.92 0.89 0.83 ± 0.11  

Rectum 
(63.0 ± 26.0) 

SPICE 0.39-0.83 0.77 0.71 ± 0.13  

0.76 ± 0.11 Mirada RTx 0.38-0.79 0.67 0.64 ± 0.13  
ADMIRE 0.62-0.83 0.68 0.71 ± 0.07  

FHL 
(168.8 ± 14.8) 

SPICE 0.80-0.86 0.84 0.83 ± 0.02  

0.89 ± 0.03 Mirada RTx 0.93-0.97 0.95 0.95 ± 0.02  
ADMIRE 0.94-0.97 0.96 0.96 ± 0.01  

FHR 
168.7± 15.3) 

SPICE 0.77-0.86 0.81 0.81 ± 0.03  

0.91 ± 0.02 Mirada RTx 0.93-0.97 0.95 0.95 ± 0.01  
ADMIRE 0.94-0.97 0.95 0.95 ± 0.01  

Prostate 
(61.4 ± 31.6) 

SPICE 0.67-0.87 0.77 0.76 ± 0.06  

0.70 ± 0.08 Mirada RTx 0.64-0.87 0.78 0.77 ± 0.07  
ADMIRE 0.59-0.84 0.77 0.75 ± 0.09  

SV 
(7.6 ± 5.0) 

SPICE 0.05-0.72 0.52 0.51 ± 0.18  

0.58 ± 0.10 Mirada RTx 0.00-0.58 0.19 0.24 ± 0.20  
ADMIRE 0.13-0.74 0.46 0.48 ± 0.20  

 

 

In Figure 2.2, it is clear that some anatomical structures generate larger DSCs than 

others and the variation of DSC between patients varies between structures and auto-

segmentation packages. The DSCs for the SPICE contours are consistent with those 

presented in Zhu et al. (2013). Perhaps as expected, the femoral heads, which are the 

most well defined and regularly shaped anatomical structures considered here, show 

the smallest DSC variation between patients for all packages and the highest DSCs. 

Wilcoxon signed-rank tests showed that the differences in the mean DSCs for the 

Mirada RTx and ADMIRE femoral head auto-contours were not statistically significant 

using a threshold for significance of p < 0.05. However, the SPICE femoral head auto-

contour mean DSCs were statistically significantly lower than both Mirada RTx and 
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ADMIRE. Conversely, again perhaps as expected, the smallest of the outlined structures, 

the SV, show the largest degree of variation between patients and the lowest DSCs for 

all packages. Here SPICE and ADMIRE SV mean DSCs were not statistically 

significantly different, but with Mirada RTx the SV DSCs were statistically significantly 

lower than with SPICE and ADMIRE. 

For small structures, DSC can be unreliable as relatively small absolute volume 

discrepancies can represent a sizable proportion of the actual structure volume. For 

example, the volume of the SV manual-contour for one of the patients considered here 

was 4.2 cc and the corresponding SPICE auto-contour volume was 3.1 cc. This gave a 

DSC of 0.44 based on an overlap volume of 1.6 cc. In this case the auto-contour missed 

2.6 cc of the ground-truth SV and included an erroneous 1.5 cc. The left femoral head for 

the same patient had a 174.4 cc manual-contour and a 140.5 cc auto-contour. The 

overlap volume was 135.6 cc, which gave a DSC of 0.86. For the left femoral head, the 

auto-contour missed 38.8 cc and included an erroneous 4.9 cc. In absolute volume 

terms, the geometric accuracy of the auto-contoured femoral head is significantly worse 

than for the SV, yet the femoral head DSC is almost a factor of 2 greater than the SV. For 

the same structures, the average mean DTAs were 3.1 mm and 1.8 mm for the SV and 

left femoral head respectively. Although average mean DTA also indicates that the 

femoral head auto-contour is more geometrically accurate than the SV, the difference is 

only 1.3 mm, which was approximately the DTA standard deviation for the SV auto-

contour (see Table 2.2). This highlights the sensitivity of DSC to the overall structure 

volume, and hence its limitation when comparing auto-segmentation performance of 

different anatomical structures or structures with large volume variations.  

Wilcoxon signed-rank tests showed that differences in DSC for the rectum, 

bladder and prostate were not statistically significant between SPICE, Mirada RTx or 

ADMIRE using a threshold for significance of p < 0.05. 

It is interesting and important to note here that since the SPICE atlases are not 

customisable they do not allow for local definitions of anatomical boundaries, which 

impacts on the geometric accuracy of the auto-segmented structures. With the femoral 



 

 59 

heads, for example, Figure 2.2 shows there is a clear offset in the DSCs for SPICE 

compared to Mirada RTx and ADMIRE – although the variation is similar and small with 

all three packages. Figure 2.3 shows, for one of the 11 patients, the femoral head 

manual-contours shaded in orange and the SPICE, Mirada RTx and ADMIRE femoral 

head auto-contours as red, blue and yellow solid lines respectively. The inferior extent 

of the manual-contours has been defined following a local protocol to the level of the 

lesser trochanter. Since the Mirada RTx and ADMIRE atlas databases have been 

generated from locally drawn manual-contours, they give more locally representative 

auto-segmentations than the proprietary non-customisable ‘Male Pelvis’ atlas in SPICE. 

This is the cause of the systematic offset seen for the SPICE femoral head DSCs and 

suggests that non-customisable atlases fundamentally limit the geometric accuracy of 

auto-segmented structures when benchmarked against local contouring practices. This 

effect may also be present with the other pelvic structures, but the larger variations in 

DSCs between patients makes this difficult to identify. 

 

 

Figure 2.3: Femoral head manual-contours (shaded orange) and SPICE (red line), 
Mirada RTx (blue line) and ADMIRE (yellow line) auto-contours. 

 

From Table 2.1, the auto-contour mean DSCs generally lie within one standard 

deviation of the inter-observer DCSs reported by Langmack et al. (2014). This could 

imply that, although auto-contours are not consistent with an individual’s manual-

contours, they are consistent with manual-contours in general. However, care needs to 

be taken with this inference, because inter-observer variation and auto-segmentation 

inaccuracy can arise for different reasons. Inter-observer variation can result from 

differences of expert clinical opinion and the variation may be discrete where an 

anatomical boundary is ambiguous. As discussed in section 1.2.1, atlas-based auto-
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segmentation inaccuracies can result from (amongst other things) the quality of the 

atlas segmentations and how these are combined to segment the anatomy in a novel 

image (Aljabar et al., 2009). As a result, differences between auto- and manual-contours 

can be continuous and so where two observers may disagree on the exact location of an 

anatomical boundary, they may well completely agree that it is not anywhere between 

either of their opinions. On this basis, for the specification of clinical utility, it is 

arguably insufficient to demand that auto-contours lie within the inter-observer 

variation. This makes determining the acceptability of auto-contours extremely difficult 

and suggests that geometric accuracy may not be the most appropriate metric for this.  

 

 

   

 

Figure 2.4: Mean DTA box and whisker plots for auto-segmented male pelvic structures with the 
manual-contour as the reference (top) and the auto-contour as the reference (bottom). The limits 

of the boxes represent the lower and upper quartiles of the data, the central horizontal line 
represents the median and the extent of the whiskers show the 5th and 95th percentiles 

 

 



 

 61 

Figure 2.4 presents box and whisker plots for the distributions of mean DTA for 

the auto-segmented structures with SPICE, Mirada RTx and ADMIRE. The limits of the 

boxes represent the lower and upper quartiles of the data, the central horizontal line 

represents the median, the extent of the whiskers show the 5th and 95th percentiles of the 

data and outliers are represented by circular data points. The top and bottom plots use 

the manual- and auto-contour respectively as the reference.  

Table 2.2 gives a full breakdown of the mean DTA for each anatomical structure, 

reference contour and auto-segmentation package. Average mean DTA is also given, 

which is simply the average mean DTA from the two analyses. Wilcoxon signed-rank 

tests were performed on the data to determine the statistical significance of differences 

between auto-segmentation packages. Average mean DTA values presented in bold were 

statistically significantly higher than values followed by * using a threshold for 

significance of p < 0.05. 

 

Table 2.2: Mean DTA data for auto-contoured structures in the male pelvis. 

  Manual Reference 
 

Auto Reference 
 

 

Structure Package 
Mean 

DTA / mm σ / mm 
 

Mean 
DTA / mm σ / mm 

 

Average 
Mean DTA 

/ mm 

Bladder 
SPICE 0.84 0.70 

 

1.77 0.71 
 

1.30* 
Mirada RTx 2.07 1.96 

 

2.85 1.76 
 

2.46 
ADMIRE 1.03 1.02 

 

2.52 1.61 
 

1.78* 

Rectum 
SPICE 3.05 5.98 

 

3.09 1.28 
 

3.07 
Mirada RTx 4.38 3.13 

 

2.67 0.75 
 

3.53 
ADMIRE 1.24 1.30 

 

2.96 0.65 
 

2.10* 

FHL 
SPICE 3.37 0.72 

 

1.25 0.13 
 

2.31 
Mirada RTx 0.34 0.13 

 

1.06 0.32 
 

0.70* 
ADMIRE 0.24 0.11 

 

0.66 0.12 
 

0.45* 

FHR 
SPICE 4.19 0.99 

 

1.28 0.16 
 

2.73 
Mirada RTx 0.42 0.22 

 

1.01 0.20 
 

0.72* 
ADMIRE 0.31 0.14 

 

0.72 0.18 
 

0.51* 

Prostate 
SPICE 2.76 1.61 

 

2.39 0.51 
 

2.58 
Mirada RTx 2.57 2.39 

 

2.72 0.78 
 

2.64 
ADMIRE 1.18 1.41 

 

2.85 0.80 
 

2.02* 

SV 
SPICE 2.27 1.21 

 

3.70 1.51 
 

2.99* 
Mirada RTx 6.80 6.19 

 

4.34 2.77 
 

5.57 
ADMIRE 1.07 0.53 

 

4.12 1.97 
 

2.60* 
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From Figure 2.4 and Table 2.2, it is clear that the choice of reference contour for 

the DTA analysis has a considerable impact on the mean DTA. The SPICE rectum and 

femoral head and Mirada RTx SV auto-contours are particularly extreme examples. 

Figure 2.1 and Figure 2.3 illustrate why the choice of reference contour can have such a 

pronounced impact on mean DTA. The average mean DTA for the SPICE contours differ 

from those reported in Zhu et al. (2013) and are generally higher. In Zhu et al. the DTA 

analyses were performed slice-wise whereas those above were done in 3D. It would 

generally be expected that 3D analysis would generate lower mean DTAs but because of 

the difference in analysis technique it is not possible to compare the results directly. 

This highlights the sensitivity of DTA results to the specifics of the analysis and the need 

to specify exactly how it has been performed. 

As noted above, for the rectum, bladder and prostate, the DSC results for all three 

packages are similar and not statistically significantly different: the bladder tends to give 

the highest DSC but with considerable variance, the prostate tends to give a lower DSC 

but a smaller variance and the rectum gives the lowest DSC and largest variance. The 

performance of the packages in auto-segmenting these structures is also fairly well 

reflected in the mean DTA results shown in Figure 2.4. A possible reason for this is the 

variation in the size and shape (and contents for the bladder and rectum) of the 

structures, which can vary widely between patients. Figure 2.5 shows sagittal CT slices 

for two of the 11 patients with the bladder, prostate, SV and rectum manual-contours as 

yellow, red, blue and brown solid lines respectively. The rectum contents in the two 

images are markedly different: the right CT image contains significantly more gas than 

the left. Differences in rectum contents between the atlas image and the novel image 

could limit the performance of the DIR and thus the auto-segmentation accuracy. 
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Figure 2.5: Sagittal CT slices showing considerable variation in rectal contents. 

 

To evaluate this, the mean CT number of voxels inside the rectum manual-contour 

– which should be ~1000 with no gas in the rectum and < 1000 where gas is present – 

was plotted against the rectum DSC and average mean DTA for all packages. These 

plots are presented in Figure 2.6 for the Mirada RTx auto-contours and show weakly 

correlated relationships (coefficients of determination were 0.47 and 0.61 for DSC and 

average mean DTA respectively). Although more patient data is required to confirm the 

definitive existence of these relationships, Figure 2.6 suggests that for the rectum, 

where auto-segmentation has proved least successful in the pelvis, the average CT 

number inside the contours themselves could potentially be used as a surrogate to 

quality assure geometric accuracy. 

 

 

 

 

Figure 2.6: Relationships between DSC and average mean DTA and average 
rectum CT number for auto-contours generated with Mirada RTx. 

 

Figure 2.7 shows plots of average mean DTA against DSC for each of the auto-

segmented pelvic structures. Using the average of the mean DTAs ensured all 
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discrepancies between the manual- and auto-contours were considered and this also 

gave stronger correlations than using either of the individual mean DTAs. The plots 

include linear trend lines with coefficients of determination. Although the relationships 

between DSC and average mean DTA are not strictly linear, linear fits were used for 

simplicity and the relatively high coefficients of determination (for the OARs at least) 

suggest that the linear fit approximation is reasonable.  

The strongest correlations are observed for the OARs, where all coefficients of 

determination are greater than 0.7. Average mean DTA and DSC show weaker 

correlations for the prostate and SV where coefficients of determination are 0.32 and 

0.47 respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Average mean DTA plotted against DSC for auto-segmented male pelvic structures. 
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Limitations of DSC for comparisons of auto-segmentation performance for 

different anatomical structures have been discussed above – in particular where the 

comparison involves structures with significantly different volumes. It has also been 

discussed that care needs to be taken with DTA analysis to ensure all geometric 

inaccuracies are considered in the final reported mean DTA value. Figure 2.7 shows 

reasonably strong negative correlations between DSC and average mean DTA for all of 

the OARs in the male pelvis. This suggests that for a given anatomical structure either 

metric can provide a reasonably reliable measure of auto-contour geometric accuracy. If 

the geometric accuracy of different anatomical structures is to be compared, though, 

both metrics need to be specified for a reliable comparison to be made. 

The prostate and SV plots in Figure 2.7 show weaker correlations than the OARs. 

It was discussed above that for small structures such as the SV, DSC is particularly 

sensitive to small inaccuracies and this is the most likely reason for the wide range of 

SV DSCs plotted in Figure 2.7, which potentially reduces the correlation between DSC 

and average mean DTA. Despite the prostate and SV having weaker correlations 

between DSC and average mean DTA than the OARs, the data still show a trend towards 

larger average mean DTA as DSC reduces. Although this implies that both metrics give 

an indication of geometric accuracy, specification of both metrics is necessary to 

interpret the geometric accuracy of the prostate and SV auto-contours reliably. 

 

2.5 Discussion 

This work has evaluated the geometric accuracy of male pelvic auto-contours generated 

using a range of atlas-based auto-segmentation packages in terms of the standard 

metrics DSC and average mean DTA. It has been shown that the femoral head auto-

contours are the most geometrically accurate with the rectum, bladder, prostate and 

seminal vesicles demonstrating smaller DSCs and larger average mean DTAs. This is 

perhaps unsurprising given the regularity of femoral head shape and size and the high 

contrast with surround soft tissues. It was also shown that auto-segmentation packages 

with customisable atlases can achieve superior geometric agreement with manual-
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contours compared to packages with non-customisable proprietary atlases.  

Such a comparative study has not been presented in the literature previously and 

the results presented in this chapter add to the existing knowledge base whilst 

demonstrating limitations of existing literature. The literature is biased towards 

evaluations of auto-segmentation performance in terms of geometric accuracy – indeed, 

this was partly the motivation for the work presented in this chapter. Although it is an 

intuitive concept when comparing the similarity of two different shapes, the specifics of 

exactly how geometric accuracy analyses have been performed are often not fully 

specified and where they differ between studies it can be difficult to compare studies in 

a meaningful manner. This was demonstrated most clearly here with the specification of 

which contour has been used as the reference for the DTA analysis. 

Despite the limitations of DSC and DTA, it was demonstrated that for any given 

anatomical structure in the male pelvis, the two metrics do correlate with each other, 

which indicates that for a given structure either provides a reasonable score of 

geometric accuracy. 

A limitation of this work is that the evaluation was only based on 11 patients. 

Whilst an effort was made to ensure that this cohort contained a range of patient 

anatomies that represent the clinical patient population, it is not possible for such a 

relatively small group to cover every possible clinical situation. Although it would be 

reasonable and interesting to conduct a larger scale study and possibly to break down 

the patient cohort by anatomical characteristics, the value of such studies is itself 

limited for the practical application of auto-segmentation in the radiotherapy treatment 

planning pathway. 

Although it has been demonstrated that DSC and DTA give reliable predictors of 

geometric accuracy, geometric accuracy does not necessarily provide a reliable 

indicator of the utility of auto-contours for treatment planning. Some absurd situations 

can arise where auto-contours with better geometric accuracy scores can be less useful 

for treatment planning that auto-contours with worse scores. Figure 2.1 can be used to 

illustrate this: an auto-contour that improves the large geometric inaccuracies at the 
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superior and inferior extents of the rectum at the expense of a relatively small 

compromise of geometric accuracy at the cranio-caudal level of the prostate would 

likely generate better geometric accuracy scores; in practice, however, this would not 

represent an improved auto-contour for treatment plan optimisation. 

In the future, auto-segmentation will be a first step in automated treatment 

planning workflows and so the utility of auto-contours for treatment planning purposes 

is of more relevance to clinical practice than pure geometric accuracy. This should be 

an area for future work to address. If auto-contours are used to generate PTVs and OAR 

sparing volumes with which a treatment plan can be optimised, small geometric 

inaccuracies of the order of a few millimetres that have been seen in this study may be 

of little consequence. 

 

2.6 Conclusion 

Eleven CT scans of the male pelvis have been used to evaluate the geometric accuracy 

of atlas-based auto-segmentation using SPICE, Mirada RTx and ADMIRE. DSC and mean 

DTA were identified as standard metrics of geometric accuracy in the literature and 

have been calculated here for each set of auto-contours. The femoral heads and SV 

consistently showed the highest and lowest DSCs respectively for all 11 patients and 

prostate, bladder and rectum were generally consistent in terms of DSC across all three 

packages. Mean DTA was strongly influenced by the choice of reference contour and 

performing two separate DTA analyses with the manual- and auto-contours as the 

reference was necessary to ensure all geometric inaccuracies were included in the 

analysis. Taking the average of the two analyses was found to give a more robust 

measure of overall geometric accuracy. It is therefore recommended when considering 

mean DTA results reported in the literature that caution is taken where the exact 

method of calculation is not thoroughly specified and where multiple analyses have not 

been performed. 

Negative correlations were found between DSC and average mean DTA for all 

auto-segmented structures although prostate and SV were only weakly correlated. This 
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suggests that, for a given anatomical structure, DSC and average mean DTA are both 

reliable measures of geometric accuracy. However, since DSC is sensitive to overall 

structure volume, to compare the geometric accuracy of different structures both DSC 

and average mean DTA need to be specified. 

Although it has been shown that DSC and average mean DTA can be used to 

measure the geometric accuracy of auto-segmented structures reasonably reliably, 

neither provide any indication of the significance of the inaccuracies for radiotherapy 

treatment planning. The following chapter addresses this issue by using the auto-

contours from this chapter to generate radiotherapy treatment plans. 
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Chapter 3 
 

3 Utility of Auto-Segmentation for Prostate VMAT Treatment Planning 

Joseph Wood1, 2, Marianne Aznar2, Philip Whitehurst1, 2  
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2The University of Manchester 
 

3.1 Abstract 

This chapter presents an investigation into the utility of auto-contours for prostate 

radiotherapy treatment planning. Auto-contours generated with a range of atlas-based 

auto-segmentation packages, that contained known geometric inaccuracies, were used 

to generate treatment plans. For 11 patients, 3 treatment plans were generated: a 

manual-plan based on target and OAR manual-contours; an auto-plan based on target 

and OAR auto-contours; and a hybrid- based on target manual-contours and OAR auto-

contours. When reported to ‘ground-truth’ manual-contours, auto-plans were shown to 

differ considerably from corresponding manual-plans with significant under-dosage of 

PTVs. Hybrid-plan conversely showed good agreement with corresponding manual-
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plans with comparable high dose coverage of target volumes and OAR sparing. This 

suggests that OAR auto-contours can be used reliably to drive treatment plan 

optimisation and offers an opportunity to restructure the treatment planning pathway to 

generate a considerable efficiency saving. 

Dosimetric differences between the manual-, auto- and hybrid-plans were not 

found to correlate with differences in the geometric accuracy of the auto-contours used 

to generate them. This demonstrates a clear limitation of using geometric accuracy as 

an evaluation of auto-segmentation performance.  

 

3.2 Introduction 

In Chapter 2, the geometric accuracy of male pelvic auto-contours was evaluated using 

three atlas-based packages: SPICE, (Qazi et al., 2011), Mirada RTx (Mirada Medical, 

2017) and ADMIRE (Elekta, 2013). Whilst assessment of geometric accuracy is a 

common approach to evaluating the performance of auto-segmentation packages (Zhu 

et al., 2013; Teguh et al., 2011; Speight et al., 2014; Lim & Leech et al., 2016; Voet et al., 

2011; Larrue, Kadir & Gooding, 2013; Gugyeras et al., 2017), it is also necessary to 

consider the utility of the auto-contours for the intended clinical purpose. Auto-contours 

that contain geometric inaccuracies may still fulfil their clinical requirements and in 

such cases geometric accuracy serves as a poor performance metric for auto-

segmentation. This is often overlooked in the literature where geometric inaccuracies 

are widely used to infer poor clinical utility. Beasley et al. (2016) report that in the head 

and neck region relationships between auto-contour geometric accuracy and treatment 

planning utility are weak at best. Such a study of auto-contour utility for prostate 

radiotherapy treatment planning has not been published in the literature. 

At The Christie, standard-of-care radiotherapy for intermediate- to high-risk 

prostate cancer (T1b-T3aN0M0) is based on the hypofractionated arm of the CHHiP trial 

(Dearnaley et al., 2016; Wilkins et al., 2015). From initial manual outlines of the prostate, 

SV and rectum three PTVs are generated according to the expansions in Table 3.1. 

 



 

 73 

Table 3.1: Margin recipe for prostate radiotherapy PTVs. 

PTV Source Avoid Interior Avoid Exterior Expansion 

PTV1 Prostate + SV – – 1 cm SIRLAP 
PTV3 Prostate Rectum – 0.5 cm SIRLA 
PTV2 PTV3 – PTV1 1 cm SIRLAP 

 

 

In accordance with the recommendations of The Royal College of Radiologists 

(The Royal College of Radiologists, 2016), 6000 cGy in 20 fractions is prescribed as the 

mean prostate dose, and the treatment plan is optimised in Pinnacle3 such that PTV3 

receives at least 5700 cGy, PTV2 at least 5460 cGy and PTV1 at least 5000 cGy. Patients 

are scanned supine and head-first into the scanner with no patient specific 

immobilisation devices other than left, right and anterior Beekley CT-SPOT markers 

(Beekley Medical, 2021). Treatment plan optimisation is performed using a single 10 MV 

volumetric modulated arc therapy (VMAT) beam over a full 360° gantry rotation with a 

10° collimator twist to avoid interleaf leakage. Although 6 MV is the energy of choice for 

most pelvic VMAT (Kumar et al., 2015; Shang et al., 2014), 10 MV for prostate VMAT is 

widely accepted in the literature as a superior energy due to improvements in target 

coverage, OAR sparing and integral dose (Mattes et al., 2014; Stanley et al., 2015). 

 

Table 3.2: CHHiP and local OAR treatment planning dose limits. 

OAR Dose / cGy 
CHHiP Maximum Volume 

/ % 
Local Maximum Volume 

/ % 

Rectum 

2460 80 88 
3240 70 76 
4080 60 60 
4860 50 43 
5280 30 28 
5700 15 7 
6000 3 0 

Bladder 
4080 50 93 (or 60 if Bladder > 150 cc) 
4860 25 84 (or 46 if Bladder > 150 cc) 
6000 5 5 (or 1 if Bladder > 150 cc) 
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OAR doses are limited in the treatment plan optimisation based partly on the 

constraints given by the CHHiP trial but edited to reflect a local bladder emptying 

protocol that differs from the CHHiP requirements. Local practice at The Christie is for 

patients to void their bladder immediately prior to the treatment planning CT scan 

acquisition and every treatment fraction. The CHHiP and local OAR dose limits are 

given in Table 3.2. 

In the prostate radiotherapy treatment planning pathway illustrated in Figure 1.1, 

outlining of anatomical structures is performed in two stages: outlining of target 

volumes by clinical oncologists and outlining of OARs by treatment planners. These 

outlines are first used to drive the treatment plan optimisation and second to report the 

dosimetry of the final plan. For the reporting of the final plan dosimetry, it is arguably 

important to have geometrically accurate structures for accurate dose reporting, 

especially near steep dose gradients‡. However, for the optimisation of the treatment 

plan where anatomical structures (particularly OARs) are used to guide where dose is 

deposited more generally, small geometric inaccuracies in the structures may have little 

impact on the final dose distribution. 

Treatment plan optimisation cannot proceed without both target and OAR 

outlines and Figure 1.1 illustrates how this constrains the overall pathway. The outlining 

constraints cause significant inefficiencies for treatment planning departments and 

ultimately delay the access of prostate cancer patients to their radiotherapy treatments. 

The work presented in this chapter aims to determine the utility of auto-contours that 

contain known geometric inaccuracies for radiotherapy treatment planning. To do this, 

the author used the auto-contours for the 11 patients described in Chapter 2 to generate 

auto-plans (optimised with auto-contoured OARs and targets) and hybrid-plans 

(optimised with auto-contoured OARs and manually-contoured targets) using the same 

optimisation parameters. They analysed the dosimetry of the treatment plans (always 

 
‡ Although this is a commonly accepted and intuitive viewpoint, reporting doses to geometrically 
accurate structures is only accurate if the treatment planning geometry is perfectly replicated on 
every fraction throughout the course of treatment. This is known not be the case and Orlandini et 
al. (2017) suggest daily image guidance and dose tracking is necessary to report accurate 
dosimetry.  
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reported to the manual-contours) and used gamma analysis to compare the global dose 

distributions. Finally, they investigated relationships between the treatment plans and 

auto-contour geometric accuracy to establish the relative importance of geometric 

accuracy in the evaluation of auto-contours.  

If clinically acceptable and dosimetrically optimal treatment plans can be 

generated based on auto-contours (albeit with known geometric inaccuracies) the 

outlining constraints on the pathway could be released and opportunities to restructure 

the Figure 1.1 pathway and harness this efficiency could be exploited. 

 

3.3 Method 

The clinical prostate VMAT optimisation class-solution used at The Christie was 

developed in 2009 when VMAT was a relatively new technique to the radiotherapy 

community (Boylan, Golby & Rowbottom, 2010). Despite having successfully treated 

more than 3000 prostate cancer patients with this solution since its inauguration, its fine 

details bear the hallmark of a prototype. To avoid biasing the results of this research 

with a class-solution that is known to contain conflicting optimisation objectives, a new, 

simplified solution was developed. The new solution had not been through a rigorous 

commissioning process that would be typical of a clinical optimisation class-solution 

and it was not necessarily the intention that it would generate dosimetrically optimal (or 

even clinically acceptable) treatment plans. Rather, the intention was to generate 

approximations of clinical treatment plans to evaluate the impacts of using auto-

contours for optimisation. Full details of the new optimisation class-solution used for 

this work are presented in the section 3.8.1. 

For each of the 11 patient datasets described in Chapter 2, four sets of PTVs were 

created based on the expansions in Table 3.1 from the manual- and auto-contours 

(SPICE, Mirada RTx and ADMIRE). Four sets of OAR sparing volumes were also 

generated. These consisted of the OAR outside PTV1 with a 0.7 cm SIRLAP expansion. 

An example of this for the manual-contours is shown in Figure 3.1 where the prostate, 

SV, rectum, bladder and left and right femoral heads are shown as the red, blue, brown, 
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yellow, green and pink solid lines respectively, PTV1, PTV2 and PTV3 are the shaded 

skyblue, maroon and turquoise areas respectively and the OAR sparing volumes are the 

shaded regions in the same colour as their respective OAR. 

 

 

 

 

Figure 3.1: Prostate treatment planning PTVs, OARs and sparing volumes. 

 

In-plane OAR structures were also created using the OAR as the source and 

limiting it to the superior and inferior extents of PTV1. Within the Pinnacle3 optimiser, 

maximum DVH and maximum equivalent uniform dose (EUD) objectives can be 

specified. The extent to which these objectives limit high dose to a partially irradiated 

structure is dependent on the overall structure volume, which can vary considerably and 

arbitrarily between patients. In-plane optimisation structures allow dose gradients 

through OARs to be controlled in a more standardised way. 

The simplified optimisation class-solution was created using the volumes 

described above and this was run using the manual-contours and each set of 

auto-contours for each of the 11 patients. Since the target volumes perform the precise 

task of defining the extent of the high dose region but the sparing volumes perform the 

more general function of steering dose away from the sensitive OARs, it was 

hypothesised that geometric inaccuracies in the prostate and SV would have a greater 

impact on the overall dose distribution compared to similar geometric inaccuracies in 

the OARs. Hybrid-plans were therefore generated using the prostate and SV 

manual-contours to expand the PTVs (the rectum auto-contour was used to expand 

PTV3) but the auto-contours for the OAR sparing volumes. Hybrid-plans were generated 
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using the same optimisation objectives and parameters as the manual- and auto-plans 

(i.e. those presented in section 3.8.1).  

 

 

Figure 3.2: Flowchart of the manual-, auto- and hybrid-plan generation. 

 

Figure 3.2 shows a flowchart of the manual-, auto- and hybrid-plan generation. In 

total, seven treatment plans were generated for each of the 11 patients: one manual- 

(green), three auto- (blue) and three hybrid-plans (purple). DVH data for the 

manual-contours were extracted from Pinnacle3 and analysed for each of the seven 

treatment plans to investigate the dosimetric impact of performing the optimisation with 

auto-contours on the ground-truth anatomy. Since the optimisation was always run with 

exactly the same objectives and parameters, any differences in the dosimetry reported 

to the manual-contours could be isolated to having been caused by the geometric 

differences between the manual- and auto-contours – thus allowing the impacts of 

geometric inaccuracies on auto-contour utility for treatment planning to be investigated. 

Although DVH analysis is used clinically in the assessment of treatment plan 

optimisation, it does not provide information on where within an anatomical structure 

the high dose is located. Clinically, this would be assessed visually but to compare the 

impacts of auto-contour geometric inaccuracies on the global dose distribution in this 

manner is difficult and subjective. To provide a quantitative surrogate for the visual 

inspection and comparison of the 3D dose distributions, 3D gamma analysis (Low et al., 

Mirada RTx-Targets

Mirada RTx-OARs
Mirada RTx Auto-Plan

11
 Pa

tie
nt

 D
at

as
et

s

SPICE-Targets

SPICE-OARs
SPICE Auto-Plan

Manual-Targets

Manual-OARs
Manual-Plan

ADMIRE-Targets

ADMIRE-OARs
ADMIRE Auto-Plan

SPICE Hybrid-Plan

Mirada RTx Hybrid-Plan

Mirada RTx Hybrid-Plan



 

 78 

1998) was performed using VeriSoft v5.0 to compare the dose distributions from the 

manual-plan with the auto-plans and hybrid-plans.  

To compare the manual-plans with auto- and hybrid-plans, six 3D gamma analyses 

were performed at 3 % / 3 mm, 5 % / 3 mm and 4 % / 4 mm within the 1800 cGy and 

3000 cGy isodoses, which approximately represent the lowest doses that are considered 

on clinical prostate treatment plans. 1800 cGy is 30 % of the 6000 cGy prescription and is 

the closest threshold available in VeriSoft v5.0 to the 2460 cGy (41 % of 6000 cGy) dose 

level used for rectum DVH reporting. 3000 cGy is 50 % of the 6000 cGy prescription and 

was the closest threshold available to the value of the lowest isodose (3155 cGy) 

displayed on prostate treatment plans at The Christie.  

Since gamma analysis is not used routinely to compare dose distributions from 

different treatment plans in this way the most appropriate criteria were not known so 

performing multiple analyses with similar criteria to those used for clinical analysis 

allowed this to be considered retrospectively. 

 

3.4 Results 

The data in Table 3.3 show mean and standard deviation, minimum and maximum 

percentage point differences of the standard prostate radiotherapy DVH parameters 

between the auto- and manual-plans reported to the manual-contours. Femoral head 

dosimetry is given as the difference in D1 cc between the auto- and manual-plans 

expressed as a percentage of the 6000 cGy prescription. This normalisation to the 

prescription dose was necessary because generally femoral heads receive a relatively 

low dose (typically ~3000 cGy) so small absolute differences in the maximum dose can 

give seemingly large percentage differences. Negative values in Table 3.3 indicate the 

auto-plan dose statistics were lower than the manual-plan and mean dose differences 

presented in bold were found to be statistically significant using Wilcoxon signed-rank 

tests with a threshold for statistical significance of p < 0.05. 

The results in Table 3.3 show that the SPICE, Mirada RTx and ADMIRE auto-plans 

give considerably reduced target coverage compared to the corresponding manual-
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plans. For SPICE and Mirada RTx the differences were all statistically significant with 

the exception of the D1 cc for PTV3. PTV3 D1 cc is the only target maximum dose that is 

reported clinically and it was not expected that optimisation using auto-contours would 

generate regions of dose significantly greater than the prescription dose. The target 

coverage reduction for SPICE and Mirada RTx would also certainly be considered 

clinically significant as well as statistically significant. PTV dose agreement between the 

manual- and auto-plans is best for ADMIRE where the reductions in target coverage 

were not found to be statistically significant. However, mean under-doses of 11.0 %, 

9.4 % and 7.0 % in terms of D99 % are observed for PTV1, PTV2 and PTV3 respectively for 

the ADMIRE auto-plans, which would not be acceptable clinically. 

The reduction in target coverage is illustrated in Figure 3.3, which shows 

cumulative DVHs for the three PTVs for one of the 11 patients. The beginning of the 

DVH fall-off occurs at a lower dose in the auto-plans compared to the manual-plan.  

 

 

 

 

 

Figure 3.3: Cumulative PTV DVHs for the manual- and auto-plans for one of the 11 patients. 
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Table 3.3: Average percentage point differences between the auto-plans and manual-plans. 

  
 

SPICE / % 

 

Mirada RTx / % 

 

ADMIRE / % 

OAR 
Dose 

Statistic 

 

Mean SD Min. Max. 

 

Mean SD Min. Max. 

 

Mean SD Min. Max. 

PTV1 
Min 1 cc  –27.8 17.9 –27.8 17.9  –30.5 26.5 –75.6 2.9  –13.9 22.4 –69.2 5.6 

Min 99 %  –22.6 17.0 –22.6 17.0  –27.2 24.5 –68.2 2.9  –11.0 19.6 –62.0 5.6 

PTV2 
Min 1 cc  –27.5 21.6 –27.5 21.6  –24.0 26.1 –77.6 6.3  –11.3 25.1 –71.8 11.4 

Min 99 %  –25.1 19.9 –25.1 19.9  –21.7 24.0 –71.2 5.5  –9.4 22.3 –65.5 10.5 

PTV3 
Max 1 cc  0.7 1.1 0.7 1.1  0.6 1.8 –0.6 5.7  0.1 0.4 –0.5 0.7 
Min 1 cc  –15.0 16.8 –15.0 16.8  –12.5 18.5 –63.3 0.9  –7.9 18.1 –61.0 1.5 

Min 99 %  –14.6 15.6 –14.6 15.6  –11.9 17.5 –60.6 0.9  –7.0 16.3 –55.0 1.6 

FHL Max 1 cc  0.3 5.0 –9.0 8.5  –0.1 3.6 –5.5 4.9  3.6 3.6 –1.5 9.0 

FHR Max 1 cc  –1.7 5.2 –10.8 6.5  –1.5 6.1 –11.3 7.6  1.2 5.2 –7.3 10.8 

Rectum 

V2460 cGy 

 

8.6 6.5 8.6 6.5  –0.4 10.0 –21.7 15.1  4.8 7.0 –6.8 17.4 
V3240 cGy 

 

0.9 5.6 0.9 5.6  –1.9 10.8 –23.6 13.9  5.5 7.6 –8.7 16.6 
V4080 cGy 

 

–1.8 4.4 –1.8 4.4  –1.3 10.7 –19.5 13.0  5.4 8.1 –10.3 14.3 
V4860 cGy 

 

–2.3 3.3 –2.3 3.3  0.2 9.7 –13.7 16.1  5.0 7.7 –9.7 12.4 
V5280 cGy 

 

–1.2 3.8 –1.2 3.8  2.1 8.4 –8.8 15.8  4.3 6.1 –6.3 10.4 
V5700 cGy 

 

1.2 3.1 1.2 3.1  3.3 4.7 –2.7 12.4  3.0 3.4 –2.8 7.2 
V6000 cGy 

 

0.2 0.3 0.2 0.3  0.2 0.3 0.0 0.8  0.1 0.1 0.0 0.4 

Bladder 
V4080 cGy 

 

–5.7 14.0 –26.1 12.7  –0.5 15.5 –27.8 26.2  9.6 14.9 –16.4 32.1 
V4860 cGy 

 

–5.0 13.6 –24.4 14.9  0.6 16.6 –23.4 35.5  11.6 16.3 –14.0 35.9 
V6000 cGy 

 

0.6 3.0 –3.6 7.5  2.4 6.8 –4.2 21.6  2.6 4.4 –3.3 13.0 
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Although the results in Table 3.3 and plots in Figure 3.3 show that the auto-plan PTV 

coverage is significantly reduced compared to the manual-plan, the OARs show closer 

agreement. Generally, the SPICE and Mirada RTx auto-plans give closer dosimetric agreement 

for the OARs than ADMIRE. However, care has to be taken with this comparison as ADMIRE 

auto-plans give superior PTV coverage than SPICE and Mirada RTx and it is not clear from 

Table 3.3 how OAR auto-plan dosimetry is affected by this. Figure 3.4 shows bladder, rectum 

and femoral head cumulative DVHs for the same patient as Figure 3.3. 

 

 

 

 

 

 

 

Figure 3.4: Cumulative OAR DVHs for the manual- and auto-plans for one of the 11 patients. 

 

It is worth recalling here that the optimisation objectives and parameters were the same 

for all manual- and auto-plans. Therefore the dosimetric differences reported in Table 3.3 and 

illustrated in Figure 3.3 and Figure 3.4 are driven purely by geometric differences in the 

optimisation volumes. To evaluate this more specifically, the DSCs and average mean DTAs 

from Chapter 2 were plotted against the dose differences for each dose statistic in Table 3.3 

and coefficients of determination were analysed. No significant correlations were found 

between geometric accuracy scores and any of the reported dose statistics. This implies that 

whilst DSC and average mean DTA are reasonably reliable predictors of geometric accuracy, 
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geometric accuracy itself is not necessarily a reliable predictor of auto-contour utility for 

treatment plan optimisation.  

Table 3.4 presents mean and standard deviation, minimum and maximum percentage of 

pixels passing gamma analysis where the manual-plans have been compared with each of the 

auto-plans. The gamma analysis results also show poor agreement between the manual- and 

auto-plan dose distributions. Mean percentage of pixels passing were not statistically 

significantly different between the auto-segmentation packages across all analyses using 

Wilcoxon signed-rank tests and a threshold for significance of p < 0.05. 

It is clear from the data in Table 3.3 and Table 3.4 and the example DVH plots in Figure 

3.3 and Figure 3.4 that auto-plans differ significantly from corresponding manual-plans. Even 

with a fully developed treatment planning optimisation class-solution, in the majority of cases, 

auto-contours from SPICE, Mirada RTx and ADMIRE would not produce clinically acceptable 

auto-plans and so their utility for treatment planning is limited. 

 

Table 3.4: Average pixels passing gamma analysis when the auto-plans are 
compared with the manual-plan. 

   Pixels Passing / % 
  Threshold / % Mean SD Min. Max. 

5 % / 3 mm 
SPICE 

30 
57.6 6.2 46.5 66.4 

Mirada RTx 58.8 9.0 41.8 70.8 
ADMIRE 49.4 13.3 19.9 64.6 

4 % / 4 mm 
SPICE 

30 
58.0 6.3 45.6 65.3 

Mirada RTx 59.0 9.1 42.9 70.8 
ADMIRE 49.4 13.7 19.5 64.7 

3 % / 3 mm 
SPICE 

30 
46.6 5.5 34.9 53.4 

Mirada RTx 47.3 8.5 32.5 58.1 
ADMIRE 39.0 12.3 12.9 54.0 

5 % / 3 mm 
SPICE 

50 
69.6 8.4 50.8 80.5 

Mirada RTx 67.7 11.5 48.5 80.9 
ADMIRE 60.9 15.4 29.0 79.2 

4 % / 4 mm 
SPICE 

50 
73.2 9.2 51.3 84.5 

Mirada RTx 71.4 12.0 51.5 85.4 
ADMIRE 64.6 15.3 33.6 83.4 

3 % / 3 mm 
SPICE 

50 
61.5 9.1 39.7 72.4 

Mirada RTx 59.7 12.3 39.7 74.0 
ADMIRE 53.1 15.5 22.5 71.1 

 



 

 

83 

Table 3.5: Average percentage point differences between the hybrid-plans and manual-plans. 

  
 

Hybrid SPICE / % 

 

Hybrid Mirada RTx / % 

 

Hybrid ADMIRE / % 

OAR 
Dose 

Statistic 

 

Mean SD Min. Max. 

 

Mean SD Min. Max. 

 

Mean SD Min. Max. 

PTV1 
Min 1 cc  0.0 3.2 –6.1 6.6  0.1 3.1 –6.0 6.3  0.1 2.1 –3.6 3.5 

Min 99 %  0.0 2.7 –5.2 5.6  0.1 2.5 –5.1 5.2  0.1 1.8 –2.6 3.0 

PTV2 
Min 1 cc  1.2 3.1 –1.5 7.9  1.3 3.2 –1.3 7.8  1.7 3.2 –0.7 8.6 

Min 99 %  1.0 2.3 –1.1 4.9  1.0 2.4 –1.0 5.0  1.4 2.4 –0.8 5.5 

PTV3 
Max 1 cc  0.1 0.3 –0.6 0.7  0.0 0.3 –0.7 0.2  –0.1 0.3 –0.6 0.3 
Min 1 cc  0.2 1.0 –1.4 2.2  0.1 1.0 –1.6 2.1  0.2 1.3 –1.3 3.0 

Min 99 %  0.2 1.0 –1.4 2.2  0.1 1.0 –1.6 2.1  0.2 1.2 –1.1 2.7 

FHL Max 1 cc  –0.2 4.5 –10.5 5.0  0.2 2.8 –3.7 5.8  0.0 4.3 –8.9 6.0 

FHR Max 1 cc  –2.5 3.9 –7.2 3.6  –1.1 3.2 –7.1 3.7  0.2 2.4 –3.5 4.9 

Rectum 

V2460 cGy 

 

1.6 4.4 –5.5 11.1  4.0 4.3 –3.2 11.7  1.6 3.8 –5.6 6.8 
V3240 cGy 

 

1.3 3.9 –5.2 9.7  2.2 3.5 –2.7 9.4  1.2 2.9 –4.1 6.5 
V4080 cGy 

 

0.8 3.6 –3.5 8.9  1.1 3.2 –3.4 8.2  0.7 2.4 –3.7 4.7 
V4860 cGy 

 

0.2 3.6 –6.2 8.3  0.4 3.4 –5.9 7.9  0.4 2.3 –3.5 3.7 
V5280 cGy 

 

0.1 3.3 –5.9 7.0  0.1 3.1 –6.4 6.2  0.3 2.2 –3.4 3.4 
V5700 cGy 

 

1.0 2.5 –2.4 6.2  0.8 2.5 –2.6 5.9  0.1 1.7 –2.2 3.3 
V6000 cGy 

 

0.0 0.0 0.0 0.1  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Bladder 
V4080 cGy 

 

1.5 4.3 –2.0 12.9  2.1 4.6 –1.8 14.6  1.7 3.7 –1.5 10.8 
V4860 cGy 

 

1.6 4.7 –1.8 14.5  2.1 5.1 –1.5 16.1  1.6 3.7 –1.3 10.5 
V6000 cGy 

 

0.9 3.3 –2.5 9.9  0.2 2.5 –3.1 7.0  0.6 2.6 –2.9 7.2 
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The data in Table 3.5 show mean and standard deviation, minimum and maximum 

percentage point differences for the standard prostate radiotherapy DVH parameters 

between the hybrid- and manual-plans reported to the manual-contours. As with Table 

3.3, femoral head dosimetry is given as the difference in D1 cc expressed as a percentage 

of the 6000 cGy prescription.  

 

 

 

 

 

Figure 3.5: Cumulative PTV DVHs for the manual- and hybrid-plans for one of the 11 patients. 

 

The results in Table 3.5 show that hybrid-plan PTV dosimetry is reasonably 

consistent with manual-plan dosimetry. All three auto-contouring packages generate 

hybrid-plan PTV doses that are on average within –0.1 % to 1.7 % of the manual-plan for 

all reported PTV dose statistics. Wilcoxon signed-rank tests were used to assess the 

mean differences and none was found to be statistically significant with a significance 

threshold of p < 0.05. 

Figure 3.5 shows hybrid-plan PTV DVHs for the same patient used in Figure 3.3 

and Figure 3.4. It is immediately apparent that the hybrid-plan PTV coverage is improved 

dramatically compared to the auto-plan and is comparable to the manual-plan.  

OAR doses are also in good agreement between the hybrid- and manual-plans. 
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SPICE and ADMIRE hybrid-plans have rectum and bladder dosimetry that is on average 

between 0.0 % and 1.7 % different than the manual-plan. A slightly wider range is seen 

for Mirada RTx, from 0.0 % to 4.0 %. For all three packages, hybrid-plan femoral head 

doses were similar to the manual-plan. Figure 3.6 shows bladder, rectum and femoral 

head cumulative DVHs for the same patient as above. 

 

 

 

 

 

 

 

Figure 3.6: Cumulative OAR DVHs for the manual- and hybrid-plans for one of the 11 patients. 

 

Gamma analysis results presented in Table 3.6 show that the hybrid-plan dose 

distributions are similar to those of the corresponding manual-plans. At 3 % / 3 mm – the 

strictest gamma analysis criteria that are used for clinical assessments at The Christie – 

all three auto-segmentation packages generate hybrid-plans with average pass rates 

greater than 90 % within the 50 % isodose. The pass rate drops by ~20 % when the dose 

threshold is reduced to 30 %, but since 3155 cGy (i.e. 52.6 % of the prescription) is the 

lowest isodose displayed on clinical prostate treatment plans, doses lower than this are 

not considered clinically. The only exception to this is the rectum V2460 cGy, and from 

Table 3.5 this is the rectum dose statistic that shows the biggest disagreement between 

the manual- and hybrid-plans – although the average difference is 1.6 %, 4.0 % and 1.6 % 
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for SPICE, Mirada RTx and ADMIRE respectively, which are differences that could 

potentially be improved with a more developed optimisation class-solution.  

As for the auto-plan gamma analyses, the differences between the pass rates for 

the hybrid-plans were not statistically significantly different between auto-segmentation 

packages using Wilcoxon signed-rank tests and a threshold for significance of p < 0.05. 

The gamma analysis failures were reviewed visually on a patient-by-patient basis 

and no apparent patterns were observed in where the hybrid- and manual-plans differed. 

This was expected since, other than the inferior extent of the SPICE femoral head auto-

contours (see Figure 2.3), the geometric discrepancies in the OAR auto-contours were 

not generally considered to be systematic. Therefore it was not surprising that patterns 

of failures were not observed in the hybrid-plan gamma analyses. 

 

Table 3.6: Average pixels passing gamma analysis when the hybrid-
plans are compared with the manual-plan. 

   Pixels Passing / % 

  Threshold / % Mean SD Min. Max. 

5 % / 3 mm 
SPICE 

30 
78.2 7.6 65.8 88.1 

Mirada RTx 77.9 7.2 65.4 88.2 
ADMIRE 79.6 8.9 58.4 92.5 

4 % / 4 mm 
SPICE 

30 
77.2 7.2 66.5 86.7 

Mirada RTx 76.9 6.9 63.9 86.7 
ADMIRE 78.8 8.3 59.4 91.1 

3 % / 3 mm 
SPICE 

30 
67.4 7.7 54.6 76.9 

Mirada RTx 67.5 7.2 55.8 79.4 
ADMIRE 69.4 9.2 50.2 84.2 

5 % / 3 mm 
SPICE 

50 
94.4 3.8 85.4 99.3 

Mirada RTx 94.6 3.5 85.7 98.7 
ADMIRE 94.6 4.1 85.7 98.7 

4 % / 4 mm 
SPICE 

50 
95.4 3.0 88.7 99.5 

Mirada RTx 95.6 2.8 89.1 99.1 
ADMIRE 95.6 3.1 89.7 98.8 

3 % / 3 mm 
SPICE 

50 
90.5 5.5 78.1 98.1 

Mirada RTx 91.0 4.8 79.6 97.0 
ADMIRE 91.0 5.5 81.2 97.1 
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Despite the dosimetry of the hybrid-plans closely matching the manual-plans, no 

correlations were found between the differences in any of the OAR dose statistics and 

either DSC or average mean DTA. This is consistent with the finding noted above for the 

auto-plans in that where DSC and average mean DTA are reliable predictors of 

geometric accuracy, they do not necessarily reliably predict the utility of the 

auto-contours for treatment planning. This may be in part due to the limitations of the 

standard geometric accuracy metrics, which could be insensitive to the subtle 

differences in utility between auto-contours from different packages. This is potentially 

a significant finding because the literature is heavily biased towards evaluations of auto-

contours using geometric accuracy scores and this may not translate to utility in the 

clinical setting. 

 

3.5 Discussion 

The work presented in this chapter has shown that auto-plans generated with target and 

OAR auto-contours suffer from severely compromised target coverage. Hybrid-plans, 

however, where optimisation is performed with target manual-contours and OAR auto-

contours, demonstrated good agreement with manual-plans. This was demonstrated to 

be the case with three different and fully-independent atlas-based auto-segmentation 

packages. Furthermore, the degree to which the auto- and hybrid-plans differed from 

corresponding manual-plans was not found to correlate with geometric accuracy. 

This implies that while DSC and DTA are frequently used to assess auto-

segmentation performance geometric accuracy itself represents a poor surrogate with 

which to infer clinical utility. Specifically testing the utility of auto-contours in the 

intended clinical setting is often overlooked in the literature in favour of geometric 

accuracy evaluations or increasingly time and motion studies that measure efficiencies 

of manually correcting auto-contours and drawing them de novo. This work has shown 

that such approaches alone are insufficient to evaluate the performance of auto-

segmentation packages fully and a better alternative is to use the auto-contours in the 

intended clinical setting and then evaluate the impact on the resultant treatment plans. 
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This work was limited to 11 patients and since the optimisation was performed 

using a non-clinical optimisation class-solution, the manual-, auto- and hybrid-plans 

were not necessarily dosimetrically optimal and clinically acceptable. The intention here 

was not necessarily to produce such optimal and acceptable treatment plans; rather, it 

was simply to investigate the impact of geometric inaccuracies on treatment plan 

generation, which has been achieved. It is not particularly useful to comment on how 

many of the plans were optimal and acceptable (since this was not the purpose of the 

work) but this is a limitation of the conclusions that can be drawn. Further work should 

address this issue by developing a clinical optimisation strategy that would allow more 

widespread testing of the hybrid-plan concept. Automation of this new optimisation 

strategy would provide an expedient way to produce treatment plans very quickly after 

clinician outlining of prostate and SV target volumes. This could be used to generate 

significant efficiencies for treatment planning, which could in turn be used to pursue 

developments in advanced radiotherapy techniques that are currently unfeasible due to 

the associated increased workload. 

 

3.6 Conclusion 

Prostate VMAT treatment plans generated using SPICE, Mirada RTx and ADMIRE 

auto-contours have been shown to differ significantly from plans generated using 

manual-contours. However, if auto-contours are used only to generate OAR sparing 

volumes and prostate and SV manual-contours are used to generate PTVs, agreement 

between this hybrid-plan and a manual-plan is on average generally within 

approximately 1.5 % and not statistically significant. 3D gamma analysis has also shown 

good agreement between the hybrid- and manual-plan dose distributions. 

Despite observing poor dosimetric agreement between auto-plans and manual-

plans and good agreement between hybrid-plans and manual-plans, no correlations were 

found between the compared dose statistics and DSC or average mean DTA. Therefore 

when considering the utility of auto-contours for radiotherapy treatment planning, it is 

important not just to consider geometric accuracy but also the intended clinical 
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purposes of the auto-contours. 

Figure 1.1 shows that manual-contouring introduces constraints into the prostate 

VMAT treatment planning pathway. The work presented here shows that the utility of 

atlas-based auto-segmentation is severely limited for the prostate and SV and thus for 

the generation of PTVs. This implies that auto-segmentation cannot remove the first 

manual-contouring constraint in Figure 1.1. However, the hybrid-plan results suggest 

that auto-segmentation of OARs could remove the second constraint and allow the 

treatment plan optimisation stage of the pathway to be brought forward. Even if the 

auto-contoured OARs need to be manually edited for final dose reporting, which is likely 

based on the geometric accuracy results presented in Chapter 2, moving and automating 

the optimisation process such that is could start immediately after the prostate and SV 

are manually drawn would potentially drive significant efficiencies for clinical treatment 

planning departments.  
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3.8 Supplementary Material 

3.8.1 Treatment Plan Optimisation Parameters 

The table below presents the optimisation objectives used in Pinnacle3 for the new 

optimisation class-solution used to generate auto- and hybrid-plans.  

 

ROI Type Dose / cGy Volume / % Weight 

PTV3 Min Dose 5950 – 90 
PTV3 Max Dose 6100 – 70 
PTV3 Uniform Dose 6000 – 10 

PTV2-PTV3 Min Dose 5550 – 100 
PTV2-PTV3 Max Dose 5950 – 55 
PTV2-PTV3 Max DVH 5900 5 70 

PTV1-PTV2 Min Dose 5100 – 95 
PTV1-PTV2 Max Dose 5500 – 70 
PTV1-PTV2 Max DVH 5450 5 70 

Rind_1 Max Dose 5250 – 30 
Rind_2 Max Dose 4600 – 40 
Rind_3 Max Dose 3900 – 50 
Background Max Dose 3250 – 50 

Rectum_Sparing_InPlane Max Dose 3500 – 40 
Rectum_Sparing_InPlane Max EUD 3250 – 30 

Bladder_Sparing_InPlane Max Dose 3500 – 40 
Bladder_Sparing_InPlane Max EUD 3500 – 30 

FHR_Sparing Max Dose 4000 – 15 
FHL_Sparing Max Dose 4000 – 15 

 

 

3.8.2 ESTRO 2019 Poster 

Based on the work presented in Chapters 2 and 3 an abstract was submitted to the 2019 

European Society for Radiotherapy & Oncology (ESTRO) conference. The abstract was 

accepted for a poster exhibition and a representation of the poster is shown on the 

following page. 
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Chapter 4 
 

4 Knowledge-Based Prostate Treatment Planning 

Joseph Wood1, 2, Marianne Aznar2, Philip Whitehurst1, 2  

1The Christie NHS Foundation Trust 
2The University of Manchester 
 

4.1 Abstract 

In this chapter a novel approach to knowledge-based (KB) treatment planning is 

proposed, developed and tested. The KB consists of a model of the ideal prostate 

radiotherapy treatment plan, which was trained using 562 clinical treatment plans that 

had been generated manually over a two year period at The Christie NHS Foundation 

Trust. For the 562 treatment plans used to train the model, optimisation of dose fall-off 

within OARs from the high dose region around the PTVs was assessed and found to be 

extremely inconsistent. From the training data, two optimisation class-solutions were 

developed with the aims of achieving the average dose fall-off to maintain average 
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treatment plan quality and achieving the 25th percentile dose fall-off to improve average 

treatment plan quality. The KB class-solutions were tested on a sample of 11 new cases 

and treatment plans of at least comparable quality were generated in nine of the 11 

cases without clinically or statistically significant compromise to PTV coverage. 

 

4.2 Introduction 

Standard-of-care radiotherapy for intermediate- to high-risk prostate cancer (T1b-

T3aN0M0) delivered at The Christie is based on the hypofractionated arm of the CHHiP 

trial (Dearnaley et al., 2016; Wilkins et al., 2015). In general, the ideal high dose region in 

a standard prostate radiotherapy treatment plan can be characterised by the required 

target dosimetry described in section 3.2. It is therefore relatively simple to convert this 

characterisation into a short list of objectives for an optimisation algorithm. However, 

since OARs sit in steep dose gradients and the size and shape of OARs is extremely 

variable between patients (see section 1.2), predicting ideal OAR dosimetry – and thus 

converting it to optimisation objectives – is difficult. Typically, therefore, clinical 

treatment plan optimisation consists of a manual process where OAR doses are 

iteratively reduced as far as is reasonably practicable. 

Such iterative approaches can be subjective and time consuming, however 

(Djajaputra et al., 2003). Knowledge-based (KB) treatment planning aims to incorporate 

prior experience into the optimisation of new treatment plans automatically to reduce 

this subjectivity (Nwankwo et al., 2015). A number of approaches to KB treatment 

planning have been described in the literature where generally a KB consists of a 

database of previously optimised treatment plans. When a new treatment plan is to be 

optimised, it is characterised in some way such that OAR DVH parameters can be 

predicted using the treatment plan from the KB with the most similar characterisation 

(Chanyavanich et al., 2011; Wu et al., 2009; Janssen et al., In press; Wang, Heijmen & 

Petit, 2017; Petit et al., 2017; Good et al., 2013; Yang et al., 2013; Zhu et al., 2011; Yuan et 

al., 2012).  

As noted above, accurate prediction of OAR DVH parameters is difficult due to 
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variations in the size and shape of OARs relative to the PTVs and these variations have a 

significant impact on the OAR DVH (Bzdusek et al., 2012). Any uncertainties in the 

complex process of DVH prediction ultimately become manifest as uncertainties in the 

degree to which the final treatment plan is dosimetrically optimal. It is perhaps for this 

reason that where the literature reports that KB treatment planning is used in the clinic, 

it is often only as a tool to quality assurance manual treatment planning and not a 

primary method of treatment plan generation (Powis et al., 2017). 

A further disadvantage to this approach to KB treatment planning is that the need 

for computational speed can severely restrict the number of previous treatment plans 

that can be included in the KB database, which limits the likelihood of finding a suitable 

match for the new treatment plan.  

The work presented in this chapter describes the author’s development of a novel 

approach to KB prostate VMAT treatment planning that aims to overcome the 

limitations of current approaches described above. The basis of the KB presented here 

is a generalised model of the ideal prostate radiotherapy treatment plan that applies to 

all patient anatomies and geometries§. The model characterises ideal coverage of PTVs 

and dose fall-off into the surrounding OARs which are learnt from a large cohort of 

clinical treatment plans. Since variations in OAR size and shape should not significantly 

affect the PTV1-OAR dose gradients, using this trained model of the ideal prostate 

radiotherapy treatment plan to optimise new treatment plans could provide a more 

reliable and consistent approach to automated KB treatment planning. 

An abstract was submitted to the 2020 European Society for Radiotherapy and 

Oncology (ESTRO) conference based on the work presented in this chapter and Chapter 

5. This was accepted for presentation as a poster and a reproduction of the poster is 

presented in section 5.8.1.   

 

 
§ The ‘ideal treatment plan’ refers to how treatment plans should be generated at The Christie 
following a local clinical protocol. It is acknowledged that protocols in other centres differ from 
what is described here. 
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4.3 Method 

A model of the ideal prostate radiotherapy treatment plan was constructed according to 

a local clinical protocol. This model is illustrated in Figure 4.1: where no part of the 

anatomy should receive a dose greater than 6300 cGy; the blue 5700 cGy isodose line 

covers PTV3 (inner turquoise area) but does not extend outside PTV2 (maroon area); 

the orange 5460 cGy isodose line conforms to PTV2 and the green 5000 cGy isodose line 

conforms to the skyblue PTV1. The radial dose gradients (i.e. dose falloff per unit 

distance) from the PTVs into the OARs, (shown as the colour transparency gradients in 

Figure 4.1) should be as steep as can be practically achieved. For each OAR, the PTV1-

OAR dose gradient should be fairly constant amongst a cohort of consistently optimised 

treatment plans because the practically achievable gradients are determined primarily 

by machine parameters and are largely independent of patient anatomy. 

 

 

Figure 4.1: The ideal prostate radiotherapy treatment plan. Isodoses show highly conformal 
target coverage for all three dose levels and the colour gradients within OARs represent dose 

gradients, which are as steep as machine paramters will reasonably allow. 

 

562 clinical prostate VMAT treatment plans generated in 2017 and 2018 at The 

Christie were used to train the model illustrated in Figure 4.1. These plans were all 

generated manually in Pinnacle3 by trained treatment planners according to a well-

established clinical protocol based on manual-contours drawn by clinical oncologists 

and the planners themselves. Although it has been stated previously that manual 
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treatment planning is subjective, all 562 treatment plans were accepted by expert 

treatment planners and clinical oncologists, passed a rigorous quality assurance process 

and were deliverable on the treatment machines. For the purpose of this work, these 

562 plans are taken to be dosimetrically and clinically acceptable if not fully optimal. 

To characterise the average PTV1-Rectum, PTV1-Bladder and PTV1-femoral head 

dose gradients, for each treatment plan, PTV1 was expanded isotropically in 2 mm 

increments up to 40 mm. OARs were then segmented based on the volume enclosed by 

pairs of successive PTV1 expansions but limited by the superior and inferior extents of 

PTV1 as illustrated in Figure 4.2.  

The D0.01 cc, D50 % and mean dose of each OAR segment were recorded and these 

were each averaged over all 562 patients. Average PTV1-OAR dose gradients were then 

determined based on these statistics as functions of radial distance from the PTV1 

surface. Limiting the superior and inferior extents of the OAR segmentations was 

important to avoid biasing the dose statistics by out of plane dose. 

 

 

Figure 4.2: OAR segmentation based on 2 mm isotropic expansions of PTV1. 
OAR segments were also limited by the superior and inferior limits of PTV1 to avoid 

biasing dose statistics by out of plane dose. 
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In a busy clinical department, at the point where a treatment plan meets the 

minimum dosimetric requirements (set out in Table 3.2 and discussed in section 3.2) the 

treatment planner must trade-off dosimetric improvements generated by further 

optimisations with time spent running them. It was therefore expected that variations in 

the PTV1-OAR dose gradients would be observed amongst the 562 patients – a 

representation of the degree to which treatments plans are not consistently optimised. 

To investigate this, histograms of the recorded D0.01 cc, D50 % and mean dose for each 

of the OAR segments were plotted. Strictly, according to the KB model presented in 

Figure 4.1, if all 562 treatment plans were consistently optimised, the histograms should 

form delta functions with spikes at decreasing doses as the radial distance from PTV1 is 

increased. Such an interpretation of the model is an unrealistic expectation and in 

reality predicting the exact forms of the distributions was not possible. A reasonable 

hypothesis, however, is that inconsistent optimisation primarily impacts the negative 

tails of the distributions. Where treatment plans are not optimised consistently, a 

negative skew would be expected because the upper limits are fixed by the maximum 

OAR dose criteria and finite target dose but the lower limits are where the variation 

resides.  

For each OAR segment distribution, the skewness was calculated using equation 

4.1, where 𝑛𝑛 is the number of patients in the dataset, 𝑥𝑥𝑖𝑖 is the dose to the i th histogram 

bin and �̅�𝑥 and 𝑠𝑠 are the sample mean and standard deviation respectively. 

 
 

Skewness =
𝑛𝑛

(𝑛𝑛 − 1)(𝑛𝑛 − 2)��
𝑥𝑥𝑖𝑖 − �̅�𝑥
𝑠𝑠

�
3

𝑖𝑖

, 4.1 

 

Once the average PTV1-OAR dose gradients had been characterised they were 

used to inform the model illustrated in Figure 4.1. Within the TPS, the trained model 

consisted of two new optimisation class-solutions, which were tested on the 11 patients 

used in Chapters 2 and 3. 

For each of the 11 test cases, OAR manual-contours were segmented into 2 mm 
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rinds, as per the training data. In the Pinnacle3 optimiser, maximum dose optimisation 

objectives were assigned to these OAR segments based on the predictions of the trained 

model. In the first instance, the optimisation objectives were based on the average of 

the D0.01 cc segmentation data from the training cohort with the aim of maintaining 

average treatment plan quality. Since it was acknowledged that the training cohort 

contained some treatment plans that were more optimal than others, by maintaining 

average quality, the treatment plans that were originally superior to the average would 

necessarily worsen when optimised using the average-KB class-solution. A second class-

solution was therefore constructed in the same manner but the 25th percentile of the 

D0.01 cc segmentation data from the training cohort were used to set maximum dose 

optimisation objectives with the aim of improving average treatment plan quality. 

For each treatment plan generated with the KB, a cold-start optimisation was 

performed followed by an additional warm-start optimisation without modification of 

any optimisation parameters. A single 360 ° 10 MV VMAT arc was used to plan the 

treatment with a collimator twist of 10 ° to minimise interleaf leakage. Full details of the 

optimisation parameters used for each KB class-solution are included in section 4.8. 

Although the 25th percentile KB class-solution described above can be justified to 

ensure treatment plan quality does not decrease, care has to be taken as from the dose 

gradient data generated for this work, it is not clear whether plans with steep PTV1-

Rectum dose gradients also have steep PTV1-Bladder dose gradients. Therefore, it may 

not be possible to reduce bladder, rectum and femoral head doses without 

simultaneously increasing treatment plan complexity, which is difficult to assess 

definitively and not the intention of the work presented in this chapter. To assess this 

OAR sparing trade-off amongst the treatment plans in the training cohort, the individual 

PTV1-OAR dose gradients were calculated for each of the 562 treatment plans by fitting 

straight lines to the OAR segment D0.01 cc against distance data over distances where the 

dose fall-off could reasonably be assumed to be linear. For the 562 patients, the 

PTV1-Rectum and PTV1-Bladder data were plotted against each other to assess 

correlation and provide insight into the validity of using either KB class-solution. 
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Evaluation of the 22 treatment plans generated using the KB class-solutions was 

performed using standard prostate DVH parameters and visual review by the author – a 

medical physics expert (MPE) trained and experienced in prostate radiotherapy 

treatment planning and checking.  

 

4.4 Results 

Figure 4.3 shows plots of mean D0.01 cc as functions of radial distance from the PTV1 

surface within the Bladder, Rectum and Femoral Heads for the 562 treatment plans used 

to train the model of the ideal prostate treatment plan illustrated in Figure 4.1. The 25th 

and 75th percentiles are also plotted as thinner lines and the 5th and 95th percentiles are 

plotted as dashed lines. 

 

 

 

 

   

 

 

 

Figure 4.3: Mean dose gradients for the 562 manual treatment plans used to train the KB 
model within the Bladder, Rectum and Femoral Heads. 25th and 75th percentiles are plotted 

as the thinner lines and 5th and 95th percentiles are plotted as the dashed lines.  

 

It is worth noting here that the horizontal axes for the bladder and rectum plots 

are different than those for the femoral heads. Bladder and rectum are plotted from 

2 mm to 18 mm, which is the distance range over which the dose fall-off is reasonably 
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linear – beyond 18 mm the average dose gradients become less steep and similar to 

those within the femoral heads. The femoral heads are plotted from 22 mm to 40 mm as 

the majority of the OAR segments closer than 22 mm had zero volume. The numbers of 

patients on which the bladder and rectum plots in Figure 4.3 are based decrease with 

increasing distance. This is because small OARs are entirely encompassed within a 

relatively short radial distance from PTV1 and the 2 mm OAR segments beyond that 

relatively short distance had zero volume. Similar plots for D50 % and mean dose to the 

OAR segments were generated but for conciseness these are not include here. 

Simple straight lines were fit to the mean data to quantify the average PTV1-OAR 

dose gradients as –147 cGy mm–1, –118 cGy mm–1, –28 cGy mm–1 and –26 cGy mm–1 for 

the bladder, rectum, left and right femoral heads respectively. Average PTV1-Rectum 

and PTV1-Bladder dose gradients were approximately five times steeper than the PTV1-

Femoral Head gradients. The relatively modest fall-off of dose throughout the femoral 

heads is indicative of their sitting in the low dose bath surrounding the target volumes.  

For each patient, the PTV1-Rectum and PTV1-Bladder dose gradients was plotted 

against each other to assess the trade-off of OAR sparing. This plot is shown in Figure 

4.4. The coefficient of determination is 0.0005 and it is clear that there is no correlation.  

 

 
 

Figure 4.4: PTV1-Rectum dose gradient plotted against PTV1-Bladder dose gradient for the 
562 patients used to train the KB model of the ideal prostate treatment plan. 
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Figure 4.5 shows histograms of D0.01 cc at a selection of distances from PTV1 for the 

bladder and rectum. Bladder and rectum data are plotted together and are represented 

by the yellow and brown histograms respectively. Figure 4.6 shows similar plots for the 

femoral heads where blue and light blue histograms represent the right and left femoral 

heads respectively. Visually, it is apparent that the bladder and rectum histograms have 

a negative skew and Table 4.1 presents the skewness calculations that were performed 

on the OAR segment D0.01 cc distributions. These skewness calculations provide a useful 

baseline for future evaluations of the distributions of D0.01 cc from treatment plans 

generated with the KB class-solutions. 
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Figure 4.5: Histograms of the 562 bladder and rectum D0.01 cc at 2 mm, 4 mm, 6 mm, 8 mm and 
10 mm from PTV1. The bladder and rectum histograms are shaded yellow and brown respectively. 
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Figure 4.6: Histograms of the 562 Femoral Head D0.01 cc at 22 mm, 26 mm, 30 mm, 34 mm and 
38 mm from PTV1. The right and left femoral head are shaded blue and light blue respectively. 
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Table 4.1: Skewness calculations performed to benchmark D0.01 cc distributions for the 562 
treatment plans used to train the KB model of the ideal prostate treatment plan. 

  Bladder  Rectum 

Distance from PTV1 
 Mean 

/ cGy 
Std 

/ cGy Skewness  
Mean 
/ cGy 

Std 
/ cGy Skewness 

2 mm  5350 83 –1.13  5063 140 0.53 
4 mm  5081 131 –1.25  4897 164 –1.35 
6 mm  4760 194 –1.09  4694 231 –1.67 
8 mm  4431 254 –0.77  4475 316 –1.44 
10 mm  4116 312 –0.49  4250 393 –1.15 
12 mm  3815 360 –0.33  3985 475 –0.85 
14 mm  3525 390 –0.19  3708 549 –0.66 
16 mm  3275 412 –0.15  3455 608 –0.50 
18 mm  3057 419 –0.12  3230 642 –0.31 

           
           

  FHL  FHR 

Distance from PTV1 
 Mean 

/ cGy 
Std 

/ cGy Skewness  
Mean 
/ cGy 

Std 
/ cGy Skewness 

22 mm  3559 264 0.32  3533 257 0.26 
24 mm  3491 269 0.10  3463 253 0.44 
26 mm  3447 251 0.12  3421 252 0.07 
28 mm  3394 248 0.08  3361 258 –0.22 
30 mm  3334 270 –0.40  3302 276 –0.47 
32 mm  3277 280 –0.42  3260 280 –0.51 
34 mm  3213 287 –0.31  3200 297 –0.67 
36 mm  3157 301 –0.51  3151 297 –0.65 
38 mm  3104 301 –0.43  3110 293 –0.61 
40 mm  3559 264 0.32  3533 257 0.26 

 

 

 

  



 

106 

Figure 4.5 and the skewness calculations in Table 4.1 show negatively skewed 

distributions of D0.01
 
cc for all distances except 2 mm for the bladder and rectum. As 

discussed in section 4.3, this negative skew is to some degree indicative of how the 562 

treatment plans used to train the KB model were not optimised consistently. 

It is important to note here that a treatment plan that sits at the 5th percentile at 

some radial distance from PTV1 does not necessarily sit at the 5th percentile at all radial 

distances. Care therefore has to be taken with drawing conclusions from the variations 

demonstrated in Figure 4.5 and Table 4.1. These results only signify that optimisation 

between patients is inconsistent and does not necessarily mean that any individual 

treatment plan was uniformly dosimetrically inferior to another.  

The skewness analyses presented in Table 4.1 show that generally the 

PTV1-Bladder distributions exhibit less negative skew than those for PTV1-Rectum. This 

implies that although both the bladder and rectum doses are not consistently optimised 

amongst the 562 patients, the rectum shows a greater degree of optimisation variance. 

At The Christie, prostate radiotherapy patients follow a strict bladder emptying protocol 

where they void their bladders immediately prior to the acquisition of the treatment 

planning CT scan and each treatment fraction. This has proved a reasonably reliable 

means of providing a reproducible bladder size and shape for individual patients**. The 

contents of the rectum, however, are less strictly controlled. Patients are given simple 

dietary advice prior to the treatment planning CT scan and are asked to follow this 

throughout treatment. Yahya et al. (2013) report that offering such dietary advice is not 

the optimal approach to managing rectal contents and advocate daily micro enemas 

instead. Although it is not the purpose of this work to investigate this, it is possible that 

the more consistent optimisation of the bladder compared to the rectum suggested by 

the skewed distributions of D0.01 cc is a result of the way in which the contents of each 

OAR is managed pre- and during treatment. 

The histograms plotted in Figure 4.6 show that over the 562 patients there is no 

 
** Although the bladder emptying protocol used at The Christie reproduces bladder size and 
shape, it is acknowledged here that it is common at many other institutions for a bladder filling 
protocol to be followed to reduce bladder and (generally) bowel dose. 
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major difference between the doses to either femoral head. From Table 4.1, the Femoral 

head D0.01 cc distributions are less skewed than the bladder and rectum distributions and 

show a mix of both positive and negative values. Indeed, chi-squared analyses of the 

femoral head D0.01 cc distributions indicated that they were reasonably well approximated 

as normal distributions. 

Since the position of the femoral heads (several centimetres from the high dose 

PTVs) naturally limits the dose they receive, optimisation of clinical treatment plans at 

The Christie does not require any strict femoral head dose criteria to be met††. In section 

4.3, it was noted that negatively skewed distributions of D0.01 cc would be expected if 

treatment plans were inconsistently optimised because the upper limit is fixed by the 

minimum dose criteria detailed in Table 3.2 and by the finite target dose. Whilst this 

logic holds for the bladder and rectum, which sit close to and within the high dose target 

region, it does not hold for structures in the low dose bath, where typically doses are 

significantly lower that the prescription and where there are not necessarily any 

maximum dose criteria to be met. 

After running the KB optimisation class-solutions on the 11 test patients, 

dosimetry data were extracted from Pinnacle3 and Table 4.2 presents the differences 

between the KB treatment plans and the original treatment plans that were generated 

manually and delivered clinically. Paired Student’s t-tests‡‡ were used to evaluate the 

statistical significance of the differences in the reported dose statistics. In Table 4.2, 

results presented in bold were found to be statistically significant using a threshold for 

significance of p < 0.05.  

For the average-KB class-solution, the differences in reported target dose 

statistics are all within ±1.6 % and mean differences are all within ±0.8 %. PTV1 

minimum D1 cc and D99 % were the only target dose statistic differences that were 
 

†† At the time of writing, the on-going PIVOTALBoost clinical trial gives optimal and mandatory 
femoral head doses of V4000 cGy < 5 % and < 50 % respectively (The Institute of Cancer Research, 
2020). All treatment plans used for this work comfortably met this optimal dose tolerance. 
‡‡ Student’s t-test is a parametric test that assumes the samples are taken from normally 
distributed populations, which is not necessarily the case here. However, for sample sizes greater 
than ~20, the central limit theorem and Slutsky’s theorem imply that the paired Student’s t-test 
generates reliable results even for non-normally distributed samples. 
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statistically significant. However, at 0.8 %, these differences are unlikely to be clinically 

significant. 

For the bladder and rectum, mean differences are all within ±0.9 % although the 

range of differences is much wider that for the targets: ±5.3 % and ±12.4 % for bladder 

and rectum respectively. The rectum V5280 cGy and V5700 cGy were the only statistically 

significant OAR dose differences but as noted above the 0.9 % and 1.1 % increases are 

unlikely to be clinically significant. The wide range of dose differences centred close to 

zero for the bladder and rectum was expected especially for the low dose DVH 

statistics. In Figure 4.3, the variation between patients increases with increasing 

distance (and thus decreasing dose) from PTV1, therefore optimising treatment plans to 

achieve the average dose gradient means OAR doses in some treatment plans increase 

and some decrease. The dose difference data in Table 4.2 for the average-KB class-

solution are all centred within ±0.9 % of zero, which indicates that the average treatment 

plan quality has been maintained at a clinically significant level and the plans are 

optimised consistently. 

The 25th percentile-KB class-solution produces treatment plans with on average 

statistically significant lower bladder and rectum dosimetry and comparable target 

dosimetry compared to the average-KB class-solution and to the clinical treatment 

plans. The femoral head D1 cc for the 25th percentile-KB treatment plans increase 

compared to the average-KB treatment plans. This is most likely the result of the 

bladder and rectum doses restricting the contribution of target dose that can be 

delivered from the anterior-posterior components of the VMAT arc. In order to achieve 

target coverage, an increased contribution of the dose must be delivered laterally 

through the femoral heads and hence the femoral head doses increase.  

For both KB class-solutions, nine of the 11 treatment plans met all of the dose 

criteria noted in Table 3.2. For the average-KB class-solution, one of the treatment plans 

failed to meet the minimum D1 cc for PTV1 and PTV2 (although the average-KB treatment 

plan dosimetry was superior to the clinical treatment plan, which also did not meet the 

minimum D1 cc criteria) and another failed to meet the rectum V5700 cGy planning aim. For 
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the 25th percentile-KB class-solution, all OAR dose criteria were met but two treatment 

plans failed to achieve the required target dosimetry.  
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Table 4.2: Average, standard deviation, minimum and maximum percentage differences between KB and manual treatment plans. 

  Average KB Class-Solution  25th Percentile KB Class-Solution 

Dose Statistic  Mean / % SD / % Min. / % Max. / %  Mean / % SD / % Min. / % Max. / % 

PTV1 D99 %  0.8 0.4 0.2 1.3  0.3 0.9 –1.5 1.3 
PTV1 min D1 cc  0.8 0.5 0.1 1.6  0.2 1.1 –2.0 1.4 
PTV2 D99 %  –0.2 0.4 –1.0 0.4  –0.4 0.7 –2.0 0.4 
PTV2 min D1 cc  –0.1 0.4 –1.0 0.4  –0.5 0.7 –2.3 0.4 
PTV3 D99 %  0.1 0.5 –0.7 1.2  –0.1 0.7 –1.7 1.1 
PTV3 min D1 cc  0.1 0.5 –0.5 1.2  –0.1 0.8 –2.0 1.1 
PTV3 max D1 cc  –0.3 0.5 –1.5 0.2  0.0 0.7 –1.1 1.8 
PTV3 median  0.1 0.2 –0.1 0.5  0.1 0.3 –0.5 0.5 

FHL max D1 cc  3.2 4.3 –3.2 12.7  5.6 3.7 –2.7 10.0 
FHR max D1 cc  4.8 4.2 –0.8 11.2  5.5 5.0 –3.6 12.2 

Rectum V2460 cGy  0.5 4.2 –6.5 9.5  –4.7 4.1 –10.3 2.7 
Rectum V3240 cGy  –1.7 6.5 –10.8 12.4  –6.4 6.9 –15.1 7.4 
Rectum V4080 cGy  –1.0 6.0 –10.1 11.8  –4.2 6.0 –14.8 8.1 
Rectum V4860 cGy  0.6 2.4 –3.3 5.1  –1.1 2.5 –4.7 3.8 
Rectum V5280 cGy  0.9 1.1 –0.7 2.5  0.2 1.0 –1.2 1.5 
Rectum V5700 cGy  1.1 1.1 –0.4 3.0  0.7 1.0 –0.6 2.7 
Rectum V6000 cGy  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Bladder V4080 cGy  –0.9 2.7 –4.5 5.3  –2.2 3.0 –5.4 5.3 
Bladder V4860 cGy  –0.4 2.2 –2.8 5.2  –1.5 2.6 –3.8 5.0 
Bladder V6000 cGy  –0.2 1.6 –4.6 1.6  0.5 0.9 –1.3 1.6 



 

111 

Figure 4.7 shows a similar plot to Figure 4.4 where the red transparent data points 

represent the 562 PTV1-OAR gradients from the training data, the solid red data points 

represent the clinical treatment plans for the 11 test cases and the yellow and blue data 

points represent the treatment plans generated with the average-KB and 25th percentile-

KB class-solutions respectively. The 11 clinical tests cases appear to be consistent with 

the training data population and both KB class-solutions generate data points that are 

closer together and offset in the negative-negative direction, which indicates generally 

steeper and more consistent dose gradients than the clinical treatment plans. As 

expected the 25th percentile-KB treatment plans generally have steeper dose gradients 

than the average-KB treatment plans. 

 

 

Figure 4.7: Individual PTV1-Rectum and PTV1-Bladder dose gradients plotted 
against each other for the 562 KB training patients, 11 clinical test cases, 

average-KB and 25th percentile-KB treatment plans. 

 

When the average-KB treatment plans were reviewed visually, of the nine that met 

all of the minimum dose criteria, eight were considered clinically acceptable in terms of 

the dose distribution. In the treatment plan that did not pass the visual inspection, the 

5460 cGy isodose line did not conform well enough to PTV2. Figure 4.8 shows a sagittal 

slice of the PTVs for this patient where an orange 5460 cGy ‘hotspot’ is visible at the 

superior extent of PTV1. It was also noted that the 5700 cGy coverage of PTV3 was 
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generous anteriorly across all average-KB treatment plans. Although the 5700 cGy 

isodose line did not extend outside PTV2, it generally sat close to the inside surface of 

PTV2, which is apparent in Figure 4.8 and Figure 4.9, such that it was considered the 

extreme of what would be clinically acceptable. 

 

 

Figure 4.8: A sagittal slice of the average-KB treatment plan 
that produced 5460 cGy (orange isodose) hotspots in PTV1. 

 

All of the treatment plans generated with the 25th percentile-KB class-solution that 

met the minimum dose criteria (nine out of 11) were considered clinically acceptable. 

PTV coverage for treatment plans generated with the 25th percentile-KB class-solution 

was comparable to that generated with the average-KB class-solution with one 

exception. This treatment plan was for the same patient for which the average-KB 

treatment plan also failed to meet the PTV1 and PTV2 minimum D1 cc dose criteria. As 

noted above, the average-KB treatment plan for this patient was dosimetrically superior 

to the clinical treatment plan and so could therefore be considered clinically acceptable. 

However, when the rectum and bladder were optimised to the 25th percentile of the dose 

gradients shown in Figure 4.3, PTV coverage became unacceptably compromised.  

As expected the PTV1-Rectum and PTV1-Bladder dose gradients were visually 

steeper in the treatment plans generated with the 25th percentile-KB class-solution but it 
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was also apparent that this was at the expense of Femoral Head dose. Figure 4.9 shows 

the same CT slice for one patient where on the left is the average-KB treatment plan and 

on the right is the 25th percentile-KB treatment plan. The outermost green isodose line, 

which represents 3155 cGy, covers a smaller proportion of the Rectum and Bladder in 

the 25th percentile-KB treatment plan but extends further laterally to cover more of the 

Femoral Heads. 

 

 

 

 

Figure 4.9: A slice of a treatment plans generated with the average-KB 
class-solution (left) and the 25th percentile-KB class-solution (right). 

 

4.5 Discussion 

In this chapter a novel approach to KB treatment planning has been proposed, 

developed and tested. Unlike traditional KBs that consist of relatively small databases of 

previously optimised treatment plans the KB developed here consisted of a generalised 

model of the ideal prostate radiotherapy treatment plan. The model was trained using 

PTV1-OAR dose gradient data extracted from a large cohort of clinical treatment plans 

and this was used to create two KB optimisation class-solutions with the aims of 

maintaining average treatment plan quality (average-KB) and improving it (25th 

percentile-KB). 

It was shown that, amongst the training cohort, optimisation of the high dose fall-

off from the PTV1 surface into OARs is extremely inconsistent. Specifically optimising 

the dose gradient within the OAR has been shown to generate treatment plans of at least 

comparable quality to manually generated clinical treatment plans but with more 
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consistently optimised OAR doses.  

A major advantage of this novel KB treatment planning approach over the more 

traditional approaches described in the literature is that it does not involve the difficult 

process of predicting suitable OAR DVH parameters for optimisation. Instead, the same 

optimisation parameters can be used for every patient (i.e. the same KB class-solutions) 

irrespective of OAR size and shape and these optimisation parameters can be carefully 

selected and refined based on vast numbers of previously optimised clinical treatment 

plans. Where many KB treatment planning solutions find a role in the clinic as a quality 

assurance tool for manually generated treatment plans, it is likely that the method 

developed and tested here has a substantial role to play in the prospective development 

of new treatment plans. 

The test sample for the KB treatment planning approach developed here was 

limited to 11 cases. Although this is a test sample approximately consistent with similar 

studies published in the literature, the reliability of conclusions drawn about the success 

of the KB treatment planning technique are limited. Further work is required to test the 

KB treatment planning technique more thoroughly on a much larger test patient cohort. 

In additional, since the aim of the KB class-solutions is to generate clinically acceptable 

treatment plans without treatment planner intervention, testing optimisation using auto-

contours would also be an interesting area for further work because this could provide a 

fully-automated KB treatment planning workflow. 

 

4.6 Conclusion 

The work presented in this chapter has demonstrated the utility of the KB treatment 

planning model illustrated in Figure 4.1. A large cohort of prostate VMAT radiotherapy 

treatment plans, generated based on over a decade of clinical experience, was used to 

train the model and generate two optimisation class-solutions – the first aimed to 

achieve the average PTV1-OAR dose gradients and the second aimed to achieve the 25th 

percentile of the PTV1-OAR dose gradients for all patients. These were then tested on 11 

new patients where optimisation was performed based on manually drawn target and 
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OAR contours. When both sets of KB treatment plans were reviewed in terms of the 

DVH requirements set out in Table 3.2 and checked visually by an experience MPE, 

clinically acceptable treatment plans were generated for nine of the 11 test patients.  
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4.8 Supplementary Material 

The tables below present the optimisation objectives used in Pinnacle3 for the average-

KB and 25th percentile-KB class-solutions. The PTV objectives were the same for both in 

both cases (top table) and OARExp1, 2, 3… refer to successive 2 mm OAR segments. 

 

 

ROI Type Dose / cGy Volume / % Weight 

PTV3 Min Dose 5950 – 90 
PTV3 Max Dose 6100 – 70 
PTV2-PTV3 Min Dose 5600 – 100 
PTV2-PTV3 Max Dose 5950 – 55 
PTV2-PTV3 Max DVH 5900 5 70 
PTV1-PTV2 Min Dose 5100 – 95 
PTV1-PTV2 Max Dose 5500 – 70 
PTV1-PTV2 Max DVH 5450 10 70 
Rind_1 Max Dose 5600 – 30 
Rind_2 Max Dose 4900 – 30 
Rind_3 Max Dose 5600 – 30 
Background Max Dose 4000 – 30 
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  Dose / cGy  

ROI Type Average-KB 25th percentile-KB Weight 

RectumExp1 Max Dose 5065 4995 10 
RectumExp2 Max Dose 4900 4828 10 
RectumExp3 Max Dose 4700 4601 10 
RectumExp4 Max Dose 4480 4336 10 
RectumExp5 Max Dose 4250 4030 10 
RectumExp6 Max Dose 4000 3717 10 
RectumExp7 Max Dose 3715 3384 10 
RectumExp8 Max Dose 3470 3093 10 
RectumExp9 Max Dose 3210 2794 10 

BladderExp1 Max Dose 5350 5313 10 
BladderExp2 Max Dose 5080 5018 10 
BladderExp3 Max Dose 4770 4665 10 
BladderExp4 Max Dose 4450 4300 10 
BladderExp5 Max Dose 4130 3948 10 
BladderExp6 Max Dose 3820 3603 10 
BladderExp7 Max Dose 3520 3285 10 
BladderExp8 Max Dose 3260 3008 10 
BladderExp9 Max Dose 3000 2784 10 

FHL Max EUD 2250 2250 10 
FHR Max EUD 2250 2250 10 
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5 Fully-Automated Knowledge-Based Treatment Planning 
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5.1 Abstract 

The purpose of the work presented in this chapter was to unite the ideas of hybrid-

planning developed in Chapter 3 with the KB class-solutions developed in Chapter 4 

through large scale testing. 131 clinical treatment plans formed a test patient cohort. 

When optimisation was driven purely by manual-contours, the average-KB class-solution 

was shown to maintain average treatment plan quality in terms of target coverage and 

OAR sparing whilst also providing a small reduction in treatment plan complexity. The 

25th percentile-KB class-solution improved treatment plan quality with comparable 

target coverage and lower average OAR doses but this came at the expense of a small 
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increased treatment plan complexity. For 120 of 131 test cases at least one of the KB 

class-solutions generated a clinically acceptable treatment plan. When optimisation was 

driven by manual targets and auto-OARs (the so-called hybrid-plan developed in Chapter 

3) clinically acceptable treatment plans were generated for 102 of 131 test cases. Hybrid-

planning using the KB class-solutions developed in Chapter 4 can offer significant 

efficiency savings for busy clinical departments. These efficiency savings could be 

exploited to enable ART techniques and allow patients earlier access to their cancer 

treatments. 

 

5.2 Introduction 

In many radiotherapy centres, treatment plans are generated manually by expert 

treatment planners. Optimisation of a treatment dose distribution is an iterative process 

where the treatment planner specifies appropriate objectives for an optimisation 

algorithm. Multiple cycles of the optimisation process are typically run until the expert 

treatment planner is satisfied that the treatment plan is optimal. It is reported in the 

literature, however, that this manual treatment planning approach is subjective and time 

consuming (Chanyavanich et al., 2011; Djajaputra et al., 2003) and the results in Chapter 

4, which showed large variations in PTV1-OAR dose gradients for clinical treatment 

plans generated at The Christie, support this claim. 

Knowledge-based (KB) treatment planning automatically incorporates prior 

experience into the treatment plan optimisation process (Nwankwo et al., 2015). This 

can make treatment planning more consistent within a radiotherapy centre and can 

generate workflow efficiencies by removing some of the time consuming human 

interventions.  

Nwankwo et al. (2014) write that prostate radiotherapy treatment planning is the 

most common site for KB treatment planning research. However, there is a tendency in 

the literature for KB databases to consist of a relatively small number of previously 

optimised treatment plans. When a new treatment plan is to be optimised, it is 

characterised in some way and the plan with the most similar characteristics is selected 
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from the database and the same optimisation parameters are used to optimise the new 

treatment plan (Chanyavanich et al., 2011; Wu et al., 2009; Janssen et al., In press; Wang, 

Heijmen & Petit, 2017; Petit et al., 2017; Good et al., 2013; Yang et al., 2013; Zhu et al., 

2011; Yuan et al., 2012).  

There are two major limitations to these approaches. First, is that the need for 

computational speed restricts the number of previous treatment plans that can be 

included in the KB database, which limits the likelihood of finding a suitable match for 

the new treatment plan. Patient cohorts on which approaches to KB treatment planning 

are tested and reported also tend to be relatively small – typically around 10 patients – 

and this limits the strength of conclusions that can be drawn from the results (Zhu et al., 

2011; Yuan et al., 2012). 

Second, is that optimisation of the new treatment plan based only on a single 

previous treatment plan means that any ways in which the previous treatment plan was 

suboptimal are propagated to new treatment plans, which will also then be suboptimal. 

It is perhaps for this reason that where it is reported that KB treatment planning is used 

in the clinical, it is often only as a tool to quality assurance manual treatment planning 

and not a primary method of treatment plan generation (Powis et al., 2017). 

A novel approach to automated KB treatment planning was developed in Chapter 

4 of this thesis. The KB consisted of model of the ideal prostate radiotherapy treatment 

plan, which was trained using a cohort of 562 clinical treatment plans. The model then 

informed two optimisation class-solutions that controlled target coverage and PTV1-

OAR dose fall-off. The aim of the work presented in this chapter is to test this novel KB 

approach thoroughly on a large cohort of prostate cancer patients.  

Previous work in this thesis has demonstrated that OAR auto-contours with 

known geometric inaccuracies can be used to drive treatment plan optimisation with 

minimal impact on the resulting dosimetry reported to manual-contours – the so-called 

‘hybrid-plan’ introduced in Chapter 3. The work presented in this chapter also aims to 

test driving the novel KB treatment planning class-solutions developed in Chapter 4 with 

OAR auto-contours – thus (after clinical oncologist outlining of prostate and SV) 
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providing a fully-automated KB treatment planning workflow. 

The final aim of the work presented here is to provide a rigorous analysis of the 

quality and complexity of treatment plans generated with the KB class-solutions and 

evaluate how they compare with their manually generated clinical counterparts.  

 

5.3 Method 

131 prostate VMAT treatment plans generated at The Christie during the first quarter of 

2019 were used to test a fully-automated KB treatment planning workflow. All of these 

clinical treatment plans were generated using one of three beam models in Pinnacle3 

corresponding to the machine on which the patients were treated: Elekta Agility, Elekta 

Synergy or Varian Novalis.  

As in Chapter 4, the manually drawn OARs were segmented based on 2 mm 

isotropic expansions of PTV1 and average PTV1-Bladder and PTV1-Rectum dose 

gradients were calculated based on the D0.01 cc of each segment. Histograms of D0.01 cc at 

each radial distance from PTV1 were generated and skewness was calculated for each 

histogram using equation 4.1. A plot of the PTV1-Rectum against PTV1-Bladder dose 

gradients was generated from all 131 patients to assess correlation between attempts to 

spare the bladder or rectum. The results of these analyses were compared to the 

training data analyses (see Chapter 4) to ensure the test data belonged to a population 

consistent with the training data. 

All of the 131 patient CT scans were then auto-segmented within Pinnacle3 using 

SPICE (Qazi et al., 2011). It was demonstrated in Chapters 2 and 3 that the observed 

differences in geometric accuracy between SPICE, Mirada RTx and ADMIRE were 

generally not statistically significant. In addition, differences in the utility of SPICE, 

Mirada RTx and ADMIRE auto-contours for hybrid-planning was not statistically 

significantly different. Therefore, for ease of integration into the treatment plan 

generation workflow, only SPICE was used for the work presented in this chapter. The 

SPICE OAR auto-contours were also segmented based on the 2 mm expansions of PTV1 

noted above and these were used to generate KB hybrid-plans using the average- and 
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25th percentile-KB class-solutions described in Chapter 4.  

KB treatment plans were also generated using the segmented OAR manual-

contours for comparison with the KB hybrid-plans. Each new treatment plan was 

generated with the same TPS beam model as the original clinical treatment plan to 

ensure fairness in the comparisons. Clinical treatment plan quality is not considered to 

be different between the three machine types and so the KB class-solutions are 

universally applicable. For clarity, the flow diagram in Figure 5.1 shows the 

combinations of contours and class-solutions used to generate the treatment plans and 

the nomenclature used throughout this chapter. 

 

 

Figure 5.1: Flow diagram showing the combinations of structures and KB 
class-solutions and treatment plan nomenclature. 

 

Once all of the KB treatment plans were generated, the dosimetry data reported to 

the manual-contours were extracted from Pinnacle3. These were used to calculate the 

average PTV1-OAR dose gradients, to plot D0.01 cc histograms for which skewness was 

calculated using equation 4.1, and to generate plots of PTV1-Rectum against PTV1-

Bladder dose gradients. The standard prostate radiotherapy dose statistics presented in 

Table 3.2 were also calculated for each treatment plan (again, reported to the manual-

contours) and these were used to determine how many hybrid-plans met the required 

minimum dose criteria and to compare the performance of the KB class-solutions for 

the manual- and hybrid-plans. 
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A comparison of treatment plan complexity was also performed using the 

aperture-based metrics discussed in section 1.4. Modulation complexity score (MCS), 

plan aperture (PA), plan irregularity (PI) and plan modulation (PM) were calculated for 

each of the 562 treatment plans in the training dataset described in Chapter 4, the 131 

clinical test cases and all of the treatment plans generated with the KB class-solutions. 

Analyses were grouped based on machine type because MLC thickness and machine 

parameters in the Pinnacle3 beam models are different between the machines and this 

can bias aperture-based metrics. 

 

5.4 Results 

Figure 5.2 shows plots of mean D0.01 cc as functions of radial distance from the PTV1 

surface within the bladder and rectum for the 131 clinical treatment plans used as a test 

patient cohort. 25th and 75th percentiles are also plotted as thinner lines and the 5th and 

95th percentiles are plotted as dashed lines. Similar plots for the average-KB(Manual), 

25th percentile-KB(Manual), average-KB(Hybrid) and 25th percentile-KB(Hybrid) 

treatment plans are shown in Figure 5.3, Figure 5.4, Figure 5.5 and Figure 5.6 

respectively. 

 

 

 

 

Figure 5.2: Mean dose gradients for the 131 clinical treatment plans used as the test 
patient cohort within the bladder and rectum. 25th and 75th percentiles are plotted as 

the thinner lines and 5th and 95th percentiles are plotted as the dashed lines. 
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Figure 5.3: Mean dose gradients for the 131 average-KB(Manual) treatment plans 
within the bladder and rectum. 25th and 75th percentiles are plotted as the thinner 

lines and 5th and 95th percentiles are plotted as the dashed lines. 

 

 

 

 

Figure 5.4: Mean dose gradients for the 131 25th percentile-KB(Manual) treatment 
plans within the bladder and rectum. 25th and 75th percentiles are plotted as the 

thinner lines and 5th and 95th percentiles are plotted as the dashed lines. 

 

 

 

 

Figure 5.5: Mean dose gradients for the 131 average-KB(Hybrid) treatment plans 
within the bladder and rectum. 25th and 75th percentiles are plotted as the thinner 

lines and 5th and 95th percentiles are plotted as the dashed lines. 
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Figure 5.6: Mean dose gradients for the 131 25th percentile-KB(Hybrid) treatment 
plans within the bladder and rectum. 25th and 75th percentiles are plotted as the 

thinner lines and 5th and 95th percentiles are plotted as the dashed lines. 

 

It is immediately apparent from Figure 5.2-Figure 5.4 that the variations in dose 

gradients are significantly reduced when the treatment plans are optimised using either 

of the KB class-solutions. For the average- and 25th percentile-KB(Hybrid) treatment 

plans the rectum 95th percentile line sits further from the mean than the corresponding 

lines for the average- and 25th percentile-KB(Manual) treatment plans. This was caused 

by gross inaccuracies in rectum auto-contouring with SPICE such that the OAR 

segments were not appropriate to optimise the actual rectum dose and demonstrates a 

limitation of this hybrid KB treatment planning workflow using SPICE (and potentially 

atlas-based auto-segmentation in general). 

 

Table 5.1: Average PTV1-Bladder and PTV1-Rectum dose gradients for the test patient cohort. 

 Average Dose Gradient / cGy mm–1 

Treatment Plan Bladder Rectum 

Clinical –152 –115 
Average-KB(Manual) –164 –132 
25th percentile-KB(Manual) –173 –155 
Average-KB(Hybrid) –164 –122 
25th percentile-KB(Hybrid) –174 –140 

 

 

Straight lines were fit to the average data in the plots above to calculate average 

PTV1-Bladder and PTV1-Rectum dose gradients, which are presented in Table 5.1. The 

data for the clinical treatment plans in Table 5.1 were compared to equivalent values for 
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the training patient cohort (described in Chapter 4) using non-paired Student’s t-tests 

and differences in the dose gradients between the cohorts were found not to be 

statistically significant (p = 0.13 and 0.52 for the PTV1-Bladder and PTV1-Rectum 

respectively). This suggests that the 131 clinical treatment plans in the test cohort are 

selected from a population consistent with the 562 treatment plans used as training data 

in Chapter 4. 

Both average- and 25th percentile-KB class-solutions for manual- and hybrid-plans 

generate steeper average PTV1-Bladder and PTV1-Rectum dose gradients than the 

average of the clinical treatment plans. As expected the 25th percentile-KB class-solution 

dose gradients are steeper than those for the average-KB class-solution. Since the 

samples consisted of the same patients but had unequal variances, Welch’s t-tests were 

used to assess these differences. For conciseness not all of the results of the statistical 

analyses are included here as all differences were found to be strongly statistically 

significant (p < 0.01). 

A further set of Welch’s t-tests was performed to evaluate differences between the 

KB(Manual) and KB(Hybrid) treatment plans generated with the same KB class-

solution. This showed that for the Bladder differences in the average dose gradients 

were not statistically significant (p =0.81 and 0.80 for the average and 25th percentile-KB 

class-solutions respectively) but for the Rectum differences were statistically significant 

(p < 0.01 for both KB class-solutions). It has been acknowledged above that gross 

rectum auto-contouring inaccuracies caused some hybrid-plans to be insufficiently 

optimised. Inclusion of these sub-optimal plans in the statistical analyses, as was done 

here, will bias the t-test towards suggesting a statistically significant difference. 

Therefore care has to be taken with interpreting this result. 

For each treatment plan the PTV1-Bladder and PTV1-Rectum were plotted against 

each other to assess correlation between the attempts to spare the OARs and these plots 

are presented in Figure 5.7 and Figure 5.8 for the KB(Manual) and KB(Hybrid) treatment 

plans respectively. It is clear from these plots that there is no correlation between 

attempts to spare the bladder or rectum but that consistency of optimisation is 
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improved dramatically when treatment plans are generated with either KB 

class-solution. 

 

 

Figure 5.7: Individual PTV1-Rectum and PTV1-Bladder dose gradients plotted 
against each other for the KB training data (562 patients from Chapter 4) and 

the 131 clinical test cases, average-KB(Manual) and 25th percentile-KB(Manual). 

 

 

 

Figure 5.8: Individual PTV1-Rectum and PTV1-Bladder dose gradients plotted 
against each other for the KB training data (562 patients from Chapter 4) and 
the 131 clinical test cases, average-KB(Hybrid) and 25th percentile-KB(Hybrid). 

 

Table 5.2 and Table 5.3 present the results of skewness calculations that were 

performed on the bladder and rectum segmentation data. These results can be 

compared with those presented in Table 4.1 for the KB training data. Interestingly, it 
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was noted in Chapter 4 that the PTV1-Rectum distributions in the training dataset were 

all more negatively skewed than those for PTV1-Bladder. For the test dataset, this 

difference was not observed. 

All of the clinical treatment plans from the training and test cohorts were 

generated and quality assured following the same protocol – the only difference is that 

the training data were generated in 2017 and 2018 and the test data in 2019. Identifying 

the cause of the disappearance of the differences in skewness was beyond the scope of 

the work presented here and given the consistency of the treatment plans in the training 

and test datasets, it is reasonable to conclude that it does not present a significant 

dosimetric or clinical implication for the quality of the treatment plans. It does, 

however, highlight the susceptibility of manual treatment plan optimisation to subtle 

changes in treatment planning technique over a prolonged period, which can be 

unnoticeable even to the most experienced treatment planners. 

For the average-KB(Manual) treatment plans, the distributions of D0.01 cc close to 

PTV1 are less negatively skewed than corresponding distributions for the clinical 

treatment plans. However, at larger distances (greater than 10 mm) they become more 

negatively skewed. This is also apparent in Figure 5.3, where the dashed 5th percentile 

line shows a steeper gradient at distances above 10 mm – this effect is more pronounced 

for the rectum than the bladder. The same effect is observed in Figure 5.4 but the 

distance at which the 25th percentile-KB(Manual) rectum D0.01 cc distributions become 

more negatively skewed than the clinical treatment plans is only 4 mm from PTV1. 

Although the data suggest relatively large increases in skewness of the D0.01 cc 

distributions when treatment plans are optimised using the KB class-solutions, it is also 

important to consider the widths of the distributions. Table 5.2 and Table 5.3 show that 

the standard deviations of the D0.01 cc distributions for the KB treatment plans are all 

significantly lower than corresponding distributions for the clinical treatment plans. 

This is also illustrated in Figure 5.9, which shows histograms of the D0.01 cc distributions 

at 4 mm and 12 mm from PTV1 for the clinical, average-KB(Manual) and 25th percentile-

KB(Manual) treatment plans. 
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Although the distributions for both 12 mm average- and 25th percentile-

KB(Manual) treatment plans retain a negative skew, the overall shape of the 

distributions is far more preferable to the one for the clinical treatment plans. A similar 

conclusion can also be drawn for the average- and 25th percentile-KB(Hybrid) treatment 

plans based on the histograms shown in Figure 5.10. Here the positive tails of the 

distributions are generated by the same treatment plans that lead to the 95th percentile 

lines in Figure 5.5 and Figure 5.6 sitting so far from the mean. As noted above, this was 

due to gross inaccuracies in OAR auto-contouring. If these noisy tails are ignored the 

majority of the distribution compares well with corresponding KB(Manual) treatment 

plans. 
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Table 5.2: Skewness calculations for the segmented OAR D0.01 cc distributions for the 131 clinical, 
average-KB(Manual) and 25th percentile-KB(Manual) treatment plans. 

   Bladder  Rectum 

Treatment 
Plan 

Distance 
from 
PTV1 

 
Mean 
/ cGy 

Std 
/ cGy Skewness 

 
Mean 
/ cGy 

Std 
/ cGy Skewness 

Clinical 

2 mm  5347 77 –0.79  5065 104 –0.06 
4 mm  5071 125 –0.84  4913 125 –0.55 
6 mm  4733 187 –0.68  4715 185 –0.89 
8 mm  4401 261 –0.96  4510 260 –0.93 
10 mm  4073 334 –0.97  4296 328 –0.83 
12 mm  3763 384 –0.42  4046 394 –0.64 
14 mm  3475 417 –0.14  3769 490 –0.87 
16 mm  3211 409 –0.07  3506 578 –0.86 
18 mm  2974 404 0.19  3289 604 –0.72 

Average-KB 
(Manual) 

2 mm  5315 45 0.36  5029 39 0.68 
4 mm  5024 80 0.20  4849 44 0.72 
6 mm  4653 116 –0.12  4613 61 –0.30 
8 mm  4284 138 –0.16  4364 90 –0.66 
10 mm  3905 153 –0.51  4108 100 –1.59 
12 mm  3557 166 –0.97  3809 122 –1.74 
14 mm  3243 162 –1.22  3496 208 –4.74 
16 mm  2992 157 –1.45  3223 271 –3.15 
18 mm  2798 164 –1.01  2986 333 –2.91 

25th 
Percentile-KB 
(Manual) 

2 mm  5282 50 0.35  4973 45 0.01 
4 mm  4967 87 0.27  4760 58 –1.15 
6 mm  4563 120 0.07  4478 87 –1.46 
8 mm  4151 139 –0.06  4173 120 –2.11 
10 mm  3750 139 –0.17  3862 132 –2.62 
12 mm  3390 140 –0.34  3505 143 –2.37 
14 mm  3070 140 –0.78  3135 224 –4.07 
16 mm  2824 136 –1.40  2836 260 –3.08 
18 mm  2636 153 –1.41  2612 268 –2.87 
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Table 5.3: Skewness calculations for the segmented OAR D0.01 cc distributions for the 131 clinical, 
average-KB(Hybrid) and 25th percentile-KB(Hybrid) treatment plans. 

   Bladder  Rectum 

Treatment 
Plan 

Distance 
from 
PTV1 

 
Mean 
/ cGy 

Std 
/ cGy Skewness 

 
Mean 
/ cGy 

Std 
/ cGy Skewness 

Average-KB 
(Hybrid) 

2 mm  5332 55 0.74  5054 65 1.55 
4 mm  5049 99 0.63  4885 84 1.97 
6 mm  4690 147 0.71  4663 119 1.63 
8 mm  4311 176 0.83  4424 164 1.43 
10 mm  3934 187 0.95  4177 200 1.49 
12 mm  3583 188 0.95  3897 239 1.72 
14 mm  3275 186 0.84  3614 300 0.69 
16 mm  3021 159 0.21  3381 342 0.67 
18 mm  2824 171 0.03  3178 403 –0.25 

25th 
Percentile-KB 
(Hybrid) 

2 mm  5307 68 1.08  5005 90 1.98 
4 mm  5002 115 0.66  4811 121 2.02 
6 mm  4620 172 0.62  4547 165 1.74 
8 mm  4210 192 1.05  4260 215 1.75 
10 mm  3808 218 1.28  3969 258 1.93 
12 mm  3437 211 1.55  3644 308 2.03 
14 mm  3110 210 1.18  3327 373 1.53 
16 mm  2853 190 0.41  3071 425 1.33 
18 mm  2661 201 0.21  2868 473 0.87 
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Figure 5.9: Histograms of D0.01 cc distributions for the Rectum (brown) and Bladder (yellow) 
segmentations 4 mm and 12 mm from PTV1 for the 131 clinical (top), average-KB(Manual) 

(middle) and 25th percentile-KB(Manual) (bottom) treatment plans. 
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Figure 5.10: Histograms of D0.01 cc distributions for the Rectum (brown) and Bladder 
(yellow) segmentations 4 mm and 12 mm from PTV1 for the average-KB(Hybrid) (top) 

and 25th percentile-KB(Hybrid) (bottom) treatment plans. 
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Table 5.4 and Table 5.5 present the differences in the standard prostate 

radiotherapy dose statistics between the 131 clinical treatment plans and corresponding 

average-KB and 25th percentile-KB treatment plans. Paired Student’s t-tests were used to 

assess the statistical significance of each difference in Table 5.4 and Table 5.5 and 

values presented in bold were found to be statistically significant using a threshold for 

significance of p < 0.05. 

A surprising number of the dose statistics show statistically significant average 

differences between clinical treatment plans and treatment plans generated with the KB 

class-solutions. For both average-KB(Manual) and 25th percentile-KB(Manual), 

differences in PTV dose statistics are all within ±0.4 %. It is worth commenting here that 

a statistically significant difference in a reported dose statistic does not necessarily 

imply that the difference is clinically significant. As a general rule, a change in dose of 

less than approximately 2 % is not considered to be clinically significant. Therefore, 

although the results in Table 5.4 show that coverage of the PTVs is statistically 

significantly different between the clinical treatment plans and KB(Manual) treatment 

plans, the differences are not clinically significant. 

A similar case can be made for the marginal differences in bladder and rectum 

dose statistics for the average-KB(Manual) treatment plans of which approximately half 

are statistically significant. All average differences are within –0.1 % to 0.5 % of the 

clinical treatment plans with the exception of the rectum V2460 cGy. Femoral head D1 cc also 

increased by more than 2 % but as noted previously, at The Christie, femoral head doses 

are not constrained or reported in clinical treatment plans. The femoral head doses of 

all KB treatment plans generated for this work were comfortably within the 

aforementioned 5 % optimal limit of V4000 cGy specified by the PIVOTALBoost trial. 

For the 25th percentile-KB(Manual) treatment plans, the observed reductions in 

bladder and rectum doses are mostly statistically and clinically significant. This, 

combined with the comparable PTV coverage noted above, suggests that use of the 25th 

percentile-KB class-solution generates an average improvement in treatment plan 

quality over the average-KB class-solution and manual treatment planning. 
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Similar results are observed for the average-KB(Hybrid) and 25th percentile-

KB(Hybrid) treatment plans. Some of the differences in Table 5.5 are greater than 

corresponding values in Table 5.4. However, it has already been acknowledged that in 

some cases gross OAR auto-contouring inaccuracies failed to provide suitable contours 

with which to optimise hybrid treatment plans. Such outliers were not observed in the 

results shown in Table 5.4 and therefore direct comparison of the differences in Table 

5.4 with Table 5.5 is of limit value. 
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Table 5.4: Average, standard deviation, minimum and maximum percentage differences between KB(Manual) and clinical treatment plans. 

  Average-KB(Manual)  25th Percentile-KB(Manual) 

Dose Statistic  Mean / % SD / % Min. / % Max. / %  Mean / % SD / % Min. / % Max. / % 

PTV1 D99 %  0.4 0.6 –1.3 2.0  0.3 0.7 –3.3 1.4 
PTV1 min D1 cc  0.4 0.7 –1.5 2.1  0.2 0.8 –3.6 1.6 
PTV2 D99 %  –0.3 0.3 –1.2 0.7  –0.4 0.4 –2.3 0.4 
PTV2 min D1 cc  –0.2 0.3 –1.2 0.9  –0.3 0.5 –2.5 0.6 
PTV3 D99 %  –0.2 0.4 –1.0 1.0  –0.2 0.4 –1.6 0.9 
PTV3 min D1 cc  –0.2 0.4 –1.1 1.0  –0.2 0.4 –1.7 0.8 
PTV3 max D1 cc  0.0 0.3 –1.2 0.9  0.1 0.3 –1.2 0.7 
PTV3 median  0.0 0.1 –0.3 0.3  0.0 0.1 –0.3 0.2 

FHL max D1 cc  3.1 5.5 –13.8 20.8  3.1 5.8 –10.8 20.6 
FHR max D1 cc  2.9 5.5 –9.9 16.9  3.7 6.0 –8.8 19.1 

Rectum V2460 cGy  2.2 5.8 –27.8 16.3  –3.2 6.6 –40.8 11.3 
Rectum V3240 cGy  0.3 5.8 –18.4 11.5  –4.5 6.0 –26.2 7.4 
Rectum V4080 cGy  0.2 5.0 –11.7 16.9  –3.2 4.8 –16.2 10.7 
Rectum V4860 cGy  0.4 2.5 –5.1 10.3  –1.3 2.3 –7.0 5.8 
Rectum V5280 cGy  0.5 1.0 –2.6 3.6  0.1 1.1 –2.7 4.1 
Rectum V5700 cGy  0.5 0.8 –1.2 3.0  0.3 0.9 –1.5 4.8 
Rectum V6000 cGy  0.0 0.0 0.0 0.1  0.0 0.0 0.0 0.1 

Bladder V4080 cGy  –0.1 3.7 –7.4 14.5  –1.7 3.6 –11.9 12.3 
Bladder V4860 cGy  –0.1 2.5 –5.8 13.0  –1.3 2.5 –6.7 10.0 
Bladder V6000 cGy  0.5 1.1 –1.9 4.4  0.8 1.3 –4.1 5.3 
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Table 5.5: Average, standard deviation, minimum and maximum percentage differences between KB(Hybrid) and clinical treatment plans. 

  Average-KB(Hybrid)  25th Percentile-KB(Hybrid) 

Dose Statistic  Mean / % SD / % Min. / % Max. / %  Mean / % SD / % Min. / % Max. / % 

PTV1 D99 %  –0.2 0.6 –2.3 0.9  0.3 0.7 –2.4 1.7 
PTV1 min D1 cc  0.9 0.8 –1.7 3.3  0.2 0.9 –3.9 1.7 
PTV2 D99 %  –0.4 0.4 –2.4 0.7  –0.4 0.5 –4.0 0.7 
PTV2 min D1 cc  –0.4 0.5 –2.4 0.8  –0.4 0.6 –4.1 0.7 
PTV3 D99 %  –0.3 0.4 –2.0 0.8  –0.3 0.4 –1.6 0.9 
PTV3 min D1 cc  –0.3 0.4 –1.9 0.7  –0.3 0.4 –1.9 0.8 
PTV3 max D1 cc  0.0 0.3 –1.2 0.8  0.1 0.3 –1.2 1.5 
PTV3 median  0.0 0.1 –0.3 0.2  0.0 0.1 –0.4 0.3 

FHL max D1 cc  2.1 4.9 –10.2 20.2  2.7 5.5 –12.2 19.3 
FHR max D1 cc  1.8 5.1 –10.7 18.6  2.4 5.1 –12.0 15.8 

Rectum V2460 cGy  6.1 8.6 –22.5 26.3  –0.2 8.6 –41.1 17.5 
Rectum V3240 cGy  3.0 8.5 –23.6 28.7  –2.5 8.2 –27.3 27.9 
Rectum V4080 cGy  1.4 6.8 –17.0 27.0  –2.3 6.3 –18.9 22.9 
Rectum V4860 cGy  0.8 3.0 –6.3 10.3  –0.9 3.0 –8.2 9.6 
Rectum V5280 cGy  0.8 1.3 –2.4 6.3  0.4 1.3 –3.1 6.0 
Rectum V5700 cGy  1.1 1.5 –1.4 9.4  0.9 1.5 –1.5 8.9 
Rectum V6000 cGy  0.0 0.0 0.0 0.2  0.0 0.1 0.0 0.7 

Bladder V4080 cGy  –0.1 3.8 –8.6 14.6  –1.5 4.0 –10.6 15.1 
Bladder V4860 cGy  0.2 2.8 –4.8 13.1  –1.0 2.8 –5.5 12.5 
Bladder V6000 cGy  0.3 1.1 –2.6 4.2  0.9 1.5 –4.0 7.2 
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The test dataset consisted of 131 clinical treatment plans of which 123 met the 

minimum dose criteria set out in Table 3.2. For four of the eight clinical treatment plans 

that failed to meet the minimum dose criteria, both the average- and 25th percentile-

KB(Manual) treatment plans also failed to meet them. For the remaining four, at least 

one of the KB class-solutions generated a treatment plan that did meet all of the 

minimum dose criteria and thus would be considered dosimetrically superior. 

Of the 131 average- and 25th percentile-KB(Manual) treatment plans, 110 and 114 

respectively met all of the minimum dose criteria. When these results are pooled the 

KB(Manual) treatment planning approach generated dosimetrically acceptable 

treatment plans in 120 of the 131 test cases, which is a success rate comparable to the 

manual treatment plan optimisation approach employed clinically. 

It is worth recalling here that 131 clinical treatment plans had passed a rigorous 

quality assurance process, which on average rejects approximately 10 % of treatment 

plans. The comparison of KB(Manual) and clinical treatment plan success rates is not 

strictly a fair one because it considers them respectively before and after a quality 

assurance process and so overestimates the success rate of manual treatment planning. 

The number of average- and 25th percentile-KB(Hybrid) treatment plans that met 

the minimum dose criteria was 86 and 88 respectively. When these results are pooled 

the KB(Hybrid) treatment planning approach generated dosimetrically acceptable 

treatment plans in 102 of the 131 test cases. This falls short of the success rates seen 

with the clinical and KB(Manual) treatment plans and is perhaps unsurprising given it 

has previously been acknowledged that for some cases gross auto-contouring 

inaccuracies led to improperly optimised hybrid-plans. It is a success rate of almost 

80 %, however, and given that the hybrid-plans can be generated with no human 

intervention (after the clinician manually outlines the prostate and SV) the KB(Hybrid) 

treatment planning approach represents a significant potential efficiency saving for 

treatment planning departments without compromising treatment plan quality. 

The box and whisker plots presented in Figure 5.11 show the distributions of total 

plan MU, PA, PI, PM and MCS for each group of treatment plans. The limits of the boxes 
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represent the lower and upper quartiles of the data, the central horizontal line 

represents the median, the extent of the whiskers show the 5th and 95th percentiles and 

the data points beyond the whiskers are outliers. 

 

 

 

 

   

 

 

 

   

 

Figure 5.11: Boxplots of MU, Plan Aperture, Plan Irregularity, Plan Modulation and Modulation 
Complexity Score for the treatment plans evaluated in this chapter. 

 

Unpaired Student’s t-tests were performed to compare the differences between 

the clinical treatment plans in the training and test patient cohorts. For all complexity 

metrics across all three machines types, none of the differences was statistically 

significant. This supports the earlier result that the 131 treatment plans from the test 

patient cohort were selected from a population consistent with the training data. 

Welch’s t-tests were performed to compare the differences in the complexity 
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scores between clinical treatment plans in the test cohort with treatment plans 

generated with the KB class-solutions. The tests were performed for each of the five 

complexity scores and each of the three machine types noted above. 

For the average-KB(Manual) and (Hybrid) treatment plans, where the differences 

in complexity scores were statistically significant (p < 0.05), the scores indicated that 

the treatment plans generated with the KB were slightly less complex than the clinical 

treatment plans. For the 25th percentile-KB(Manual) and (Hybrid) treatment plans, 

statistically significant increases in complexity were observed for all complexity scores 

and all machine types.  

This analysis implies that the average-KB class-solution maintains average 

treatment plan quality (at least at a clinically significant level) whilst improving 

consistency between patients and this is not at the expense of treatment plan 

complexity. It also implies that the 25th percentile-KB class-solution improves average 

treatment plan quality and consistency but that this does increase complexity. It should 

be noted though that there is a large overlap of the ranges of complexity scores for all of 

the evaluated treatment plans. Therefore small differences in average complexity scores 

may not present a major challenge for machine delivery. 

 

5.5 Discussion 

This work has demonstrated that the KB approach to treatment planning that was 

proposed and prototyped in Chapter 4 can be used to generate clinically acceptable 

prostate VMAT treatment plans with a success rate that rivals that of manual treatment 

planning. The average KB class-solution has been shown to maintain average treatment 

plan quality over a large test patient population in terms of PTV coverage and OAR 

sparing whilst improving consistency of optimisation between patients. Using the 

average-KB class-solution was also shown to reduce treatment plan complexity slightly 

when assessed using a range of published complexity metrics. When the treatment plan 

was optimised using the 25th percentile-KB class-solution target coverage was not 

compromised and OAR sparing was superior to that seen with the average-KB class-
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solution and manual treatment planning. This improvement in average treatment plan 

quality, however, was accompanied by an increase in average complexity. 

The same group of patients were also used to generate hybrid-plans with the KB 

class-solutions based on SPICE OAR auto-contours. Gross auto-contouring inaccuracies 

led to approximately 20 % of hybrid-plans being insufficiently optimised when dose was 

reported to accurate manual-contours. However, for the remaining 80 % of cases, at 

least one of the KB class-solutions generated a clinically acceptable treatment plan. 

Given that the hybrid treatment plans can be generated with no human intervention 

(after the clinician manually outlines the prostate and SV) the KB(Hybrid) treatment 

planning approach represents a significant potential efficiency saving for treatment 

planning departments. This efficiency saving could be exploited to enable ART 

strategies and provide patients with earlier access to their cancer treatments. 

Approaches to KB treatment planning described in the literature tend to focus on 

the prediction of appropriate optimisation parameters by using the same parameters as 

the most similar treatment plan from a database of prior treatment plans. The number of 

treatment plans that can be included in a database, however, is severely limited for 

reasons of computational speed. Given the variability in pelvic anatomy between 

patients, this limitation in the size of the database limits the likelihood of finding a 

suitable match for the new treatment plan and hence introduces uncertainty into the 

predicted optimisation parameters. This uncertainty manifests itself in the degree to 

which the new treatment plan is optimised and this fundamentally limits the utility of 

the KB treatment planning strategies published in the literature. 

The KB treatment planning class-solutions presented here therefore represent a 

useful and novel approach. 562 previous treatment plans were used to train a KB model 

of the ideal prostate treatment plan, which is vastly more than is typically included in a 

KB database of patients.  When optimising a new treatment plan, dose gradient 

information from all 562 treatment plans is used rather than selecting the single 

previous treatment plan that best matches the new patient. In this work, testing of the 

KB approach using both manual- and auto-contours, was performed using a large cohort 
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of 131 patients. This is a much larger test cohort than is typically described in the 

literature, which is generally of the order of 10 patients. It therefore provides increased 

confidence in the clinical utility of the approach to KB treatment planning. 

It was shown that marginal increases in reported OAR doses are observed when 

treatment plans are optimised using the average-KB class-solution. Although these 

increases were not considered clinically significant they were statistically significant so 

probably represent real marginal increases in OAR doses. It is worth discussing here 

that since the PTV1-OAR dose gradients were characterised by the D0.01 cc of the OAR 

segments, if the gradient is not consistent along the whole superior-inferior extent of 

PTV1, the method will tend to underestimate the global PTV1-OAR dose gradients. This 

is illustrated in Figure 5.12, where inferiorly the PTV1-Rectum dose gradient is steeper 

than at the superior extent in the plane of the SV.  For this treatment plan, the PTV1-

Rectum dose gradient is characterised in the superior region where it is shallowest since 

this is where the D0.01 cc of the OAR segments resides. 

 

 

Figure 5.12: Sagittal slice of a clinical treatment plan where the 
PTV1-Rectum dose gradient is significant steeper at the inferior extent of 

PTV1 compared with the superior extent at the level of the SV. 

 

The KB class-solutions aimed specifically to optimise the PTV1-OAR dose 

gradients, which is likely to have made them relatively consistent over the superior-

inferior extent of PTV1. The characterisation of the PTV1-OAR dose gradients in the 
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training dataset, however, is a complex process. Here D0.01 cc of the 2 mm OAR segments 

were used but since this tends to underestimate the global dose gradient this could be 

the cause of the increases in OAR doses when treatment plans are optimised with the 

average-KB class-solution. Given that the increases in reported OAR doses are not 

clinically significant and clinically acceptable treatment plans were generated at a rate 

equivalent to manual treatment planning, it is unlikely that this limitation has a major 

impact.  However, it remains a theoretical limitation and further work could address this 

by considering alternative characterisations of the PTV1-OAR dose gradients. 

 

5.6 Conclusion 

This chapter has presented the results of large scale testing of the KB treatment 

planning approach developed in Chapter 4. This has also been extended to produce a 

fully-automated KB treatment planning workflow by incorporating OAR auto-contours.  

It has been shown that the average-KB class-solution achieves the intention of 

making treatment plans more consistent whilst maintaining average treatment plan 

quality and offering small reductions in treatment plan complexity. It has also been 

demonstrated that treatment plan quality can be improved using the 25th percentile-KB 

class-solution but that this tends to result in a small increase in average complexity. 

Hybrid-plans generated with manually drawn targets and auto-contoured OARs 

have shown similar results. Although the number of treatment plans that satisfied all of 

the minimum dose criteria for prostate VMAT treatment planning was lower for the 

KB(Hybrid) than KB(Manual) treatment plans. This was largely due to gross errors in 

the SPICE auto-contours. The instances of auto-contour failures in this work are likely 

to be limitations specific to SPICE. Although it is unlikely that other auto-contouring 

packages would not suffer from similar issues, as auto-contouring techniques improve, 

the success rate of KB(Hybrid) treatment planning will also increase and potentially 

rival that of KB(Manual) and clinical treatment planning. 
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5.8 Supplementary Material 

5.8.1 ESTRO 2020 Poster 

Based on the work presented in Chapters 4 and 5 an abstract was submitted to the 2020 

European Society for Radiotherapy & Oncology (ESTRO) conference. The abstract was 

accepted for a poster exhibition and a representation of the poster is shown on the 

following page. 
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Chapter 6 
 

6 Final Discussion 

This thesis began with the statistics that in the UK almost 50, 000 men are diagnosed 

with prostate cancer every year and that radiotherapy forms an important part of 

treatment for approximately 30 % of these patients. Figure 1.1 illustrated the typical 

pathway following which prostate radiotherapy treatments are planned, quality assured 

and delivered. Each stage of that pathway is typically performed manually and there can 

often be significant delays between successive stages of the pathway. 

When prostate cancer prevalence statistics and the current treatment planning 

pathway are considered together, it quickly becomes apparent that there exists a 

problem for modern radiotherapy techniques such as ART. Even marginal increases in 

prostate radiotherapy treatment planning workload for individual patients can generate 

wholly unfeasible increases in total workload over the patient population. In order to 

pursue developments in modern radiotherapy, therefore, the pathway illustrated in 
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Figure 1.1 needs review and the role of automation needs serious consideration. 

Such consideration of automation was the rationale for this thesis.  The following 

sections present a final discussion on how overcoming the problems associated with 

automation have been addressed and identify areas for future work. Clinical 

implementation of automation techniques is also discussed.   

 

6.1 Auto-Segmentation as a Clinical Tool 

Manual-segmentation of anatomy in CT images is a time consuming and subjective 

process (Han et al., 2008; Collier et al., 2003). Auto-segmentation using a variety of 

techniques and algorithms has been extensively described in the literature as having the 

potential to replace this time consuming task whilst also making segmentation a more 

consistent exercise. Despite these potential benefits to the clinical treatment planning 

pathway, the practical utilisation of auto-segmentation in the clinic is limited. 

In the literature, assessment of auto-segmentation techniques is often performed 

in terms of geometric accuracy compared to some ‘ground-truth’ manual-contours 

drawn by a trained expert. The work presented in Chapter 2 demonstrated that 

commonly reported geometric accuracy scores (namely average mean-DTA and DSC) 

can provide reasonably reliable metrics for male pelvic auto-contours. However, these 

metrics have their limitations and a major downfall is that they offer no indication of the 

clinical significance of the geometric inaccuracies they report. It is therefore difficult to 

determine whether a given auto-segmentation technique is suitable to replace manual-

segmentation completely based on geometric accuracy statistics alone. 

A better measure of auto-segmentation performance is the utility of auto-contours 

in the intended clinical setting. Such assessments in the literature typically take the 

form of time and motion studies where time savings generated by editing auto-contours 

(as opposed to drawing manual-contours de novo) are measured (Teguh et al., 2011; 

Speight et al., 2014; Lim & Leech, 2016).  

Reported time savings associated with manually modifying auto-contours are 

typically of the order of minutes per patient. When this is viewed in the context of the 
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typical time between ‘Planning CT Scan’ and ‘Outlining Target Volumes’, which may be 

up to a week, minutes saved are of little practical consequence for the overall pathway. 

In addition, the added time and financial costs associated with purchasing, installing, 

maintaining and quality assuring an auto-segmentation medical device (costs often 

borne by individuals who do not necessarily reap the benefits of the reported time 

savings) are likely to be a major reason why auto-segmentation is not used widely in 

clinical practice. 

On this basis, the intention of the work presented in Chapter 3 was to assess the 

clinical utility of auto-contours for use in optimisation where auto- and hybrid-plans 

were compared against manual-plans§§. It was demonstrated that for a number of 

commercially available auto-segmentation packages, actual target coverage is 

significantly compromised for auto-plans, which limits the utility of prostate and SV 

auto-contours. Although the work in Chapter 3 was only based on 11 test cases, auto-

plan target coverage was significantly compromised in all cases such that expansion of 

the test dataset was not necessary.  

Hybrid-plans, however, were shown to provide OAR sparing and PTV coverage 

comparable with manual-plans. The initial testing of the hybrid-plan concept described 

in Chapter 3 was also only based on 11 patients. Although no significant correlations 

were found between OAR auto-contour geometric accuracy and hybrid-plan quality, 

from a dataset of 11 patients it would be unreasonable and counter-intuitive to conclude 

definitively that hybrid-plan quality is not at all dependent on OAR auto-contour 

geometric accuracy. Indeed, in Chapter 5, for approximately 20 % of the 131 test cases 

the hybrid-plan approach failed to generate a clinically acceptable treatment plan due to 

gross auto-segmentation errors. Therefore, geometric accuracy is clearly important to a 

degree but OAR auto-contour utility for treatment plan optimisation does not appear to 

be sensitive to small differences in geometric accuracy performance – especially when 

the limitations of geometric accuracy metrics are considered.  

 
§§ Auto-plans were generated using target and OAR auto-contours; manual-plans were generated 
using target and OAR manual-contours and hybrid-plans were generated with target manual-
contours and OAR auto-contours. 
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This is an important finding and has implications for future evaluations of auto-

segmentation techniques. As noted above, reporting of geometric accuracy alone is 

insufficient to determine the clinical utility of auto-contours for treatment planning. 

Furthermore, published time and motion studies have suggested potential efficiency 

savings with auto-segmentation but the potential benefits of such savings can be 

insufficient to justify adopting it in the clinic. 

When considering auto-segmentation as a clinical tool, therefore, it is important to 

remember that anatomical contours are not ends in themselves. They are simply means 

by which to optimise and report radiotherapy treatment plans. From a practical 

standpoint and from the work presented in this thesis, the real utility and benefit of 

auto-segmentation is in facilitating treatment plan optimisation by removing the manual 

outlining bottlenecks from the treatment planning pathway. Hybrid-planning has been 

demonstrated to be a reasonable way to do this for prostate radiotherapy whilst 

providing a clinically relatable means by which to assess auto-segmentation 

performance. Future work should be considerate to this idea and pay close attention to 

how the performance of auto-segmentation is related to its manifestation in the clinical 

pathway.  

It would, of course, be nonsensical to adopt a hybrid-planning approach where 

treatment plan optimisation is performed manually. To unlock the full potential of 

current auto-segmentation techniques, auto-contours need to drive an automated 

treatment planning process and this is the focus of the following section. 

 

6.2 Knowledge-Based Prostate Treatment Planning 

It is widely acknowledged in the literature that manual treatment plan optimisation is 

time consuming and subjective (Djajaputra et al., 2003). Knowledge-based (KB) 

treatment planning is a means by which prior experience can be used automatically to 

optimise treatment plans for new patients (Nwankwo et al., 2015). Typically, a KB 

consists of a database of treatment plans that are considered optimal. When a new 

treatment plan is to be optimised, the most similar treatment plan is selected from the 
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KB and the optimisation parameters from this are used. 

Selection of the most similar treatment plan is difficult, however, and in practice 

the typical KB contains around 10-20 treatment plans (Peressutti et al., 2016). For 

treatment sites in the pelvis, where anatomy size and shape can be extremely variable 

between patients, this can be an insufficiently wide selection from which to choose a 

representative case. The work presented in Chapters 4 and 5 developed and tested a 

new approach to KB treatment planning where the KB consisted of a model of the ideal 

prostate radiotherapy treatment plan: characterised in terms of ideal target coverage 

and dose fall-off within OARs. This approach offers an advantage over more 

conventional approaches to KB treatment planning in that vastly more patients can be 

used to train the model than can be included in a typical database of treatment plans. 

Although it has been stated frequently in this thesis that pelvic anatomy is widely 

variable between patients, the configuration of anatomical structures within the male 

pelvis is relatively fixed: the bladder and rectum always sit immediately anterior and 

posterior respectively to the prostate and SV and the femoral heads sit laterally typically 

a small number of centimetres from PTV1. The relatively fixed positions of the anatomy 

allow the KB model of the ideal prostate treatment plan to be reasonably simple such 

that PTV1-OAR dose gradients can be characterised in terms of distance from PTV1 

only. Despite the simplicity of the KB model, it was extensively demonstrated in Chapter 

5 that the model provides a reliable way to generate optimal treatment plans. 

For many other disease sites, head and neck cancers for example, OAR geometry 

relative to PTVs is more variable and a greater interplay effect between anatomical 

structures can exist – whereby dose to one OAR affects dose to another. If the KB 

treatment planning approach described in Chapter 4 was applied to such disease sites, 

KB models as simple as the one described in Chapter 4 for prostate treatment planning 

would not be sufficient. This is a limitation of the ideas developed in this thesis. 

However, it presents an intriguing and important area for further work. With sufficiently 

large patient datasets and more sophisticated geometric models, the approach to KB 

treatment planning developed and tested in the work presented above could be a useful 
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way of bringing automation into the treatment planning pathway. Furthermore, it could 

also be an effective way of sharing treatment planning expertise from large, experienced 

centres with smaller, less experienced centres. 

A potential danger of KB treatment planning techniques based on large patient 

datasets is that current or historic clinical practice becomes engrained into the models 

and long-term this can make it difficult to adapt and change. This is a topical discussion 

at The Christie following the work presented in this thesis. It was noted in Chapter 3 

that prostate treatment plans are optimised so that the minimum dose to PTV1 is 

5000 cGy. This is based on a local protocol at The Christie and is not a widespread 

practice. At the time of writing, there is on-going discussion amongst the clinical team 

around whether PTV1*** should receive a minimum dose of 95 % of 4700 cGy. This is a 

more typical dose for this volume and this change to the local protocol would bring The 

Christie in line with clinical practice in many other centres. 

This change to clinical practice at The Christie would mean that the trained KB 

model would no longer be directly appropriate. Given the simplicity of the KB model for 

prostate treatment planning it would probably be possible and relatively straightforward 

to scale the dose gradients for the new proposed doses. In addition, the thorough 

complexity analysis that was performed in Chapter 5 would provide a useful benchmark 

for gauging the impact of scaled dose gradients on the resultant treatment plans. For 

future work, this should be an important consideration. Where possible, KB treatment 

planning should not constrain future developments and changes to clinical practice. In 

reality this may be difficult to achieve but highlights the importance of keeping KB 

models as simple and easy to manipulate as possible.  

 

6.3 Fully-Automated Knowledge-Based Treatment Planning 

As discussed in section 6.1, the ultimate aim of automation in the treatment planning 

pathway is to produce treatment plans without human intervention. Not only does this 

 
*** A slightly modified form of the PTV1 described in Chapter 3, the details of which are not 
relevant here. 
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create staffing efficiencies for clinical departments it also enables modern radiotherapy 

techniques such as ART to be realistically feasible on a large scale. The practicalities of 

the treatment planning pathway, however, mean that automation of just part of it is of 

limited value. The fully-automated KB treatment planning workflow described in 

Chapter 5 therefore represents a significant development in this field. Hybrid-planning 

using the KB model of the ideal prostate radiotherapy treatment plan has been shown to 

produce clinically acceptable treatment plans without treatment planner intervention. 

Contouring of prostate and SV by a clinical oncologist was found still to be required so 

unfortunately, this bottleneck of the pathway cannot be fully removed as yet. The 

potential applications of this technique are therefore interesting to consider.  

Increased treatment planning workload is an often cited and real barrier to 

introducing new techniques into the clinic. Basic forms of ART such as plan of the day 

(PoD) require multiple treatment plans to be generated in advance of treatment starting 

– this is typically three treatment plans per patient. In the introduction to this thesis, it 

was stated that even marginal increases in per-patient-workload for a treatment site as 

large as prostate cancer cannot be accommodated by clinical departments. In practice, 

this barrier can be compounded by there not being an NHS funding mechanism for ART. 

The result is that PoD, and ART more generally, is not feasible for most NHS 

radiotherapy centres. Therefore, the fully-automated KB treatment planning workflow 

presented here provides a reasonable means by which an ART strategy like PoD could 

be routinely implemented (from a treatment planning perspective at least). Chapter 5 

demonstrated that automatically generated hybrid-plans were clinically acceptable for 

80 % of patients. Generating three treatment plans for each of the 20 % of patients where 

the hybrid-plans failed would still present an overall 40 % reduction in prostate 

treatment planning workload. Hybrid-plans were only tested on a large scale with OAR 

auto-contours generated in SPICE and with alternative auto-segmentation packages it 

may well be possible to improve the success rate of hybrid-plan generation further. 
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6.4  Clinical Implementation 

It has been noted above that automation of only part of the radiotherapy treatment 

planning pathway illustrated in Figure 1.1 can be of limited benefit in practice. When an 

attempt to introduce automation to a clinical workflow is made, it is therefore important 

to consider carefully how it fits within existing pathways and whether they need to be 

restructured or redesigned to maximise any benefit. Such a consideration is the focus of 

this section and Figure 6.1 presents an alternative to Figure 1.1 that incorporates auto-

segmentation and KB hybrid-plan generation.  

 

 

Figure 6.1: An alternative radiotherapy treatment planning pathway that 
incorporates auto-segmentation of OARs and generation of a hybrid-plan 

using the KB model of the idea prostate treatment plan. 

 

In Figure 6.1, the lightest blue ‘Auto-Segment OARs’ and ‘Generate Hybrid-Plan’ 

boxes represent a fully automated part of the pathway. In the traditional workflow 

illustrated in Figure 1.1, a delay of several days can exist between ‘Outline Target 

Volumes’ and ‘Outline OARs’ / ‘Treatment Plan Optimisation’. In contrast, the workflow 

proposed in Figure 6.1 gives an optimised hybrid-plan that is ready for review within 

approximately 30 minutes of the targets’ being outlined. The work in this thesis has 

shown that for at least 80 % of cases, this hybrid-plan is clinically acceptable and so 

minimal human intervention is required at the ‘Finalise OAR Contours : Review / Emend 

Diagnosis / Referral Planning CT Scan Transfer CT to TPS

Outline TargetsAuto-Segment OARs

TreatmentMachine Preparation

Generate Hybrid-Plan

Finalise OAR Contours : Review / Emend Treatment Plan if Necessary

Plan Quality Assurance
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Treatment Plan if Necessary’ stage. Before any hybrid-plan can be accepted, the OAR 

auto-contours require correction so that the treatment plan being reviewed is reported 

to ground-truth anatomy. From the work presented in Chapter 5, for the 20 % of cases 

where the hybrid-plan is not clinically acceptable, re-optimisation using the KB model 

driven by the corrected OAR auto-contours will generate a clinically acceptable 

treatment plan with a success rate equivalent to manual treatment planning. This re-

optimisation requires minimal human intervention and could be implemented as a 

single-click process in most TPSs. It is therefore reasonable to estimate that within 30 

minutes of a treatment planner starting the ‘Finalise OAR Contours : Review / Emend 

Treatment Plan if Necessary’ stage, a final clinically acceptable treatment plan would be 

ready for the ‘Plan Quality Assurance’ stage. 

This workflow provides a dramatic reduction in treatment planner involvement up 

until the quality assurance stage. Maintaining current manual quality assurance 

processes militates against any errors introduced by the new auto-segmentation and 

hybrid-planning approaches. The risk of such errors can often present a barrier to 

adopting new automated processes in the clinic and maintaining a well-established 

manual quality assurance procedure is a suitable way to ensure the benefits of the new 

workflow can be exploited whilst keeping risks minimal. 

Finally, reducing the involvement of the treatment planner in the pathway would 

allow patients to flow through the pathway more quickly. As noted above this could be 

used to generate significant efficiencies for clinical departments, shorten the overall 

pathway to provide patients with earlier access to their treatments and enable routine 

ART strategies. 

 

6.5 COVID-19 Impact Statement 

The research projects presented in this thesis have been performed over a two year 

period from September 2018 to September 2020. A substantial proportion has therefore 

coincided with the global COVID-19 pandemic. Fortunately, the work itself has not been 

significantly impacted by any of the restrictions imposed nationally by the UK 
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Government or locally by The University of Manchester and The Christie NHS 

Foundation Trust. However, the intention during the first half of 2020, prior to the 

completion of this thesis, was to submit for journal publication articles describing: 

1. The development and testing of a model of the ideal prostate treatment plan. 

2. A fully automated KB treatment planning workflow. 

Unfortunately, at the time of writing, it has not been possible to submit these articles. In 

the future, however, it certainly is the intention of the author to pursue these 

publications. 

The major impact the COVID-19 situation has been the lack of contact with 

supervisors during the final six months of the project. Home working has been actively 

encouraged and although it has been possible to communication via email and video 

conferencing, these have not always been ideal replacements for face-to-face meetings 

and discussions – especially during the critical write-up period. 
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Conclusion 
 

The purpose of this thesis was to investigate the role of automation in radiotherapy 

treatment planning for prostate cancer. In Chapter 1, the current treatment planning 

pathway, which incorporates minimal automation, was outlined and described in detail. 

Throughout the chapters of this thesis, attempts to automate stages of the pathway have 

been described and tested and this has culminated in a fully automated knowledge-

based treatment planning pathway. 

Errors in auto-segmentation of target volumes from which PTVs are expanded 

have been shown to have limited utility for treatment planning and need manual 

correction prior to treatment plan optimisation. This is unfortunate because it presents 

a bottleneck to the treatment planning pathway that current automation techniques 

cannot overcome. This is not true for OAR auto-contours, however. Even where OAR 

auto-contours contain known geometric inaccuracies, they can still be used reasonably 

reliably to optimise doses to actual anatomy. Although the OAR auto-contours may need 
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manual modification for final dose reporting, hybrid-planning allows the optimisation of 

the treatment plan to proceed prior to this. Therefore, in order to maximise the clinical 

benefit of OAR auto-segmentation, it needs to be accompanied by automated treatment 

plan optimisation. 

A new method of knowledge-based treatment planning has been developed in this 

thesis to satisfy this automated treatment plan optimisation goal. The method was based 

on a large dataset of previously optimised treatment plans from which dose fall-off data 

were extracted and used to optimise new treatment plans. It has been extensively 

demonstrated that this knowledge-based method produces clinically acceptable 

treatment plans with success rate at least equivalent to manual treatment planning. 

Combining the ideas of hybrid-planning with the knowledge-based treatment 

planning method generated clinically acceptable treatment plans in approximately 80 % 

of cases without human intervention (after the manual outlining of prostate and SV). 

This success rate could potentially be increased in the future using alternative auto-

segmentation techniques. 

The benefits of implementing automated knowledge-based hybrid-planning into 

routine clinical practice for a treatment planning department could be extensive. It 

would provide significant efficiency savings from a staffing perspective and would mean 

prostate treatment plans could be generated rapidly. This could overcome some of the 

barriers currently restricting the routine application of adaptive radiotherapy and 

potentially allow patients earlier access to their prostate cancer treatments. 
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