13,412 research outputs found

    Blackboard Rules for Coordinating Context-aware Applications in Mobile Ad Hoc Networks

    Get PDF
    Thanks to improvements in wireless communication technologies and increasing computing power in hand-held devices, mobile ad hoc networks are becoming an ever-more present reality. Coordination languages are expected to become important means in supporting this type of interaction. To this extent we argue the interest of the Bach coordination language as a middleware that can handle and react to context changes as well as cope with unpredictable physical interruptions that occur in opportunistic network connections. More concretely, our proposal is based on blackboard rules that model declaratively the actions to be taken once the blackboard content reaches a predefined state, but also that manage the engagement and disengagement of hosts and transient sharing of blackboards. The idea of reactiveness has already been introduced in previous work, but as will be appreciated by the reader, this article presents a new perspective, more focused on a declarative setting.Comment: In Proceedings FOCLASA 2012, arXiv:1208.432

    TURF for Teams: Considering Both the Team and I in the Work-Centered Design of Systems

    Get PDF
    Teams are an inherent part of many work domains, especially in the healthcare environment. Yet, most systems are often built with only the individual user in mind. How can we better incorporate the team, as a user, into the design of a system? By better understanding the team, through their user, task, representational, and functional needs, we can create more useful and helpful systems that match their work domain. For this research project, we utilize the TURF framework and expanded it further by also considering teams as a user, thus, creating the TURF for Teams framework. In addition, we chose to examine teams in the emergency department environment. We believe that designing a system with the team also fully incorporated and acknowledged in the work domain will be beneficial for supporting necessary team activities. Using TURF for Teams, we first conducted an observational field study in the emergency department to get a better understanding of the users, teams, tasks, workload, and interactions. We then identified the need for team communications to be better supported, especially in the management of interruptions, and further categorized the interruptions by their function in order to design a team tool that could help team members better manage their interruptions by focusing on the necessary, or domain, types of interruptions and more easily disregarding the unnecessary, or overhead, types of interruptions. We then administered some surveys and conducted a card sort and cognitive walkthrough with emergency clinician participants to help us better identify how to design interfaces for the team tool and simulation that would better match the needs of team communication behaviors observed and reported by emergency clinicians. After designing and developing the team tool and simulation, we conducted an evaluation of this system by having emergency medicine, medicine, and informatics graduate student teams go through the system and utilize the team tool and simulation as a team. Though we had a small sample size, we found that emergency medicine teams found the team tool and simulation to be very usable and they reacted favorably to its potential in helping them better understand and manage their team communications. In summary, we were able to utilize the TURF framework for incorporating teams into the design of systems, in this case a team communication tool and microworld simulation for the emergency department. Our findings suggest that TURF for Teams is a viable framework for designing useful and helpful team based systems for all work domains

    Inefficiency in the Post Anesthesia Care Unit: A Quality Improvement Initiative

    Get PDF
    Background: The post anesthesia care unit (PACU) is a busy environment in which nurses communicate with patients, family members, and a large team of perioperative professionals. PACU nurses were experiencing an unmanageable number of work interruptions due to a higher patient census which increased the daily surgical caseload. Aim: The purpose of this project was to improve efficiency and nurses’ job satisfaction by making work interruptions manageable in the PACU. Methods: Based on Kotter’s Change Theory, a quality improvement initiative was implemented using a change in the communication process. Qualitative and quantitative data was gathered in the PACU and on other units with the intervention roll-out. A pre and post-intervention survey was used to evaluate work interruptions and their effects experienced by nurses in the PACU environment. Results: The use of communication technology impacted work interruptions, but not significantly enough to improve nursing efficiency and nurse satisfaction in the PACU. Conclusion and Implications for CNL® Practice: The next step is to recommend adding a CNL® as a surgical nurse liaison (SNL) to the perioperative team. Ideally, a CNL® with excellent communication and quality improvement skills will exemplify the roles of lateral integrator and patient advocate to improve efficiency. This physical solution, coupled with the communicative technology tool being widely integrated to all members of the perioperative team is expected to influence work interruptions and improve nurse satisfaction more dramatically

    Anticipatory Mobile Computing: A Survey of the State of the Art and Research Challenges

    Get PDF
    Today's mobile phones are far from mere communication devices they were ten years ago. Equipped with sophisticated sensors and advanced computing hardware, phones can be used to infer users' location, activity, social setting and more. As devices become increasingly intelligent, their capabilities evolve beyond inferring context to predicting it, and then reasoning and acting upon the predicted context. This article provides an overview of the current state of the art in mobile sensing and context prediction paving the way for full-fledged anticipatory mobile computing. We present a survey of phenomena that mobile phones can infer and predict, and offer a description of machine learning techniques used for such predictions. We then discuss proactive decision making and decision delivery via the user-device feedback loop. Finally, we discuss the challenges and opportunities of anticipatory mobile computing.Comment: 29 pages, 5 figure
    • …
    corecore