1,302 research outputs found

    A framework to provide charging for third party composite services

    Get PDF
    Includes synopsis.Includes bibliographical references (leaves 81-87).Over the past few years the trend in the telecommunications industry has been geared towards offering new and innovative services to end users. A decade ago network operators were content with offering simple services such as voice and text messaging. However, they began to notice that these services were generating lower revenues even while the number of subscribers increased. This was a direct result of the market saturation and network operators were forced to rapidly deploy services with minimum capital investment and while maximising revenue from service usage by end users. Network operators can achieve this by exposing the network to external content and service providers. They would create interfaces that would allow these 3rd party service and content providers to offer their applications and services to users. Composing and bundling of these services will essentially create new services for the user and achieve rapid deployment of enhanced services. The concept of offering a wide range of services that are coordinated in such a way that they deliver a unique experience has sparked interest and numerous research on Service Delivery Platforms (SDP). SDP‟s will enable network operators to be able to develop and offer a wide-variety service set. Given this interest on SDP standardisation bodies such as International Telecommunications Union – Telecommunications (ITU-T), Telecoms and Internet converged Servicers and Protocols for Advanced Networks) (TISPAN), 3rd Generations Partnership Project (3GPP) and Open Mobile Alliance (OMA) are leading efforts into standardising functions and protocols to enhance service delivery by network operators. Obtaining revenue from these services requires effective accounting of service usage and requires mechanisms for billing and charging of these services. The IP Multimedia subsystem(IMS) is a Next Generation Network (NGN) architecture that provides a platform for which multimedia services can be developed and deployed by network operators. The IMS provides network operators, both fixed or mobile, with a control layer that allows them to offer services that will enable them to remain key role players within the industry. Achieving this in an environment where the network operator interacts directly with the 3rd party service providers may become complicated

    Design and evaluation of an architecture for future smart grid service provisioning

    Get PDF
    In recent years, there has been a growing interest in cloud technologies. Using current cloud solutions, it is however difficult to create customizable multi-tenant applications, especially if the application must support varying Quality of Service (QoS) guarantees. Software Product Line Engineering (SPLE) and feature modeling techniques are commonly used to address these issues in non-cloud applications, but these techniques cannot be ported directly to a cloud context, as the common approaches are geared towards customization of on-premise deployed applications, and do not support multi-tenancy. In this paper, we propose an architecture for the development and management of customizable Software as a Service (SaaS) applications, built using SPLE techniques. In our approach, each application is a composition of services, where individual services correspond to specific application functionalities, referred to as features. A feature-based methodology is described to abstract and convert the application information required at different stages of the application life-cycle: development, customization and deployment. We specifically focus on how development feature models can be adapted ensuring a one-to-one correspondence between features and services exists, ensuring the composition of services yields an application containing the corresponding features. These runtime features can then be managed using feature placement techniques. The proposed approach enables developers to define significantly less features, while limiting the amount of automatically generated features in the application runtime stage. Conversion times between models are shown to be in the order of milliseconds, while execution times of management algorithms are shown to improve by 5 to 17% depending on the application case

    Analysis of roles and position of mobile network operators in mobile payment infrastructure

    Get PDF
    A number of different mobile payment solutions have been presented the last decade. The phone subscription with its security mechanisms are used for user identification and payments. This is the case for SMS based payment and ticketing systems that are getting more and more popular. However, there are other ways to implement a Trusted Element (TE) , where a SIM card architecture is only one. It can be in the mobile phone, as a separate integrated circuit, as an optional customer deployed plug-in device (e.g., microSD) or be running as an application on a server existing entirely as software. In this paper we analyze what roles and responsibilities different actors have in different types of mobile payments solutions. The main focus is on the implications for the mobile operator business. It turns out that new types of intermediary actors in most cases play an important role. Sometimes mobile operators are not even involved. The emergence of new payment together with other non-SIM card based TE solutions opens up for many different market scenarios for mobile payment services. --

    Challenges for the comprehensive management of cloud services in a PaaS framework

    Full text link
    The 4CaaSt project aims at developing a PaaS framework that enables flexible definition, marketing, deployment and management of Cloud-based services and applications. The major innovations proposed by 4CaaSt are the blueprint and its lifecycle management, a one stop shop for Cloud services and a PaaS level resource management featuring elasticity. 4CaaSt also provides a portfolio of ready to use Cloud native services and Cloud-aware immigrant technologies

    NEMESYS: Enhanced Network Security for Seamless Service Provisioning in the Smart Mobile Ecosystem

    Full text link
    As a consequence of the growing popularity of smart mobile devices, mobile malware is clearly on the rise, with attackers targeting valuable user information and exploiting vulnerabilities of the mobile ecosystems. With the emergence of large-scale mobile botnets, smartphones can also be used to launch attacks on mobile networks. The NEMESYS project will develop novel security technologies for seamless service provisioning in the smart mobile ecosystem, and improve mobile network security through better understanding of the threat landscape. NEMESYS will gather and analyze information about the nature of cyber-attacks targeting mobile users and the mobile network so that appropriate counter-measures can be taken. We will develop a data collection infrastructure that incorporates virtualized mobile honeypots and a honeyclient, to gather, detect and provide early warning of mobile attacks and better understand the modus operandi of cyber-criminals that target mobile devices. By correlating the extracted information with the known patterns of attacks from wireline networks, we will reveal and identify trends in the way that cyber-criminals launch attacks against mobile devices.Comment: Accepted for publication in Proceedings of the 28th International Symposium on Computer and Information Sciences (ISCIS'13); 9 pages; 1 figur

    Interworking between WLAN and 3G Cellular Networks: An IMS Based Architecture

    Full text link
    In this paper, a novel architecture for interworking of the Wireless Local Area Network (WLAN) and the Third Generation (3G) mobile cellular network is presented. This architecture is a hybrid model with additional controls compared with the existing architectures and the use of IP Multimedia Subsystem (IMS), as an arbitrator for coupling and real-time session management. Furthermore, a new networking entity called a mobility manager has been introduced within the IMS for seamless management of vertical handoffs. Efficient strategies for IP address distribution and bypassing high traffic loads form the cellular core network are other benefits of this architecture

    Reducing Electricity Demand Charge for Data Centers with Partial Execution

    Full text link
    Data centers consume a large amount of energy and incur substantial electricity cost. In this paper, we study the familiar problem of reducing data center energy cost with two new perspectives. First, we find, through an empirical study of contracts from electric utilities powering Google data centers, that demand charge per kW for the maximum power used is a major component of the total cost. Second, many services such as Web search tolerate partial execution of the requests because the response quality is a concave function of processing time. Data from Microsoft Bing search engine confirms this observation. We propose a simple idea of using partial execution to reduce the peak power demand and energy cost of data centers. We systematically study the problem of scheduling partial execution with stringent SLAs on response quality. For a single data center, we derive an optimal algorithm to solve the workload scheduling problem. In the case of multiple geo-distributed data centers, the demand of each data center is controlled by the request routing algorithm, which makes the problem much more involved. We decouple the two aspects, and develop a distributed optimization algorithm to solve the large-scale request routing problem. Trace-driven simulations show that partial execution reduces cost by 3%−−10.5%3\%--10.5\% for one data center, and by 15.5%15.5\% for geo-distributed data centers together with request routing.Comment: 12 page
    • 

    corecore