4 research outputs found

    Hybrid optical fiber-wireless communication to support tactile internet

    Get PDF
    5G technologies are systems that will set to change the way people, devices and machines connect. This generation of mobile services provide connection in just one click. The advanced 5G infrastructure, defined as “ubiquitous ultra-broadband network supporting future Internet”, represents a revolution in the telecommunications field. It will enable new secure and reliable services to everyone and everything with ultra-low latency. “Full Immersive Experience”, enriched by “Context Information” and “Anything as a Service” are the main drivers for a substantial adoption of the fifth generation networks [1]. The technical challenges that must be taken into account in the design of the 5G system are many and unprecedented. Therefore,5G is expected to be about 10 times faster than LTE-4G, in addition, it is projected that this network will have100-1000 times higher system capacity, user data rates in the order of Gbps everywhere, 10-100 higher number of connected devices per area, latency in the order of 1 millisecond, and 10 times longer battery life for devices. Due to all these technological changes, for years, researchers, suppliers and manufacturers around the world have studied this new network. In order to transform the user's wireless experience and be able to offer fast generalized connectivity anytime, anywhere, to any device.[2]. All this requires an enabler in the new approach of radio access networks, which could be hybrid optical Fiber-Wireless communications. “Photonics technology has been recognized by the European Union as a Key Enabling Technology (KET), which is a technology that enables a market, many times larger than the market of technology itself”. Photonic techniques have become key enablers to unlock future broadband wireless communications with terabit data rates in order to support the current trends of mobile data traffic[3]. The aim of this thesis is to conceive experimentally and validate 1 millisecond latency hybrid optical Fiber-Wireless access links support for tactile Internet taking into account the system requirements. For this purpose, first a review about the implementation of high-speed data links at 75-110 GHz band with low latency was made. Likewise, this work summarizes the components of hybrid optical Fiber-Wireless communication in W- Band. Second, measurements of the delay contribution from individual elements in the W -Band hybrid system were made. In addition, the main contribution was to develop a procedure for measuring latency physically using software defined radio (SDR) and estimating the overall system latency. In this procedure, potential sources of delay can be identified in current high-data-rate hybrid optical-RF communication systems. After knowing how to measure latency in a hybrid optical Fiber-Wireless system, the following objectives were developed: to test an appropriate multiplexing scheme such as Orthogonal Frequency Division Multiplexing (OFDM), and Generalized Frequency Division Multiplexing (GFDM), to achieve the lowest latency with improved performance; and to implement WDM (Wavelength Division Multiplexing) to achieve the required low latency.Resumen: Las tecnologías 5G son sistemas de generación de servicios móviles configurados para cambiar la forma en que las personas, los dispositivos y las máquinas se conectan. La infraestructura 5G está definida como una red ubicua de banda ultra-ancha que soportará Internet en el futuro, dicha red representa una revolución en el campo de las telecomunicaciones. Permitirá eficientemente nuevos servicios ultra-confiables, rápidos y seguros, preservando la privacidad y acelerando los servicios críticos para todos y para cada cosa. Estas redes son la evolución del Internet de las cosas, en donde cada una de ellas es tratada como un objeto cognitivo formando sistemas cibernéticos (CPS). La "experiencia de inmersión total", enriquecida con "información de contexto" y "todo como un servicio" son los principales impulsores para una adopción masiva de los nuevos componentes de ésta tecnología y su aceptación del mercado [1]. Se espera que 5G sea aproximadamente 10 veces más rápido que 4G LTE. Por lo tanto, los desafíos técnicos que deben abordarse en el diseño del sistema 5G son muchos y sin precedentes. Actualmente hay varias actividades en todo el mundo para capturar las aplicaciones y los requisitos para 5G, algunas empresas proveedoras de servicio y fabricantes incluso ya han realizado pruebas para la implementación de dichas redes. Algunos de los principales requisitos que demandan estas redes se pueden resumir en: 100-1000 veces más capacidad del sistema, tasas de datos de usuario en el orden de Gbps en todas partes, latencia en el orden de 1 milisegundo, 10-100 veces mayor número de dispositivos conectados por área, 10 veces más duración de la batería para dispositivos. Estos requisitos transformarán dramáticamente la experiencia inalámbrica de un usuario en un sistema 5G al ofrecer conectividad generalizada rápida en cualquier momento, en cualquier lugar, a cualquier dispositivo [2]. Todo esto requiere un habilitador en el nuevo enfoque de las redes de acceso por radio, que podrían ser comunicaciones híbridas de fibra óptica y transmisiones inalámbricas vía radio. La fotónica por su parte ha sido reconocida por la Unión Europea como una Tecnología Clave Habilitadora (KET), una tecnología que permite un mercado que es muchas veces más grande que el mercado de la tecnología en sí. Las técnicas fotónicas combinadas con la generación de microondas en lo que se conoce en su término en inglés como microwave-photonics se han convertido en habilitadores clave para desbloquear futuras comunicaciones inalámbricas de banda ancha con tasas de datos de terabit a fin de soportar las tendencias actuales del tráfico de datos móviles [3]. El objetivo de esta tesis es concebir experimentalmente y validar enlaces de acceso híbridos de fibra óptica-radio, cuya latencia sea de 1 milisegundo con el fin de soportar Internet táctil, el cual es una aplicación de 5G, teniendo en cuenta los requisitos del sistema. Para ello, primero se realizó una investigación sobre la implementación de enlaces de datos con redes híbridas fibra óptica-radio en la banda de 75-110 GHz con baja latencia. Con esto, se analizaron los componentes de la comunicación híbrida fibra ópticaradio en la banda W. En segundo lugar, se realizaron mediciones de los retardos que se generan en cada uno de los elementos en el sistema híbrido de banda W, haciendo la estimación de la latencia general del sistema e identificando fuentes potenciales de demora en los sistemas híbridos de comunicación óptica-RF de alta velocidad de datos. La principal contribución de este trabajo fue el desarrollo de un procedimiento para medir la latencia utilizando radio definida por software (SDR), además de introducir estos sistemas en los enlaces híbridos fibra óptica-radio. Una vez conocido como medir la latencia en un sistema híbrido de fibra óptica-radio, los siguientes objetivos que se desarrollaron fueron: probar un esquema de multiplexación apropiado, como la multiplexación por división de frecuencia ortogonal (OFDM) y la multiplexación por división de frecuencia generalizada (GFDM), para lograr una latencia más baja. A su vez, implementar Multiplexación por división de longitud de onda (WDM) para conocer la latencia y la confiabilidad en cuanto a tasa de error de bits variando la multiplexacion eléctrica y óptica.Doctorad

    Дослідження процесів передачі сигналів в безпроводовому оптичному тракті з використанням GNU Radio

    Get PDF
    Мета роботи полягає в тому, щоб провести огляд технології VLC, її переваг, основних характеристик та створити стенд для досліджень передачі з використанням видимого світла.The aim of the work is to review the VLC technology, its advantages, main characteristics and to create a stand for research of transmission using visible ligh

    A High-speed Reconfigurable Free Space Optical Communication System Utilizing Software Defined Radio Environment

    Get PDF
    Free space optical (FSO) communication allows for high-speed data transmissions while also being extremely cost-effective by using visible or infrared wavelengths to transmit and receive data wirelessly through the free space channel. However, FSO links are highly susceptible to the effects of the atmosphere, particularly turbulence, smoke, and fog. On the other hand, FSO itself does not provide enough flexibility to address the issue of such blockage and obstruction caused by objects and atmospheric conditions. This research investigates, proposes, and evaluates a software defined multiple input multiple output (MIMO) FSO system to ensure link availability and reliability under weather conditions as part of the last mile access in the 5th generation, 6th generation, and beyond. Software defined radio (SDR) technology is adopted in order to provide a certain degree of flexibility to the optical wireless communications system. The scope of this research focuses on the design, validation, implementation, and evaluation of a novel adaptive switching algorithm i.e., activating additional transmitters of a MIMO FSO system using a software defined ecosystem. The main issues are the compactness of the experimental design; the limitation of software-oriented signal generation; robustness; reliability; and the quality of service. As part of the system design, the thresholding method, a decision-making process via the feedback link, and a spatial diversity technique is adopted to carry out the adaptive switching. The adaptive switching is performed via a feedback link in which the atmospheric loss and scintillation index are calculated for fog and turbulence respectively. The initial design is implemented in SDR/ GNURadio for a real-time emulation of the proposed system to enhance the system flexibility of a traditional MIMO FSO system. A bit-by-bit comparison is performed with the GNURadio signal processing block and BERT for a real-time BER estimation. However, based on the initial results, the switching mechanism can only overcome the effect of turbulence at a certain level. A new design to mainly mitigate the varying fog conditions is proposed based on the SDR-based adaptive switching for a gigabit ethernet (GbE) MIMO FSO system and tested in a 5 m dedicated atmospheric chamber. The proposed system is implemented using off-the-shelf components such as a media converter, small form pluggable transceivers, optical switch, and power meter to estimate the channel state information. A new Schmitt trigger-based thresholding method is also introduced. The proposed software defined GbE MIMO FSO with an adaptive switching algorithm is fabricated, implemented, and investigated. The results are also compared with the real-time simulated data. Since the purpose of this Ph.D. is to explain and demonstrate the proof of concept for the proposed SDR-MIMO FSO system, the emphasis has been on the design, evaluation, and minimal performance requirements rather than maximizing the data rate. The outcome of the thesis will be a huge degree of flexibility and mitigation property MIMO FSO can offer with the help of SDR. It will be shown that the designed system has the capability to provide data transmission with 99.999% availability with a packet error rate and data rate of 7.2 ×10−2 and ~120 Mbps respectively, under extremely harsh fog conditions with visibility V of < 11 m

    Nonlinear Distortion in Wideband Radio Receivers and Analog-to-Digital Converters: Modeling and Digital Suppression

    Get PDF
    Emerging wireless communications systems aim to flexible and efficient usage of radio spectrum in order to increase data rates. The ultimate goal in this field is a cognitive radio. It employs spectrum sensing in order to locate spatially and temporally vacant spectrum chunks that can be used for communications. In order to achieve that, flexible and reconfigurable transceivers are needed. A software-defined radio can provide these features by having a highly-integrated wideband transceiver with minimum analog components and mostly relying on digital signal processing. This is also desired from size, cost, and power consumption point of view. However, several challenges arise, from which dynamic range is one of the most important. This is especially true on receiver side where several signals can be received simultaneously through a single receiver chain. In extreme cases the weakest signal can be almost 100 dB weaker than the strongest one. Due to the limited dynamic range of the receiver, the strongest signals may cause nonlinear distortion which deteriorates spectrum sensing capabilities and also reception of the weakest signals. The nonlinearities are stemming from the analog receiver components and also from analog-to-digital converters (ADCs). This is a performance bottleneck in many wideband communications and also radar receivers. The dynamic range challenges are already encountered in current devices, such as in wideband multi-operator receiver scenarios in mobile networks, and the challenges will have even more essential role in the future.This thesis focuses on aforementioned receiver scenarios and contributes to modeling and digital suppression of nonlinear distortion. A behavioral model for direct-conversion receiver nonlinearities is derived and it jointly takes into account RF, mixer, and baseband nonlinearities together with I/Q imbalance. The model is then exploited in suppression of receiver nonlinearities. The considered method is based on adaptive digital post-processing and does not require any analog hardware modification. It is able to extract all the necessary information directly from the received waveform in order to suppress the nonlinear distortion caused by the strongest blocker signals inside the reception band.In addition, the nonlinearities of ADCs are considered. Even if the dynamic range of the analog receiver components is not limiting the performance, ADCs may cause considerable amount of nonlinear distortion. It can originate, e.g., from undeliberate variations of quantization levels. Furthermore, the received waveform may exceed the nominal voltage range of the ADC due to signal power variations. This causes unintentional signal clipping which creates severe nonlinear distortion. In this thesis, a Fourier series based model is derived for the signal clipping caused by ADCs. Furthermore, four different methods are considered for suppressing ADC nonlinearities, especially unintentional signal clipping. The methods exploit polynomial modeling, interpolation, or symbol decisions for suppressing the distortion. The common factor is that all the methods are based on digital post-processing and are able to continuously adapt to variations in the received waveform and in the receiver itself. This is a very important aspect in wideband receivers, especially in cognitive radios, when the flexibility and state-of-the-art performance is required
    corecore