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A B S T R A C T   

Norway spruce pathogenic fungi causing root, butt and stem rot represent a substantial problem for the forest 
sector in many countries. Early detection of rot presence is important for efficient management of the forest 
resources but due to its nature, which does not generate evident exterior signs, it is very difficult to detect 
without invasive measurements. Remote sensing has been widely used to monitor forest health status in relation 
to many pathogens and infestations. In particular, multi-temporal remotely sensed data have shown to be useful 
in detecting degenerative diseases. In this study, we explored the possibility of using multi-temporal and multi- 
spectral satellite data to detect rot presence in Norway spruce trees in Norway. Images with four bands were 
acquired by the Dove satellite constellation with a spatial resolution of 3 m, ranging over three years from June 
2017 to September 2019. Field data were collected in 2019–2020 by a harvester during the logging: 16163 trees 
were recorded, classified in terms of species and presence of rot at the stump and automatically geo-located. The 
analysis was carried out at individual tree crown (ITC) level, and ITCs were delineated using lidar data. ITCs were 
classified as healthy, infested and other species using a weighted Support Vector Machine. The results showed an 
underestimation of the rot presence (balanced accuracy of 56.3%, producer’s accuracies of 64.3 and 48.4% and 
user’s accuracies of 81.0% and 32.7% respectively for healthy and rot ITCs). The method can be used to provide a 
tentative map of the rot presence to guide more detailed assessments in field and harvesting activities.   

1. Introduction 

World forests are affected by several and different pathogens and 
insect attacks. Most of them usually result in the deterioration or death 
of large amounts of trees, hence increasing tree mortality and econom-
ical losses (Wermelinger, 2004). Some of these attacks are due to insects, 
whereas others are due to fungi. In any of the two cases, it is usually 
difficult to detect the infection in time to react and stop its spread across 
the forest. One of the most serious forest pathogens around Europe are 
the ones caused by fungal decay, where the decomposition of organic 
material can be seen on living trees, and is also known as rot. Depending 
on the fungus present, different organic materials are affected (Solheim, 
2010). 

There is a wide spread of fungi that causes rot (of root, butt and stem) 
and around 80% of the rot in the trees is caused by Heterobasidion spp. 

and Armillara spp. (Solheim, 2010). The two fungi differ concerning 
distribution and host tree, but the most common fungi affecting Norway 
spruce in particular are the Heterobasidion spp. (Huse et al., 1994), which 
are further divided into two subspecies, being: H. parviporum and 
H. annosum. A tree attacked by such fungi experiences a decay in the 
heartwood that becomes rot. The fungus makes the wood taken from the 
trees only usable as pulpwood or as an energy source, thus substantially 
reducing the tree’s economic value. Further, infection caused by 
H. annosum also reduces the tree growth rate, thus leading to a lower 
carbon sequestration and wood production (Oliva et al., 2012). Young 
infected trees usually die within three years. In older trees, the rot is 
chronic and develops internally, thus taking longer time for the tree to 
die (Solheim, 2010; Stenlid and Wästerlund, 1986). The most critical 
characteristic for H. annosum is that it can remain contagious for about 
50 years after a final felling, thus requiring a proper treatment of the 
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remaining stumps and roots to prevent infection of the next generation 
of trees (Solheim, 2010). 

Information regarding rot occurrence is essential for proper forest 
management and reduction of economic losses. One of the biggest 
challenges for early detection is the fact that there are almost no external 
visual signs of rot (Vollbrecht and Agestam, 1995). In particular, some 
studies showed that there is a difference in the crown density and 
structure between infected and healthy trees (Pitkänen et al., 2021; 
Žemaitis and Žemaitė, 2018). This change in any case is extremely 
difficult to note by visual inspection. Thus, detection of the infestation 
usually requires coring trees, a costly procedure when applied on a large 
scale. In fact, existing methods to provide relevant information for such 
goals are currently inefficient. The methods are time-consuming and 
performed manually on individual trees (Axmon et al., 2004), while rot 
can affect large areas within the forest, thus reducing detection effi-
ciency. Hence, with the methods currently available, inventory of large 
forest areas would require extensive resources to get a clear picture of 
rot prevalence/infection (Leckie et al., 2004). 

An alternative that could help to map extensive areas is the use of 
remotely sensed data. In fact, other plant diseases and pathogens have 
been detected with the use of remote sensing. Some of the health issues 
that have been studied include bark beetle infestations (Meddens et al., 
2013), nutrient levels (Peng et al., 2020) and water stress (Fensholt 
et al., 2010). Root, butt and stem rot caused by fungi is definitely much 
more complex to detect: the rot usually is not affecting the living tissues 
of the trees, but only its core and thus the tree could be under no stress. 
However, some studies show a minor impact of rot to tree exterior 
(Žemaitis and Žemaitė, 2018). Despite this, some studies have been 
carried out using remotely sensed data acquired from aerial or satellite 
platforms to detect rot (Allen et al., 2022; Kankaanhuhta et al., 2000; 
Ostovar et al., 2019; Räty et al., 2021). Kankaanhuhta et al. (2000) used 
an airborne imaging spectrometer in order to obtain images from three 
forest areas in Finland at 1.6 m spatial resolution with 30 spectral 
channels and at two different dates. The study allowed the detection of 
healthy and infected trees in the area obtaining a detection rate of 
healthy trees between 72% and 90% and of infected trees between 94% 
and 96%. In a similar direction, Ostovar et al. (2019) made use of un-
manned aerial vehicles (UAV) in order to detect rot stumps and measure 
the diameter of the rot stumps right after harvesting of the trees. While 
this information is relevant in order to understand the location of 
infected trees, it cannot help in detecting rot trees prior to harvest. Räty 
et al. (2021) predicted the volume of trees affected by butt rot in a spruce 
forest in Norway, using harvester, remotely sensed and environmental 
data. They found that remotely sensed predictor variables obtained from 
airborne laser scanning data and Sentinel-2 imagery were more impor-
tant than the environmental variables in predicting butt rot volume. 
Allen et al. (2022) explored the use of airborne hyperspectral data to 
predict rot presence in trees in Norway. Their experiments showed that 
it is possible to predict rot presence at individual tree crown (ITC) level 
with 64% overall classification accuracy for presence absence classifi-
cation of rot, leaving a margin for improvement. 

In order to have an individual tree level detection of rot trees, it is 
necessary to have very high spatial resolution data. Indeed, many 
studies dealing with individual tree analysis are based on airborne data. 
The main limitation of such data is that they require ad hoc acquisitions 
and the acquisition of multi-temporal data may be expensive. Moreover, 
they do not allow covering very large areas. A possible alternative to 
such limitations is the use of satellite data with high spatial and temporal 
resolution, say, between 1 m and 10 m and 1 to 7 days, respectively. 
Nevertheless, even fewer studies can be found in literature that have 
exploited such types of data for the detection of rot in forests. Navarro- 
Cerrillo et al. (2019) performed an analysis with WordView-2 data 
(spatial resolution finer than 1 m) and lidar data in order to classify 
defoliation levels in Quercus ilex L. affected by rot. They reached a 
defoliation classification accuracy ranging between 85.1% and 86.7% 
with a kappa accuracy of 0.48–0.73. This task is different, and somehow 

easier, than the rot detection itself, given the visual signs of infection. 
However, apart from the mentioned study, we are unaware of other 
studies on detection of rot infection in forest trees. However, several 
studies can be found in the context of precision agriculture, where sat-
ellite data such Sentinel-2 or Landsat have been used to detect rot in 
cotton and avocado with an overall accuracy ranging from 54% to 90%, 
depending on method and health status, among others (Peng et al., 
2020; Pérez-Bueno et al., 2019; Song et al., 2017; Wu et al., 2018). In 
this case, the type of fungi is not the same as the one affecting Norway 
spruce trees, yet, the implications are the same: it affects the root at first 
and then it moves to upper areas of the plant. The fact that avocado trees 
have similar or smaller sizes than Norway spruce trees, and that root rot 
infection has been successfully detected at Sentinel-2 or Landsat spatial 
resolutions, allow us to think that it would be possible to use multi- 
spectral satellite data in order to map rot in Norway spruce trees. 
Using multi-temporal information may compensate for the lack of fine 
spatial information. There are several studies that have shown that 
adding the temporal dimension to the data can help to better map and 
understand the behaviour of a plant, disease or other phenomena, even 
though working with limited spatial resolution (Bovolo et al., 2018; 
Dalponte et al., 2020; Solano-Correa et al., 2020). 

In the specific case of rot in Norway spruce trees, there is a clear need 
of developing a method that allows exploiting both fine spatial and fine 
temporal resolutions in order to properly map the infected trees. A map 
of this kind, included in a forest inventory, can contribute to tactical and 
operational decisions. This could result in a better economic outcome for 
the forest owners if used to take measures that reduce the negative ef-
fects of rot. In this context, this paper presents a complete system for 
detecting rot in Norway spruce trees that exploits multi-temporal sat-
ellite data acquired by the Dove sensor (3 m spatial resolution) in four 
different spectral channels. The Dove constellation is selected instead of 
other free alternatives (i.e., Sentinel-2) due to its higher spatial (3 m vs 
10 m) and temporal resolutions (daily vs 5–10 days), been more suitable 
for the analysis at tree level. The proposed approach takes advantage of 
lidar data in order to delineate the individual tree crowns and further 
performs both tree species classification and rot detection in Norway 
spruce trees by a weighted Support Vector Machine (SVM) and vegeta-
tion indexes (VIs) extracted from multi-temporal Dove multi-spectral 
data. To the best of our knowledge, this is the first time that such an 
analysis has been carried out. 

2. Materials and methods 

In Fig. 1 the adopted processing architecture is shown. The final goal 
is to obtain a rot presence map at ITC level, thus both tree species 
classification and rot detection steps are needed. In the following par-
agraphs all the data used and the adopted processing steps are described 
in detail. 

2.1. Study area, field data and remotely sensed data 

The study area is located in Etnedal municipality, south-eastern 
Norway, covering 4.2 km2 (Fig. 2). The area has steep terrain, an alti-
tude ranging from 450 to 710 m above sea level, and the forest cover is 
dominated by Norway spruce (Picea abies (L.) Karst.), with Scots pine 
(Pinus sylvestris L.) and few broadleaves species. 

The field data were collected in 2019–20 by a harvester during the 
logging. In total, 16,163 trees were recorded and automatically geo- 
located (Noordermeer et al., 2021). For each logged tree, the 
harvester operator registered the tree species, the diameter of the stump 
and the rot status at stump (presence or no presence). Norway spruce 
represented the majority of the harvested trees (16,210 trees), followed 
by Scots pine (1832 trees), and broadleaves species (890 trees). The 
harvester operator did not categorize some trees (231) in species 
because they were heavily damaged or dead. Among the Norway spruce 
trees, 13,195 were classified as healthy, while 3015 were affected by rot. 
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The species of the fungi causing the rot was not determined as no lab-
oratory analysis was conducted. 

Satellite multi-spectral images used in this study were acquired with 
the Dove constellation (also called PlanetScope). Dove is a constellation 
of >200 nano-satellites owned by the imaging company Planet Labs, Inc. 
(PlanetTeam, 2017), launched in 2017 and providing daily high reso-
lution multi-spectral images at its full capacity, composed by four 
spectral bands at 3 m spatial resolution: blue (455–515 nm), green 
(500–590 nm), red (590–670 nm), and near-infrared (780–860 nm). 
Each Dove multi-spectral image covers an area of 24 × 8 km. Though 
Dove is a commercial satellite system, many of its products are free for 
research purposes and they can be downloaded from their website (http 
s://www.planet.com). Concerning commercial use, Sozzi et al. (2018), 
in a study that compared pricing of different satellite constellations, 
reported a price of 0.012$/ha with a minimum order of 10,000 ha. All 
the available images in the study area for the months of May, June, July, 
August and September 2017, 2018 and 2019 were downloaded. Only the 
images without cloud cover or snow over the study area were kept. A 
further visual check regarding co-registration problems between images 
was performed in order to remove those that could introduce noise or 

errors in the multi-temporal analysis. This procedure was carried out 
manually, but it could be easily automated. Moreover, in an operational 
scenario could be worth to consider to apply an algorithm for automatic 
image co-registration (i.e. (Dawn et al., 2010; Tondewad and Dale, 
2020)) in order to improve the co-registration among images and in-
crease the size of the dataset. The previous conditions lead us to work 
with a total of 53 images (Fig. 3, Table S1). The number of images in 
2017 was small compared to 2018 and 2019, as the Dove constellation 
was not fully operational in 2017 and thus in May and September 2017 
no suitable images were available. 

Lidar data were collected on August 3rd, 2019 with the Leica ALS70- 
HP recording system mounted on a fixed-wing aircraft flying at 1150 m 
above ground level with a scan angle of 16◦, a pulse repetition frequency 
of 495.2 kHz and a scan rate of 68.9 Hz, resulting in a point density of 
17.6 pts/m2. Up to four returns per pulse were recorded. 

2.2. Remotely sensed data pre-processing 

The lidar point cloud was normalized to height above ground by the 
vendor. Individual tree crowns were delineated on the normalized lidar 

Fig. 1. The adopted processing architecture.  

Fig. 2. Location of the field trees (red, black and green dots in the large map), and location of the study area (red dot in the inset). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

M. Dalponte et al.                                                                                                                                                                                                                               

https://www.planet.com
https://www.planet.com


International Journal of Applied Earth Observation and Geoinformation 109 (2022) 102790

4

point cloud using the algorithm of Dalponte and Coomes (2016) 
implemented in the function itcLiDAR of the R library itcSegment. This 
algorithm is based on an adaptive local maxima filter and a region 
growing method and it has been used successfully in many previous 
studies (Coomes et al., 2017; Dalponte et al., 2018; Dalponte and 
Coomes, 2016; Nguyen et al., 2019; Versace et al., 2019). In greater 
detail, the algorithm follows two main steps: (1) local maxima extrac-
tion: a circular moving window of variable size is applied to the CHM 
(previously smoothed with a 3x3 low pass filter) to find a set of potential 
treetops (local maxima). A pixel of the CHM is labelled as local maxima 
if its value is greater than all other values in the window while being 
greater than some minimum height above ground. The window size is 
adapted according to the height of the central pixel of the window, 
which is predetermined in a user-defined look up table; (2) crown region 
growing: the algorithm iteratively searches for possible neighbouring 
pixels to grow the crown of the tree around each local maxima. A pixel 
belongs to a specific region only if its vertical distance from the local 
maximum is less than a predefined percentage of the local maximum 
height, and less than a predefined maximum difference. The process 
repeats until no further pixel is added to any region. Once the region is 
fully grown, a 2D convex hull is applied, resulting in polygons that 
represent ITCs. The delineated ITCs were matched with the field- 
measured trees using a weighted Euclidean distance between the 
delineated ITCs and the field data coordinates (Zhao et al., 2018). In 
particular, the X and Y coordinates were used along with the height. For 
the delineated ITCs, the height used was the maximum height of the 
lidar points inside the ITC, while as field height we used the one esti-
mated by the harvester. As this height is subject to some degree of error 

the height was weighted less in the Euclidean distance calculation as 
suggested by (Zhao et al., 2018). In total, 8489 field trees were linked to 
a delineated ITC, out of which 7343 were identified as spruce trees ac-
cording to the field recording. 

Given that Dove images can be acquired by different satellites and at 
different times of the day, radiometric differences can appear within the 
images that can be understood as possible changes. In order to avoid 
such errors, and considering the slow evolution of the rot infection, the 
Dove images were aggregated into 13 groups corresponding to the 
months of i-iii) June, July, and August 2017 (3 months), iv-viii) May, 
June, July, August and September 2018 (5 months) and ix-xiii) May, 
June, July, August and September 2019 (5 months). Images of each 
group were averaged per band in order to obtain one composite multi-
band image per month (13 images, one per month). 

2.3. Feature extraction 

From each of the 13 Dove monthly composite images a series of 
vegetation indices (VIs) were extracted (Table 1) using the function 
spectralIndices of the R package RStoolbox (Leutner et al., 2019). The VI 
chosen were the most common indices that could be extracted when 
having four available bands (RGB + NIR). We considered only normal-
ized VIs as they are more suitable for multi-temporal analyses. For the 
same reason we did not use the individual bands in the classification. 

Each ITC could cover more than one pixel of VI with different per-
centage of overlap, thus the weighted average of the pixels of VI images 
overlapping with each ITC was calculated in order to have one value for 
each VI, month of the year and ITC, thus reducing possible spectral 

Fig. 3. Distribution of the Dove images over the months and years considered in this study.  

Table 1 
Vegetation indices extracted from each Dove image.  

Vegetation index Equation Reference 

CTVI - Corrected Transformed 
Vegetation Index 

NDVI + 0.5
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
|NDVI + 0.5|

√
(Perry and Lautenschlager, 1984) 

GEMI - Global Environmental 
Monitoring Index η*(1 − 0.25*η) − red − 0.125

1 − red
with η =

2*
(

NIR2 − red2
)
+ 1.5*NIR + 0.5*Red

NIR + red + 0.5 

(Pinty and Verstraete, 1992) 

GNDVI - Green Normalised 
Difference Vegetation Index 

NIR − green
NIR + green 

(Gitelson and Merzlyak, 1998) 

MSAVI - Modified Soil Adjusted 
Vegetation Index 

NIR + 0.5 −
(
0.5*

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2*NIR + 1

√ )2
− 8*(NIR − (2*red) ) (Qi et al., 1994) 

MSAVI2 - Modified Soil Adjusted 
Vegetation Index 2 

2*NIR + 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2*NIR + 1)2 − 8*(NIR − red)
√

2 

(Qi et al., 1994) 

NDVI - Normalised Difference 
Vegetation Index 

NIR − red
NIR + red 

(Rouse, J.W et al., 1974) 

NRVI - Normalised Ratio 
Vegetation Index 

red
NIR

− 1

red
NIR

+ 1 

(Baret and Guyot, 1991) 

SAVI - Soil Adjusted 
Vegetation Index 

(NIR − red)*1.5
NIR + red + 0.5 

(Huete, 1988) 

TTVI - Thiam’s Transformed 
Vegetation Index 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⃒
⃒NIR − red
NIR + red

+ 0.5
⃒
⃒
⃒
⃒

√ (Thiam, 1998) 

TVI - Transformed 
Vegetation Index 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
NIR − red
NIR + red

+ 0.5
√ (Bannari et al., 1995)  
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variation/noise inside the ITCs. The weighting was conducted by 
resampling all VI images to 0.5 m. Dove pixels were divided into 36 
pixels of 0.5x0.5 m, all with the same value as the original pixel (at 3x3m 
spatial resolution). Furthermore, pixels within each ITC were averaged, 
and in this way a weight was assigned to the original pixels depending 
on the magnitude of its overlap with the ITC. 

2.4. Classification method 

The tree species classification and rot detection were done using a 
class-weighted Support Vector Machine (wSVM) (Nguyen et al., 2019). 
SVM is a well-known classifier used in many forestry and ecological 
studies (Chen et al., 2017; Dalponte et al., 2014; Durbha et al., 2007; 
Gavier-Pizarro et al., 2012; Su et al., 2015), and in the wSVM a weight is 
added inside the optimization problem of the SVM. We chose a class- 
weighted version as it is more suitable for imbalanced problems, such 
as cases where there is a predominant class (the class “healthy” in this 
study) and a rare class (the class “rot” in this study). A possible disad-
vantage of using such methods is that they usually increase the com-
mission errors for the dominant class, but we considered this an 
acceptable trade-off to improve the rot detection. 

Let us assume to have a set S containing labeled training sample units 
with their weights 

{
(xi, yi, si)

}N
i=1, where xi is the training sample unit i, 

yi is the corresponding label from the pool of the classes K = k1,⋯,kΨ, 
and si is the corresponding weight. The SVM soft margin optimization 
problem could be formulated as: 

1
2
||w| |

2
2 +C

∑N

i=1
siξi  

subject to :

{
yi(ω.Φ(xi) + b ) ≥ 1 − ξi

ξi ≥ 0, i = 1,⋯,N (1)  

where Φ is the mapping function that projects the sample units from the 
original variable space to a higher dimensional space and b is a constant 
term. C is a regularization (i.e., penalty) parameter. The penalty value C 
of mis-classification for each training sample unit has a different 
weighting effect that is driven by si. si is defined according to the 
following equation: 

si =

max
k=1,..,Ψ

(Nk)

Ni
(2)  

where Nk is the number of sample units that belong to the k-th class. 

2.5. Experimental design 

Experiments for both tree species classification and rot detection 
were carried out considering different sets of features, different time 
periods and different subsets of ITCs both utilizing uni-temporal and 
multi-temporal data (see Table 2). In particular, for ITC subsets we 
considered two different options: (1) all ITCs and (2) only the ones with 
area above 9 m2. We used a threshold of 9 m2 as it represents the original 
size of a Dove image pixel (3x3m). For the features, we considered 11 
options: (1) all indices together, or (2)-(11) every individual index alone 
(e.g., CTVI, GEMI, GNDVI, MSAVI, MSAVI2, NDVI, NRVI, SAVI, TTVI, 
TVI). Regarding time periods, we considered 22 options: (1)-(13) uni- 
temporal time slots (June 2017, July 2017, August 2017, May 2018, 
June 2018, July 2018, August 2018, September 2018, May 2019, June 
2019, July 2019, August 2019, September 2019), and (14)-(22) multi- 
temporal time periods (all, 2017, 2018, 2019, May, June, July, 
August, and September). A total of 484 combinations of ITC sizes (n =
2), features (n = 11) and time periods (n = 22) were analysed. For each 
combination, we performed a nested cross-validation: one to select the 
best parameters of the wSVM and one to provide the average accuracies 
for each combination of ITC subsets, features and time periods. The 

kernel function used in the wSVM was a radial basis function (RBF) 
kernel and the parameters optimized by a 5-fold cross validation were C 
and sigma. Nine C values and 50 sigma values were evaluated gener-
ating 450 combinations. Regarding the external cross-validation, we 
considered a 5-fold cross-validation built on a 100x100 m spatial grid 
over the study area (Solano-Correa et al., 2019). All the ITCs inside one 
square of the grid were assigned to one fold. In this way, we reduced the 
correlation among ITCs of training and validation without losing the 
representativeness of each fold in the study area. 

As the main scope of this paper is the rot detection, we will first 
present the detailed results for this task, then we will show the results for 
the tree species classification, and lastly we will show the map of rot 
infection in Norway spruce trees that is the combination of the two 
classifications. The classification map at ITCs level (for both spruce and 
rot) was constructed using the model for all ITCs. Firstly, we created the 
map of “Norway spruce” vs. “Other species” and then we classified the 
Norway spruce ITCs in “Rot” and “No rot”. 

The classification results are presented in terms of overall accuracy 
(OA), producer’s accuracy (PA), user’s accuracy (UAs) and balanced 
accuracy (BA). The BA is the average of the PAs. We used this metric as 
our classes are strongly imbalanced and thus the OA is not the best 
metric to characterize the classification results (Fernández et al., 2018). 

3. Results 

3.1. Rot detection 

In Table 3 the best results obtained for each subset of ITCs are shown. 
If we consider all the ITCs the best result (BA = 56.1%) was obtained 
using all the indices extracted from all the images (13 images × 10 
indices = 130 features). Looking at the PAs and UAs it is evident that 
there are some missed and false alarms in the prediction: regarding the 
missed alarms they are showed the PA and UA of the rot class that are 
quite low (48.4% and 32.7%), while the false alarms are highlighted by 
the not very high PA of the healthy class (64.3%). At the contrary, the 
best result (BA = 70.6%) considering only ITCs with area > 9 m2 was 
obtained with the multi-temporal values of the GNDVI index extracted 
from the 2017 images, thus using just three input features. In this case 
there are still some missed and false alarms (PA and UA of the rot class of 
66.4% and 55.6%) but they are reduced compared to the previous 
results. 

It is worth noting that the proportion of samples between the classes 
“Healthy”, “Rot” and “Other species” changes considering all ITCs and 
only ITCs with area > 9 m2. In particular, in the first case the ITCs are 
distributed as 5689 “Healthy”, 1654 “Rot” and 1146 “Other species”; 
while in the second case they are distributed as 214 “Healthy”, 70 “Rot” 
and 384 “Other species”. From these numbers it can be seen that the 
majority of the Norway spruce trees in the study area are smaller than 9 

Table 2 
Summary of the analysed ITC subsets, vegetation indices (VIs), and time periods.  

ITC subsets VIs Time periods 

Uni-temporal Multi-temporal 

All 
Area > 9 m2 

All 
CTVI 
GEMI 
GNDVI 
MSAVI 
MSAVI2 
NDVI 
NRVI 
SAVI 
TTVI 
TVI 

June 2017 
July 2017 
August 2017 
May 2018 
June 2018 
July 2018 
August 2018 
September 2018 
May 2019 
June 2019 
July 2019 
August 2019 
September 2019 

All 
2017 
2018 
2019 
May 
June 
July 
August 
September  
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m2 as there is a huge decrease in the number of available ITCs between 
the two subsets. Simultaneously, the number of “Other species” ITCs 
increases (as proportion) as species different from Norway spruce in the 
study area (i.e. pines and broadleaves) tend to have larger crowns 
compared to Norway spruce. 

In Fig. 4 the results in terms of balanced accuracy obtained for the rot 
detection with all combinations of features and time periods for all ITCs 
and only the ones with area > 9 m2 are shown. The difference in accu-
racy is small between the time periods when all ITCs were subject to 
analysis, while the time period of year appeared to be a factor with great 
influence on the results when considering the ITCs with area > 9 m2. In 
this case, the May, June and July images seem to outperform August and 
September. By averaging all the uni-temporal results against the multi- 
temporal results, the multi-temporal datasets resulted in greater 

accuracy than the uni-temporal ones. 

3.2. Tree species classification 

In Table 4 the best results are shown for the detection of the tree 
species. As can be seen with all the ITCs, all the available features are 
used, and the results are good. As for the rot detection considering only 
ITCs with area > 9 m2 the results are improving. Looking at Fig. 5 we can 
see that considering all ITCs and only the ones with area > 9 m2, the 
results with an ITC area threshold of 9 m2 are always superior to the 
others. There are five time periods for which results are showing high 
accuracies for both all ITCs and only the large ones (>9 m2): i) all the 
time periods, ii) all the time periods in 2018, iii) all the time periods in 
2019, iv) all the time periods for June, and v) all the time periods for 

Table 3 
Best results for rot classification obtained for each ITC area subsets. OA = overall accuracy; BA = balanced accuracy; PA = producer’s accuracy; UA = user’s accuracy.  

ITC 
subset 

Time 
periods 

Feature OA (%) BA 
(%) 

PA (%) UA (%) 
Healthy Rot Healthy Rot 

All All All  60.5  56.3  64.3  48.4  81.0  32.7 
Area > 9 m2 2017 GNDVI  72.5  70.6  74.8  66.4  91.3  55.6  

Fig. 4. Mean balanced accuracy for each experiment for rot detection. The names on the top describe the time period, while on the left there are the feature names 
and the ITC area thresholds. 
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July. Regarding the features, it seems that considering all the VIs or only 
the GEMI index were the best choices. 

3.3. Rot map 

In Fig. 6, the ITCs delineated using the lidar data covering the entire 
study area are shown by classification into three classes: healthy, rot and 
other species. The classification map at ITCs level (for both spruce and 
rot) was done using the models based on all ITCs. A confusion matrix 
(Table 5) and the corresponding accuracies were computed by matching 
the ITCs with the field dataset (as explained in the methods section). The 
BA of the map was 55.8% while the overall accuracy was 52.3%. 
Differently than before, these accuracies are on three classes and they 
are based on all the field data matched with an ITCs (8522 ITCs). By 

looking at the map of Fig. 6, the ITCs affected by rot are clustered in 
some areas. 

4. Discussion 

Detecting rot in Norway spruce trees is without doubt of great rele-
vance, since it could allow for decision makers to act and stop the 
propagation of the infection, hence reducing the economic losses that 
infected trees carry. Nevertheless, detecting rot is difficult because trees 
hardly show any visual signs of infection. In fact, rather few studies have 
been carried out in the literature with the aim of detecting rot in Norway 
spruce trees from remote sensing (Allen et al., 2022; Kankaanhuhta 
et al., 2000; Ostovar et al., 2019; Räty et al., 2021). 

In this study, we proposed an approach that went further on the rot 

Table 4 
Best results for tree species classification obtained for each ITC area subsets. OA = overall accuracy; BA = balanced accuracy; PA = producer’s accuracy; UA = user’s 
accuracy.  

ITC 
subsets 

Time 
periods 

Feature OA 
(%) 

BA 
(%) 

PA (%) UA (%) 
Other 
species 

Norway 
spruce 

Other 
species 

Norway 
spruce 

All All All 77  74.4  70.7  78.1  45.5  92.2 
Area > 9 m2 All GEMI 78.2  78.3  77.3  79.4  76.8  86.7  

Fig. 5. Mean balanced accuracy for each experiment for tree species classification. The names on the top describe the considered time periods, while on the left there 
are the feature names and the ITC subsets. 
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infection detection process, by exploiting the multi-temporal variable. 
Firstly, we showed that combining Dove data with ITCs delineated by 
using lidar data, it is possible to construct close to tree level (given 
Dove’s spatial resolution of 3 m that may contain more than a single 
tree) rot maps. To work at ITC level, it is necessary to have an 

appropriate point density. With a very low point density it is not possible 
to delineate ITCs with a good level of accuracy and thus an ITC level 
analysis is not possible. Nowadays many lidar surveys are done with a 
point density around or above 10 pts/m2 that is considered a good point 
density for ITCs detection. Kandare et al. (2016) showed that there was 
not a significant difference between 10 and 60 pts/m2 in ITCs detection. 
There was an improvement increasing the density but not significant. 
ITCs can be obtained nowadays in many regions/countries for which 
data from regular lidar campaigns exist (e.g., programs with repeated 
acquisitions every 10 years or so). Since lidar information is essential for 
forest inventory, its availability will increase in more and more countries 
in the future. Nevertheless, approaching the problem in a different way, 
one could work at area-based level using satellite data at a coarser res-
olution compared to Dove. From a management point of view, the 
possibility of having a rot presence map at ITC level, allows punctual, as 
well as more precise, interventions in the forest. In this way the spread of 

Fig. 6. Rot map over the study area, with zoom in over two areas of interest. The field data are represented by dots of the locations of the field trees.  

Table 5 
Confusion matrix for the species and rot map at ITC level (PA = producer’s 
accuracy; UA = user’s accuracy).    

Ground reference    

Healthy Rot Other species UA (%) 

Classification Healthy 2892 667 235  76.2  
Rot 1873 735 77  27.4  
Other species 952 263 828  40.5  
PA (%) 50.6 44.1 72.6   
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the fungi and therefore the economic loss could be minimized. The re-
sults from the present study could also help to develop better and more 
precise management strategies for forests, especially in commercially 
managed ones. Lastly, but most importantly, we showed how it is 
possible to achieve reasonable results regarding the rot detection by 
exploiting multi-temporal variables. Multi-temporal information 
allowed the identification of infected trees, leading to the construction 
of a reliable map (according to interpretation from experts in the topic 
and the studied area and according to the OA/BA) showing the possible 
locations of infected and healthy trees. 

The balance accuracy values increased with the ITCs area, both for 
the tree species classification and for rot detection. This is reasonable 
and as one would expect because (i) the actual spatial resolution of the 
Dove images is of 9 m2 and (ii) larger Norway spruce trees are expected 
to be the most mature ones. In the former case, this means that for trees 
having a crown that big, the degree of mixing with neighbouring trees 
and other land cover types is less present. Thus, a better representation 
of the spectral information and a better classification analysis can be 
carried out. In the latter case, it is known from the literature (Solheim, 
2010; Stenlid and Wästerlund, 1986) that in older trees the rot spread is 
more pronounced. 

An important factor that emerged from this study is that the use of 
multi-temporal information is providing generally better results 
compared to the use of uni-temporal information. As shown in Table 3 
the best cases for all ITCs subset were multi-temporal combinations of 
VIs. Rot is a degenerative process that changes and evolves with time, 
and thus it is expected that comparing images acquired in different years 
could help detect changes. Moreover, there may also be seasonal 
changes that can be captured by the multi-temporal data, but they are 
only slightly visible in our data. Concerning the most important vege-
tation indexes, it seems that considering only large crowns GEMI and 
GNDVI are performing better, while with all the ITCs the results are 
better with all the indexes. In general all the considered indexes include 
the NIR band that could be influenced by changes in the crown density 
and structure due to the rot presence (Pitkänen et al., 2021; ̌Zemaitis and 
Žemaitė, 2018). 

As stated in the introduction, rot can be caused by many types of 
fungi. In this study, we did not differentiate between the different types 
of fungi as our field data, collected during the harvesting, was focused 
only on the presence of heartwood rot. It is worth noting that the same 
fungi that generated heartwood rot can also generate root rot that would 
not necessarily be visible on the cut stump at all. Thus, some trees that 
were considered as healthy in our dataset could in fact have been 
affected by root rot. This could be a factor contributing to false positives 
for the rot class. Moreover, each tree could have been subject to other 
types of stressors that were not detected during the field data collection 
and that also could have increased the number of false positives. Yet, the 
results show the potential of exploiting multi-temporal information to 
help in the rot detection. 

To the best of our knowledge, only four other studies exist in liter-
ature that have carried out research to detect rot in Norway spruce trees 
with remote sensing (Allen et al., 2022; Kankaanhuhta et al., 2000; 
Ostovar et al., 2019; Räty et al., 2021). Three out of four of these studies 
did not work at ITC level. In particular, Kankaanhuhta et al. (2000) 
classified areas with predominance of healthy or infected trees, while 
Ostovar et al., (2019) classified stumps after the harvesting with high 
spatial resolution UAV data. Räty et al. (2021) did not focused directly 
on mapping rot presence but predicted rot volume at stand level 
combining both remote sensing (i.e., ALS and Sentinel-2 data) and 
environmental variables. The only study in the literature like the current 
one is the one of Allen et al. (2022) carried out on the same study area. In 
that study the authors used airborne hyperspectral data for a single date 
(30 cm spatial resolution) in order to classify only between rot and no- 
rot classes (the analysis is directly performed over Norway spruce trees). 
Comparing those results with the ones presented in Table 3 for all ITCs, 
the accuracies are comparable. The OA for Allen et al. (2022) is of 

64.81%, compared to 60.5% for this paper. The UA’s and PA’s range 
from 59.61% to 70.04% for Allen et al. (2022) and from 48.4% to 81% 
for this paper. Taking into account that Dove’s spatial resolution is 10 
times lower than that of the aerial data used by Allen et al. (2022), we 
can conclude that the proposed approach could provide useful infor-
mation for the heartwood rot detection in Norway spruce trees, by 
reducing the costs and time of those analysis. 

Even though Norway spruce classification may be conducted in 
different ways, having a proper species classification map helps to better 
map the location of trees affected by rot in any studied area. Here, 
similar to the detection of rot trees, the balanced accuracy value remains 
relatively stable considering all tree areas and only the ITCs > 9 m2 (see 
Table 4). For the multi-temporal case, all the VIs, together with multi- 
temporal data, helped to increase the balance accuracy. In the uni- 
temporal case, the best month for classification seemed to be July. 
The results obtained with ITCs with area > 9 m2 are in line with what 
could be found in the literature. Dalponte et al (2013), for example, 
found similar accuracies using hyperspectral data (with spatial resolu-
tions of 0.4 m and 1.5 m) and ranging from 68.5% − 79.2%, compared to 
77% found in this paper for All ITCs areas with 3 m spatial resolution. 

With the information on both rot and spruce location, a map showing 
infected trees (independently of the ITCs area) was constructed (see 
Fig. 6). This map and the corresponding confusion matrix (Table 5) 
demonstrated the usefulness of multi-temporal data, not only for prop-
erly mapping rot infection, but also for locating clusters of infected trees. 
As demonstrated in literature (Bovolo et al., 2018; Dalponte et al., 2020; 
Solano-Correa et al., 2020), multi-temporal’s nature, of providing 
frequent observations of the same spot, makes it possible to clearly see 
different stages of a single (or different) phenomena happening in a 
given area. This nature is essential for studying phenomena, such as rot 
infection, that develop slowly over time, but leave traces that can be 
tracked when using the temporal variable, even if with low spatial res-
olution. Such information contributes to a continuous monitoring of the 
infected areas, as well as the development of damage containment plans, 
like planting other tree species in order to limit future damages and 
reduce the spread of the fungi. 

Future developments could consider the study of other commercial 
satellites (e.g. WorldView constellation) that provide finer spatial reso-
lution (finer than 1 m) with good temporal resolution (if data is available 
in archive or by ordering new acquisitions) or data fusion with hyper-
spectral data. Finer spatial and spectral resolutions could contribute to a 
better separability among the studied classes, leading to a higher UA and 
PA. Exploitation of further spectral information offered by future Dove 
satellites (up to 8 spectral bands instead of the current 4 ones) could be 
also considered in order to help for better separability among classes. 

5. Conclusions 

A method for the detection of rot in Norway spruce trees was pro-
posed in this paper. The detection is performed at individual tree crown 
level. For this method, multi-temporal, multi-spectral images acquired 
by the Dove satellite constellation at 3 m spatial resolution, combined 
with different ITC areas, vegetation indices and time periods, were 
applied. Species classification was part of the method in order to 
improve rot detection/mapping. The results showed that detection 
models based on multi-temporal data performed better in classification 
of Norway spruce as well as classification of heartwood rot, when 
compared to results presented in literature and by considering low cost/ 
free satellite data. It was found that the best performance was achieved 
by considering multi-temporal information: (i) for 2017, with the 
GNDVI index and an ITC area > 9 m2 (OA = 72.5%, BA = 70.6%), and 
(ii) all time periods in the case of All ITCs areas (OA = 60.5%, BA =
56.3%). This allowed not only to create a map showing both infected 
and healthy Norway spruce trees, but to map the location of other 
species not affected by rot (OA = 52.3%, BA = 56.3%). The obtained 
results provide useful information for detecting root rot and can help 
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forest managers to locate possible clusters of infected trees, and imple-
ment management strategies reducing the economic losses. 
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