15,905 research outputs found

    Learning enhancement of radial basis function network with particle swarm optimization

    Get PDF
    Back propagation (BP) algorithm is the most common technique in Artificial Neural Network (ANN) learning, and this includes Radial Basis Function Network. However, major disadvantages of BP are its convergence rate is relatively slow and always being trapped at the local minima. To overcome this problem, Particle Swarm Optimization (PSO) has been implemented to enhance ANN learning to increase the performance of network in terms of convergence rate and accuracy. In Back Propagation Radial Basis Function Network (BP-RBFN), there are many elements to be considered. These include the number of input nodes, hidden nodes, output nodes, learning rate, bias, minimum error and activation/transfer functions. These elements will affect the speed of RBF Network learning. In this study, Particle Swarm Optimization (PSO) is incorporated into RBF Network to enhance the learning performance of the network. Two algorithms have been developed on error optimization for Back Propagation of Radial Basis Function Network (BP-RBFN) and Particle Swarm Optimization of Radial Basis Function Network (PSO-RBFN) to seek and generate better network performance. The results show that PSO-RBFN give promising outputs with faster convergence rate and better classifications compared to BP-RBFN

    A spatiotemporal complexity architecture of human brain activity

    Get PDF

    Neural Networks with Non-Uniform Embedding and Explicit Validation Phase to Assess Granger Causality

    Get PDF
    A challenging problem when studying a dynamical system is to find the interdependencies among its individual components. Several algorithms have been proposed to detect directed dynamical influences between time series. Two of the most used approaches are a model-free one (transfer entropy) and a model-based one (Granger causality). Several pitfalls are related to the presence or absence of assumptions in modeling the relevant features of the data. We tried to overcome those pitfalls using a neural network approach in which a model is built without any a priori assumptions. In this sense this method can be seen as a bridge between model-free and model-based approaches. The experiments performed will show that the method presented in this work can detect the correct dynamical information flows occurring in a system of time series. Additionally we adopt a non-uniform embedding framework according to which only the past states that actually help the prediction are entered into the model, improving the prediction and avoiding the risk of overfitting. This method also leads to a further improvement with respect to traditional Granger causality approaches when redundant variables (i.e. variables sharing the same information about the future of the system) are involved. Neural networks are also able to recognize dynamics in data sets completely different from the ones used during the training phase

    Personalized Health Monitoring Using Evolvable Block-based Neural Networks

    Get PDF
    This dissertation presents personalized health monitoring using evolvable block-based neural networks. Personalized health monitoring plays an increasingly important role in modern society as the population enjoys longer life. Personalization in health monitoring considers physiological variations brought by temporal, personal or environmental differences, and demands solutions capable to reconfigure and adapt to specific requirements. Block-based neural networks (BbNNs) consist of 2-D arrays of modular basic blocks that can be easily implemented using reconfigurable digital hardware such as field programmable gate arrays (FPGAs) that allow on-line partial reorganization. The modular structure of BbNNs enables easy expansion in size by adding more blocks. A computationally efficient evolutionary algorithm is developed that simultaneously optimizes structure and weights of BbNNs. This evolutionary algorithm increases optimization speed by integrating a local search operator. An adaptive rate update scheme removing manual tuning of operator rates enhances the fitness trend compared to pre-determined fixed rates. A fitness scaling with generalized disruptive pressure reduces the possibility of premature convergence. The BbNN platform promises an evolvable solution that changes structures and parameters for personalized health monitoring. A BbNN evolved with the proposed evolutionary algorithm using the Hermite transform coefficients and a time interval between two neighboring R peaks of ECG signal, provides a patient-specific ECG heartbeat classification system. Experimental results using the MIT-BIH Arrhythmia database demonstrate a potential for significant performance enhancements over other major techniques

    Dynamic non-linear system modelling using wavelet-based soft computing techniques

    Get PDF
    The enormous number of complex systems results in the necessity of high-level and cost-efficient modelling structures for the operators and system designers. Model-based approaches offer a very challenging way to integrate a priori knowledge into the procedure. Soft computing based models in particular, can successfully be applied in cases of highly nonlinear problems. A further reason for dealing with so called soft computational model based techniques is that in real-world cases, many times only partial, uncertain and/or inaccurate data is available. Wavelet-Based soft computing techniques are considered, as one of the latest trends in system identification/modelling. This thesis provides a comprehensive synopsis of the main wavelet-based approaches to model the non-linear dynamical systems in real world problems in conjunction with possible twists and novelties aiming for more accurate and less complex modelling structure. Initially, an on-line structure and parameter design has been considered in an adaptive Neuro- Fuzzy (NF) scheme. The problem of redundant membership functions and consequently fuzzy rules is circumvented by applying an adaptive structure. The growth of a special type of Fungus (Monascus ruber van Tieghem) is examined against several other approaches for further justification of the proposed methodology. By extending the line of research, two Morlet Wavelet Neural Network (WNN) structures have been introduced. Increasing the accuracy and decreasing the computational cost are both the primary targets of proposed novelties. Modifying the synoptic weights by replacing them with Linear Combination Weights (LCW) and also imposing a Hybrid Learning Algorithm (HLA) comprising of Gradient Descent (GD) and Recursive Least Square (RLS), are the tools utilised for the above challenges. These two models differ from the point of view of structure while they share the same HLA scheme. The second approach contains an additional Multiplication layer, plus its hidden layer contains several sub-WNNs for each input dimension. The practical superiority of these extensions is demonstrated by simulation and experimental results on real non-linear dynamic system; Listeria Monocytogenes survival curves in Ultra-High Temperature (UHT) whole milk, and consolidated with comprehensive comparison with other suggested schemes. At the next stage, the extended clustering-based fuzzy version of the proposed WNN schemes, is presented as the ultimate structure in this thesis. The proposed Fuzzy Wavelet Neural network (FWNN) benefitted from Gaussian Mixture Models (GMMs) clustering feature, updated by a modified Expectation-Maximization (EM) algorithm. One of the main aims of this thesis is to illustrate how the GMM-EM scheme could be used not only for detecting useful knowledge from the data by building accurate regression, but also for the identification of complex systems. The structure of FWNN is based on the basis of fuzzy rules including wavelet functions in the consequent parts of rules. In order to improve the function approximation accuracy and general capability of the FWNN system, an efficient hybrid learning approach is used to adjust the parameters of dilation, translation, weights, and membership. Extended Kalman Filter (EKF) is employed for wavelet parameters adjustment together with Weighted Least Square (WLS) which is dedicated for the Linear Combination Weights fine-tuning. The results of a real-world application of Short Time Load Forecasting (STLF) further re-enforced the plausibility of the above technique

    Virtual metrology for semiconductor manufacturing applications

    Get PDF
    Per essere competitive nel mercato, le industrie di semiconduttori devono poter raggiungere elevati standard di produzione a un prezzo ragionevole. Per motivi legati tanto ai costi quanto ai tempi di esecuzione, una strategia di controllo della qualità che preveda la misurazione completa del prodotto non è attuabile; i test sono eettuati su un ristretto campione dei dati originali. Il traguardo del presente lavoro di Tesi è lo studio e l'implementazione, attraverso metodologie di modellistica tipo non lineare, di un algoritmo di metrologia virtuale (Virtual Metrology) d'ausilio al controllo di processo nella produzione di semiconduttori. Infatti, la conoscenza di una stima delle misure non realmente eseguite (misure virtuali) può rappresentare un primo passo verso la costruzione di sistemi di controllo di processo e controllo della qualità sempre più ranati ed ecienti. Da un punto di vista operativo, l'obiettivo è fornire la più accurata stima possibile delle dimensioni critiche a monte della fase di etching, a partire dai dati disponibili (includendo misurazioni da fasi di litograa e deposizione e dati di processo - ove disponibili). Le tecniche statistiche allo stato dell'arte analizzate in questo lavoro comprendono: - multilayer feedforward networks; Confronto e validazione degli algoritmi presi in esame sono stati possibili grazie ai data-set forniti da un'industria manifatturiera di semiconduttori. In conclusione, questo lavoro di Tesi rappresenta un primo passo verso la creazione di un sistema di controllo di processo e controllo della qualità evoluto e essibile, che abbia il ne ultimo di migliorare la qualità della produzione.ope

    Design and development of GrainNet - universal Internet enabled software for operation and standardization of near-infrared spectrometers

    Get PDF
    A current trend in modern near-infrared spectroscopy is the incorporation of sophisticated mathematical algorithms into the computer instrumentation used to extract information from raw spectral data by applying complex multivariate models. To address some of the problems that near-infrared spectroscopy faces, the GrainNet software model that connects a MATLABRTM computing and development environment, NIR spectrometers, and MS Server data-storage for spectral data and calibration models, was developed.;GrainNet is a client-server based Internet enabled communication and analyzing model for Near-Infrared (NIR) instruments. FOSS Infratec, Perten, and Bruins Instruments are currently three brands of the NIR instruments that have been included in the project. The performance of the implemented calibration models was evaluated. Three calibration models are implemented in the GrainNet: (1) Partial Least Squares Regression; (2) Artificial Neural Network; (3) Locally Weighted Regression.;The Piecewise Direct Standardization (PDS), Direct Standardization (DS), Finite Impulse Response (FIR) and Multiplicative Scatter Corrections (MSC) models were developed in the MATLABRTM environment and tested for standardization transfer of the Bruins Instruments and Foss Infratec grain analyzers. A new calibration model for corn that uses feed-forward back-propagation neural networks with wavelets signal decomposition used as an input was developed
    corecore