6 research outputs found

    Detection of heartwood rot in Norway spruce trees with lidar and multi-temporal satellite data

    Get PDF
    Norway spruce pathogenic fungi causing root, butt and stem rot represent a substantial problem for the forest sector in many countries. Early detection of rot presence is important for efficient management of the forest resources but due to its nature, which does not generate evident exterior signs, it is very difficult to detect without invasive measurements. Remote sensing has been widely used to monitor forest health status in relation to many pathogens and infestations. In particular, multi-temporal remotely sensed data have shown to be useful in detecting degenerative diseases. In this study, we explored the possibility of using multi-temporal and multi-spectral satellite data to detect rot presence in Norway spruce trees in Norway. Images with four bands were acquired by the Dove satellite constellation with a spatial resolution of 3 m, ranging over three years from June 2017 to September 2019. Field data were collected in 2019–2020 by a harvester during the logging: 16163 trees were recorded, classified in terms of species and presence of rot at the stump and automatically geo-located. The analysis was carried out at individual tree crown (ITC) level, and ITCs were delineated using lidar data. ITCs were classified as healthy, infested and other species using a weighted Support Vector Machine. The results showed an underestimation of the rot presence (balanced accuracy of 56.3%, producer’s accuracies of 64.3 and 48.4% and user’s accuracies of 81.0% and 32.7% respectively for healthy and rot ITCs). The method can be used to provide a tentative map of the rot presence to guide more detailed assessments in field and harvesting activitie

    A first assessment of the Sentinel-2 Level 1-C cloud mask product to support informed surface analyses

    Get PDF
    Abstract Cloud detection in optical remote sensing images is a crucial problem because undetected clouds can produce misleading results in the analyses of surface and atmospheric parameters. Sentinel-2 provides high spatial resolution satellite data distributed with associated cloud masks. In this paper, we evaluate the ability of Sentinel-2 Level-1C cloud mask products to discriminate clouds over a variety of biogeographic scenarios and in different cloudiness conditions. Reference cloud masks for the identification of misdetection were generated by applying a local thresholding method that analyses Sentinel-2 Band 2 (0.490 μm) and Band 10 (1.375 μm) separately; histogram-based thresholds were locally tuned by checking the single bands and the natural color composite (B4B3B2); in doubtful cases, NDVI and DEM were also analyzed to refine the masks; the B2B11B12 composite was used to separate snow. The analysis of the cloud classification errors obtained for our test sites allowed us to get important inferences of general value. The L1C cloud mask generally underestimated the presence of clouds (average Omission Error, OE, 37.4%); this error increased (OE > 50%) for imagery containing opaque clouds with a large transitional zone (between the cloud core and clear areas) and cirrus clouds, fragmentation emerged as a major source of omission errors (R2 0.73). Overestimation was prevalently found in the presence of holes inside the main cloud bodies. Two extreme environments were particularly critical for the L1C cloud mask product. Detection over Amazonian rainforests was highly inefficient (OE > 70%) due to the presence of complex cloudiness and high water vapor content. On the other hand, Alpine orography under dry atmosphere created false cirrus clouds. Altogether, cirrus detection was the most inefficient. According to our results, Sentinel-2 L1C users should take some simple precautions while waiting for ESA improved cloud detection products

    Evaluation of Sentinel-2A Satellite Imagery for Mapping Cotton Root Rot

    No full text
    Cotton (Gossypium hirsutum L.) is an economically important crop that is highly susceptible to cotton root rot. Remote sensing technology provides a useful and effective means for detecting and mapping cotton root rot infestations in cotton fields. This research assessed the potential of 10-m Sentinel-2A satellite imagery for cotton root rot detection and compared it with airborne multispectral imagery using unsupervised classification at both field and regional levels. Accuracy assessment showed that the classification maps from the Sentinel-2A imagery had an overall accuracy of 94.1% for field subset images and 91.2% for the whole image, compared with the airborne image classification results. However, some small cotton root rot areas were undetectable and some non-infested areas within large root rot areas were incorrectly classified as infested due to the images’ coarse spatial resolution. Classification maps based on field subset Sentinel-2A images missed 16.6% of the infested areas and the classification map based on the whole Sentinel-2A image for the study area omitted 19.7% of the infested areas. These results demonstrate that freely-available Sentinel-2 imagery can be used as an alternative data source for identifying cotton root rot and creating prescription maps for site-specific management of the disease

    Evaluation of Sentinel-2A Satellite Imagery for Mapping Cotton Root Rot

    No full text
    Cotton (Gossypium hirsutum L.) is an economically important crop that is highly susceptible to cotton root rot. Remote sensing technology provides a useful and effective means for detecting and mapping cotton root rot infestations in cotton fields. This research assessed the potential of 10-m Sentinel-2A satellite imagery for cotton root rot detection and compared it with airborne multispectral imagery using unsupervised classification at both field and regional levels. Accuracy assessment showed that the classification maps from the Sentinel-2A imagery had an overall accuracy of 94.1% for field subset images and 91.2% for the whole image, compared with the airborne image classification results. However, some small cotton root rot areas were undetectable and some non-infested areas within large root rot areas were incorrectly classified as infested due to the images’ coarse spatial resolution. Classification maps based on field subset Sentinel-2A images missed 16.6% of the infested areas and the classification map based on the whole Sentinel-2A image for the study area omitted 19.7% of the infested areas. These results demonstrate that freely-available Sentinel-2 imagery can be used as an alternative data source for identifying cotton root rot and creating prescription maps for site-specific management of the disease

    Challenges and opportunities of using ecological and remote sensing variables for crop pest and disease mapping

    Get PDF
    Crop pest and diseases are responsible for major economic losses in the agricultural systems in Africa resulting in food insecurity. Potential yield losses for major crops across Africa are mainly caused by pests and diseases. Total losses have been estimated at 70% with approximately 30% caused by inefficient crop protection practices. With newly emerging crop pests and disease, monitoring plant health and detecting pathogens early is essential to reduce disease spread and to facilitate effective management practices. While many pest and diseases can be acquired from another host or via the environment, the majority are transmitted by biological vectors. Thus, vector ecology can serve an indirect explanation of disease cycles, outbreaks, and prevalence. Hence, better understanding of the vector niche and the dependence of pest and disease processes on their specific spatial and ecological contexts is therefore required for better management and control. While research in disease ecology has revealed important life history of hosts with the surrounding environment, other aspects need to be explored to better understand vector transmission and control strategies. For instance, choosing appropriate farming practices have proved to be an alternative to the use of synthetic pesticides. For instance, intercropping can serve as a buffer against the spread of plant pests and pathogens by attracting pests away from their host plant and also increasing the distance between plants of the same species, making it more exigent for the pest to target the main crop. Many studies have explored the potential applications of geospatial technology in disease ecology. However, pest and disease mapping in crops is rather crudely done thus far, using Spatial Distribution Models (SDM) on a regional scale. Previous research has explored climatic data to model habitat suitability and the distribution of different crop pests and diseases. However, there are limitation to using climate data since it ignores the dispersal and competition from other factors which determines the distribution of vectors transmitting the disease, thus resulting in model over prediction. For instance, vegetation patterns and heterogeneity at the landscape level has been identified to play a key role in influencing the vector-host-pathogen transmission, including vector distribution, abundance and diversity at large. Such variables can be extracted from remote sensing dataset with high accuracy over a large extent. The use of remotely sensed variables in modeling crop pest and disease has proved to increase the accuracy and precision of the models by reducing over fitting as compared to when only climatic data which are interpolated over large areas thus disregarding landscape heterogeneity.When used, remotely sensed predictors may capture subtle variances in the vegetation characteristic or in the phenology linked with the niche of the vector transmitting the disease which cannot be explained by climatic variables. Subsequently, the full potential of remote sensing applications to detect changes in habitat condition of species remains uncharted. This study aims at exploring the potential behind developing a framework which integrates both ecological and remotely sensed dataset with a robust mapping/modelling approach with aim of developing an integrated pest management approach for pest and disease affecting both annual and perrennial crops and whom currently there is no cure or existing germplasm to control further spread across sub Saharan Africa.Herausforderungen und Möglichkeiten der Verwendung von ökologischen und Fernerkundungsvariablen für die Schädlings- und Krankheitskartierung Pflanzenschädlinge und Krankheiten in der Landwirtschaft sind für große wirtschaftliche Verluste in Afrika verantwortlich, die zu Ernährungsunsicherheit führen. Die Verluste werden auf 70% geschätzt, wobei etwa 30% auf ineffiziente Pflanzenschutzpraktiken zurückzuführen sind. Bei neu auftretenden Pflanzenschädlingen und Krankheiten ist die Überwachung des Pflanzenzustands und die frühzeitige Erkennung von Krankheitserregern unerlässlich, um die Ausbreitung von Krankheiten zu reduzieren und effektive Managementpraktiken zu erleichtern. Während viele Schädlinge und Krankheiten von einem anderen Wirt oder über die Umwelt erworben werden können, wird die Mehrheit durch biologische Vektoren übertragen. Daraus folgt, dass die Vektorökologie als indirekte Erklärung von Krankheitszyklen, Ausbrüchen und Prävalenz untersucht werden sollte. Um effektive Vektorkontrollmaßnahmen zu entwickeln ist ein besseres Verständnis der ökologischen Vektor-Nischen und der Abhängigkeit von Schädlings- und Krankheits-Prozessen von ihrem spezifischen räumlichen und ökologischen Kontext wichtig. Während die Forschung in der Krankheitsökologie wichtige Lebenszyklen von Wirten mit der Umgebung schon gut aufgezeigt hat, müssen weitere Aspekte noch besser untersucht werden, um Vektorübertragungs- und Kontroll-Strategien zu entwickeln. So hat sich beispielsweise die Wahl geeigneter Anbaumethoden als Alternative zum Einsatz synthetischer Pestizide erwiesen. In einigen Fällen wurde der Zwischenfruchtanbau als ‚Puffer' gegen die Ausbreitung von Pflanzenschädlingen und Krankheitserregern vorgeschlagen. Bei diesem Anbausystem werden Schädlinge von ihrer Wirtspflanze abgezogen und auch der Abstand zwischen Pflanzen derselben Art vergrößert (was eine Übertragung erschwert). Viele Studien haben bereits die Einsatzmöglichkeiten von Geodaten in der Krankheitsökologie untersucht. Die Kartierung von Schädlingen und Krankheiten in Nutzpflanzen ist jedoch bisher eher großskalig erfolgt, unter der Zunahme von sogenannten ‚Spatial Distribution Models (SDM)' auf regionaler Ebene. Etliche Studien haben diesbezüglich klimatische Daten verwendet, um die Eignung und Verteilung verschiedener Pflanzenschädlinge und Krankheiten zu modellieren. Es gibt jedoch Einschränkungen bei der Verwendung von Klimadaten, da dabei andere landschaftsbezogene Verbreitungs-Faktoren ignoriert werden, die die Verteilung der Vektoren und Krankheitserreger bestimmen, was zu einer Modell-Überprognose führt. Vegetationsmuster und Heterogenität auf Landschaftsebene beeinflussen maßgeblich die Diversität und Verteilung eines Vektors und spielen somit eine wichtige Rolle bei der Vektor-Wirt-Pathogen-Übertragung. Bei der Verwendung von Fernerkundungsdaten können subtile Abweichungen in der Vegetationscharakteristik oder in der Phänologie, die mit der Nische des Vektors verbunden sind, besser erfasst werden. Es besteht noch Forschungs-Bedarf hinsichtlich der Rolle von Fernerkundungsdaten bei der Verbesserung von Artenmodellen, die zum Ziel haben den Lebensraum von Krankheitsvektoren besser zu erfassen. Ziel dieser Studie ist es, das Potenzial für die Entwicklung eines Rahmens zu untersuchen, der sowohl ökologische als auch aus der Ferne erfasste Daten mit einem robusten Mapping- / Modellierungsansatz kombiniert, um einen integrierten Ansatz zur Schädlingsbekämpfung für Schädlinge und Krankheiten zu entwickeln, der sowohl einjährige als auch mehrjährige Kulturpflanzen betrifft Keine Heilung oder vorhandenes Keimplasma zur weiteren Verbreitung in Afrika südlich der Sahara
    corecore