966 research outputs found

    MISSED: an environment for mixed-signal microsystem testing and diagnosis

    Get PDF
    A tight link between design and test data is proposed for speeding up test-pattern generation and diagnosis during mixed-signal prototype verification. Test requirements are already incorporated at the behavioral level and specified with increased detail at lower hierarchical levels. A strict distinction between generic routines and implementation data makes reuse of software possible. A testability-analysis tool and test and DFT libraries support the designer to guarantee testability. Hierarchical backtrace procedures in combination with an expert system and fault libraries assist the designer during mixed-signal chip debuggin

    Cost modelling and concurrent engineering for testable design

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.As integrated circuits and printed circuit boards increase in complexity, testing becomes a major cost factor of the design and production of the complex devices. Testability has to be considered during the design of complex electronic systems, and automatic test systems have to be used in order to facilitate the test. This fact is now widely accepted in industry. Both design for testability and the usage of automatic test systems aim at reducing the cost of production testing or, sometimes, making it possible at all. Many design for testability methods and test systems are available which can be configured into a production test strategy, in order to achieve high quality of the final product. The designer has to select from the various options for creating a test strategy, by maximising the quality and minimising the total cost for the electronic system. This thesis presents a methodology for test strategy generation which is based on consideration of the economics during the life cycle of the electronic system. This methodology is a concurrent engineering approach which takes into account all effects of a test strategy on the electronic system during its life cycle by evaluating its related cost. This objective methodology is used in an original test strategy planning advisory system, which allows for test strategy planning for VLSI circuits as well as for digital electronic systems. The cost models which are used for evaluating the economics of test strategies are described in detail and the test strategy planning system is presented. A methodology for making decisions which are based on estimated costing data is presented. Results of using the cost models and the test strategy planning system for evaluating the economics of test strategies for selected industrial designs are presented

    RON-BEAM DEBUG AND FAILURE ANALYSIS OF INTEGRATED CIRCUITS

    Get PDF
    A current research project at IMAG/TIM3 Laboratory aims at an integrated test system combining the use of the Scanning Electron Microscope (SEM), used in voltage contrast mode, with a new high-level approach of fault location in complex VLSI circuits, in order to reach a complete automated diagnosis process. Two research themes are induced by this project, which are: prototype validation of known circuits, on which CAD information is available, and failure analysis of unknown circuits, which are compared to reference circuits. For prototype validation, a knowledge-based approach to fault location is used. Concerning failure analysis, automatic image comparison based on pattern recog- nition techniques is performed. The purpose of the paper is to present these two methodologies, focusing on the SEM-based data acquisition process

    Automatic rapid prototyping of semi-custom VLSI circuits using FPGAs

    Get PDF
    Journal ArticleWe describe a technique for translating semi-custom VLSI circuits automatically, integrating two design environments, into field programmable gate arrays (FPGAs) for rapid and inexpensive prototyping. The VLSI circuits are designed using a cell-matrix based environment that produces chips with density comparable to full custom VLSI design. These circuits are translated automatically into FPGAs for testing and system development. A four-bit pipelined array multiplier is used as an example of this translation. The multiplier is implemented in CMOS in both synchronous and asynchronous pipelined versions, and translated into Actel FPGAs both automatically, and by hand for comparison. The six test chips were all found to be fully functional, and the translation efficiency in terms of chip speed and area is shown. This result demonstrates the potential of this approach to system development

    On-chip evaluation of oscillation-based-test output signals for switched-capacitor circuits

    Get PDF
    This work presents a simple and low-cost method for on-chip evaluation of test signals coming from the application of the Oscillation-Based-Test (OBT) technique. This method extracts the main test signal features (amplitude, frequency and DC level) in the digital domain requiring just a very simple and robust circuitry. Experimental results obtained from an integrated chip demonstrate the feasibility of the approac

    Lockheed/Georgia Tech Cooperative VLSI Program

    Get PDF
    Issued as Monthly letter reports, nos. 1-9, Project no. E-21-640 (subproject B-10-601

    High Speed Test Interface Module Using MEMS Technology

    Get PDF
    With the transient frequency of available CMOS technologies exceeding hundreds of gigahertz and the increasing complexity of Integrated Circuit (IC) designs, it is now apparent that the architecture of current testers needs to be greatly improved to keep up with the formidable challenges ahead. Test requirements for modern integrated circuits are becoming more stringent, complex and costly. These requirements include an increasing number of test channels, higher test-speeds and enhanced measurement accuracy and resolution. In a conventional test configuration, the signal path from Automatic Test Equipment (ATE) to the Device-Under-Test (DUT) includes long traces of wires. At frequencies above a few gigahertz, testing integrated circuits becomes a challenging task. The effects on transmission lines become critical requiring impedance matching to minimize signal reflection. AC resistance due to the skin effect and electromagnetic coupling caused by radiation can also become important factors affecting the test results. In the design of a Device Interface Board (DIB), the greater the physical separation of the DUT and the ATE pin electronics, the greater the distortion and signal degradation. In this work, a new Test Interface Module (TIM) based on MEMS technology is proposed to reduce the distance between the tester and device-under-test by orders of magnitude. The proposed solution increases the bandwidth of test channels and reduces the undesired effects of transmission lines on the test results. The MEMS test interface includes a fixed socket and a removable socket. The removable socket incorporates MEMS contact springs to provide temporary with the DUT pads and the fixed socket contains a bed of micro-pins to establish electrical connections with the ATE pin electronics. The MEMS based contact springs have been modified to implement a high-density wafer level test probes for Through Silicon Vias (TSVs) in three dimensional integrated circuits (3D-IC). Prototypes have been fabricated using Silicon On Insulator SOI wafer. Experimental results indicate that the proposed architectures can operate up to 50 GHz without much loss or distortion. The MEMS probes can also maintain a good elastic performance without any damage or deformation in the test phase

    Automatic rapid prototyping of semi-custom VLSI circuits using actel FPGAs

    Get PDF
    Journal ArticleAbstract : We describe a technique for translating semi-custom VLSI circuits automatically into field programmable gate arrays (FPGAs) for rapid prototyping to develop a system. Using an array multiplier as an example of this translation, the VLSI circuits are designed using a cell-matrix based environment. The multiplier is implemented in CMOS in both synchronous and asynchronous pipelined versions, and translated into Actel FPGAs. All test chips were found to be fully functional, and the translation efficiency in terms of chip speed and area is shown

    HOP: a process model for synchronous hardware semantics, and experiments in process composition

    Get PDF
    technical reportWe present a language "Hardware viewed as Objects and Processes" (HOP) for specifying the structure, behavior, and timing of hardware systems. HOP embodies a simple process model for lock-step synchronous processes. An absproc specification written in HOP describes the externally observable behavior of a process. A collection of absprocs may be composed to form a larger process, using the operators parallel composition, renaming, and hiding. In this paper we present the communication primitives of HOP, illustrate HOP through several examples, and then present its operational semantics. Then we present the role played by HOP in in three VLSI design activities: (i) inferring concise behavioral descriptions of systems from their structural descriptions; (ii) static detection of control timing errors during behavioral inferrence; (Hi) productive and runtime efficient functional simulation using the inferred behavior
    corecore