50 research outputs found

    Simulated Assessment of Interference Effects in Direct Sequence SpreadSpectrum (DSSS) QPSK Receiver

    Get PDF
    This research developed and validated a generic simulation for a direct sequence spread spectrum (DSSS), using differential phase shift keying (DPSK) and phase shift keying (PSK) modulations, providing the flexibility for assessing intentional interference effect using DSSS quadrature phase shift keying receiver (QPSK) with matched filtering as a reference. The evaluation compares a comprehensive pool of jamming waveforms at pass-band that include continuous wave (CW) interference, broad-band jamming, partial-band interference and pulsed interference. The methodology for jamming assessment included comparing the bit error rate (BER) versus required jamming to signal ratio (JSR) for different interferers using the Monte Carlo approach. This thesis also analyzes the effect of varying the jammer bandwidth for broad-band jammers including broad-band noise (BBN), frequency hopping interference (FHI), comb- spectrum interference (CSI), multi-tone jamming (MTJ), random frequency modulated interference (RFMI) and linear frequency modulated interference (LFMI). Also, the effect of changing the duty cycle for pulsed CW waveforms is compared with the worst case pulsed jamming equation. After the evaluation of different interferers, the research concludes that pulsed binary phase shift keying (BPSK) jamming is the most effective technique, whereas the CW tone jamming and CW BPSK interference result are least effective. It is also concluded that by finding an optimum bandwidth, FHI and BBN improves the required JSR by approximately 2.1 dB, RFMI and LFMI interference by 0.9 and 1.5 dB respectively. Alternately, MTJ and CSI improves their effectiveness in 4.1 dB and 3.6 dB respectively, matching the performance of the pulsed BPSK jammer

    Evaluation of HRI payloads for rapid precision target localization to provide information to the tactical warfighter

    Get PDF
    High Resolution Imagery (HRI) with precise location and targeting data for the warfighter has become an integral part in today's asymmetric warfare environment. This thesis conducted practical testing of systems and employed qualitative research methods to evaluate HRI payloads for SUAS to provide rapid precision target localization to the warfighter. The research attempted to evaluate new HRI systems integration with the current SUAS's to produce accurate or reduced error images for intelligence and targeting data. The targeting solutions were to be evaluated against those calculated solutions achieved on a manned aircraft. This part of the evaluation was not completed due to the discovery of radio frequency noise interference induced by systems modifications required to fit the small confines of the SUAS platform. Targeting solution research was conducted using archival images from a manned flight mission. Once the system and technology is modified to eliminate the radio frequency noise there is a high probability of successfully proving the desired capability.http://archive.org/details/evaluationofhrip109455512Approved for public release; distribution is unlimited

    Performance Study of Hybrid Spread Spectrum Techniques

    Get PDF
    This thesis focuses on the performance analysis of hybrid direct sequence/slow frequency hopping (DS/SFH) and hybrid direct sequence/fast frequency hopping (DS/FFH) systems under multi-user interference and Rayleigh fading. First, we analyze the performance of direct sequence spread spectrum (DSSS), slow frequency hopping (SFH) and fast frequency hopping (FFH) systems for varying processing gains under interference environment assuming equal bandwidth constraint with Binary Phase Shift Keying (BPSK) modulation and synchronous system. After thorough literature survey, we show that hybrid DS/FFH systems outperform both SFH and hybrid DS/SFH systems under Rayleigh fading and multi-user interference. Also, both hybrid DS/SFH and hybrid DS/FFH show performance improvement with increasing spreading factor and decreasing number of hopping frequencies

    REDESIGNING THE COUNTER UNMANNED SYSTEMS ARCHITECTURE

    Get PDF
    Includes supplementary material. Please contact [email protected] for access.When the Islamic State used Unmanned Aerial Vehicles (UAV) to target coalition forces in 2014, the use of UAVs rapidly expanded, giving weak states and non-state actors an asymmetric advantage over their technologically superior foes. This asymmetry led the Department of Defense (DOD) and the Department of Homeland Security (DHS) to spend vast sums of money on counter-unmanned aircraft systems (C-UAS). Despite the market density, many C-UAS technologies use expensive, bulky, and high-power-consuming electronic attack methods for ground-to-air interdiction. This thesis outlines the current technology used for C-UAS and proposes a defense-in-depth framework using airborne C-UAS patrols outfitted with cyber-attack capabilities. Using aerial interdiction, this thesis develops a novel C-UAS device called the Detachable Drone Hijacker—a low-size, weight, and power C-UAS device designed to deliver cyber-attacks against commercial UAVs using the IEEE 802.11 wireless communication specification. The experimentation results show that the Detachable Drone Hijacker, which weighs 400 grams, consumes one Watt of power, and costs $250, can interdict adversarial UAVs with no unintended collateral damage. This thesis recommends that the DOD and DHS incorporates aerial interdiction to support its C-UAS defense-in-depth, using technologies similar to the Detachable Drone Hijacker.DASN-OE, Washington DC, 20310Captain, United States Marine CorpsApproved for public release. Distribution is unlimited

    Latency Optimization in Smart Meter Networks

    Get PDF
    In this thesis, we consider the problem of smart meter networks with data collection to a central point within acceptable delay and least consumed energy. In smart metering applications, transferring and collecting data within delay constraints is crucial. IoT devices are usually resource-constrained and need reliable and energy-efficient routing protocol. Furthermore, meters deployed in lossy networks often lead to packet loss and congestion. In smart grid communication, low latency and low energy consumption are usually the main system targets. Considering these constraints, we propose an enhancement in RPL to ensure link reliability and low latency. The proposed new additive composite metric is Delay-Aware RPL (DA-RPL). Moreover, we propose a repeaters’ placement algorithm to meet the latency requirements. The performance of a realistic RF network is simulated and evaluated. On top of the routing solution, new asynchronous ordered transmission algorithms of UDP data packets are proposed to further enhance the overall network latency performance and mitigate the whole system congestion and interference. Experimental results show that the performance of DA-RPL is promising in terms of end-to-end delay and energy consumption. Furthermore, the ordered asynchronous transmission of data packets resulted in significant latency reduction using just a single routing metric

    Investigation of Wireless LAN for IEC 61850 based Smart Distribution Substations

    Get PDF
    The IEC 61850 standard is receiving acceptance worldwide to deploy Ethernet Local Area Networks (LANs) for electrical substations in a smart grid environment. With the recent growth in wireless communication technologies, wireless Ethernet or Wireless LAN (WLAN), standardized in IEEE 802.11, is gaining interest in the power industry for substation automation applications, especially at the distribution level. Low Voltage (LV) / Medium Voltage (MV) distribution substations have comparatively low time-critical performance requirements. At the same time, expensive but high data-rate fiber-based Ethernet networks may not be a feasible solution for the MV/LV distribution network. Extensive work is carried out to assess wireless LAN technologies for various IEC 61850 based smart distribution substation applications: control and monitoring; automation and metering; and over-current protection. First, the investigation of wireless LANs for various smart distribution substation applications was initiated with radio noise-level measurements in total five (27.6 and 13.8 kV) substations owned by London Hydro and Hydro One in London, ON, Canada. The measured noise level from a spectrum analyzer was modeled using the Probability Distribution Function (PDF) tool in MATLAB, and parameters for these models in the 2.4 GHz band and 5.8 GHz band were obtained. Further, this measured noise models were used to simulate substation environment in OPNET (the industry-trusted communication networking simulation) tool. In addition, the efforts for developing dynamic models of WLAN-enabled IEC 61850 devices were initiated using Proto-C programming in OPNET tool. The IEC 61850 based devices, such as Protection and Control (P&C) Intelligent Electronic Devices (IEDs) and Merging Unit (MU) were developed based on the OSI-7 layer stack proposed in IEC 61850. The performance of various smart distribution substation applications was assessed in terms of average and maximum message transfer delays and throughput. The work was extended by developing hardware prototypes of WLAN enabled IEC 61850 devices in the R&D laboratory at University of Western Ontario, Canada. P&C IED, MU, Processing IED, and Echo IED were developed using industrial embedded computers over the QNX Real Time Operating System (RTOS) platform. The functions were developed using hard real-time multithreads, timers, and so on to communicate IEC 61850 application messages for analyzing WLAN performance in terms of Round Trip Time (RTT) and throughput. The laboratory was set up with WLAN-enabled IEC 61850 devices, a commercially available WLAN Access Point (AP), noise sources, and spectrum and network analyzers. Performance of various smart distribution substation applications is examined within the developed laboratory. Finally, the performance evaluation was carried out in real-world field testing at 13.8 and 27.6 kV distribution substations, by installing the devices in substation control room and switchyard. The RTT of IEC 61850 based messages and operating time of the overcurrent protection using WLAN based communication network were evaluated in the harsh environment of actual distribution substations. The important findings from the exhaustive investigation were discussed throughout this work

    Design of surface acoustic wave filters and applications in future communication systems

    Get PDF

    Wireless Handheld Solution for the Gaming Industry

    Get PDF
    of the essential elements of success in the gaming industry is the requirement of providing exceptional customer service. Technology plays a significant role in bringing state of the art solutions that enhance the overall customer experience. Currently a guest must go through multiple steps and a variety of departments to simply resolve issues with their player accounts (loyalty programs), update customer profiles, book hotel and restaurant reservations, sign up for promotions, etc. In order to effectively take care of these customers in both a timely and efficient manner, a wireless handheld device is needed that employees can carry with them to resolve and address these concerns. This project is aimed at identifying the proper wireless infrastructure for the gaming environment and also the wireless handheld device, such as an Ultra Mobile PC (UMPC) to effectively and efficiently take care of customers
    corecore