238 research outputs found

    Assessing the Impact of Mobile Attackers on RPL-based Internet of Things

    Full text link
    The Internet of Things (IoT) is becoming ubiquitous in our daily life. IoT networks that are made up of devices low power, low memory, and low computing capability appears in many applications such as healthcare, home, agriculture. IPv6 Routing Protocol for Low Power and Lossy Network (RPL) has become a standardized routing protocol for such low-power and lossy networks in IoT. RPL establishes the best routes between devices according to the requirements of the application, which is achieved by the Objective Function (OF). Even though some security mechanisms are defined for external attackers in its RFC, RPL is vulnerable to attacks coming from inside. Moreover, the same attacks could has different impacts on networks with different OFs. Therefore, an analysis of such attacks becomes important in order to develop suitable security solutions for RPL. This study analyze RPL-specific attacks on networks using RPL's default OFs, namely Objective Function Zero (OF0) and the Minimum Rank with Hysteresis Objective Function (MRHOF). Moreover, mobile attackers could affect more nodes in a network due to their mobility. While the security solutions proposed in the literature assume that the network is static, this study takes into account mobile attackers.Comment: 11 pages,3 figures, Journa

    Performance analysis of Routing Protocol for Low power and Lossy Networks (RPL) in large scale networks

    Get PDF
    With growing needs to better understand our environments, the Internet-of-Things (IoT) is gaining importance among information and communication technologies. IoT will enable billions of intelligent devices and networks, such as wireless sensor networks (WSNs), to be connected and integrated with computer networks. In order to support large scale networks, IETF has defined the Routing Protocol for Low power and Lossy Networks (RPL) to facilitate the multi-hop connectivity. In this paper, we provide an in-depth review of current research activities. Specifically, the large scale simulation development and performance evaluation under various objective functions and routing metrics are pioneering works in RPL study. The results are expected to serve as a reference for evaluating the effectiveness of routing solutions in large scale IoT use cases

    OF-ECF ::a new optimization of the objective function for parent selection in RPL

    Get PDF
    The RPL routing protocol is designed to respond to the requirements of a large range of Low-power and Lossy Networks (LLNs). RPL uses an objective function (OF) to build the route toward a destination based on routing metrics. Considering only a single metric, some network performances can be improved while others may be degraded. In this paper, we present a flexible Objective Function based on Expected Transmission Count (ETX), Consumed Energy and Forwarding Delay (OF-ECF) built on a combination of metrics using an additive method. The main goal of this proposed solution is to balance energy consumption and minimize the average delay. To improve the reliability of the network, a flexible routing scheme that provides the diversity of paths and a higher availability is presented. Simulations results show that the new objective function OF-ECF outperforms the OF-FUZZY, and the standards OF0 and MRHOF. In terms of network lifetime and reliability

    Performance Assessment of Routing Protocols for IoT/6LoWPAN Networks

    Get PDF
    The Internet of Things (IoT) proposes a disruptive communication paradigm that allows smart objects to exchange data among themselves to reach a common goal. IoT application scenarios are multiple and can range from a simple smart home lighting system to fully controlled automated manufacturing chains. In the majority of IoT deployments, things are equipped with small devices that can suffer from severe hardware and energy restrictions that are responsible for performing data processing and wireless communication tasks. Thus, due to their features, communication networks that are used by these devices are generally categorized as Low Power and Lossy Networks (LLNs). The considerable variation in IoT applications represents a critical issue to LLN networks, which should offer support to different requirements as well as keeping reasonable quality-of-service (QoS) levels. Based on this challenge, routing protocols represent a key issue in IoT scenarios deployment. Routing protocols are responsible for creating paths among devices and their interactions. Hence, network performance and features are highly dependent on protocol behavior. Also, based on the adopted protocol, the support for some specific requirements of IoT applications may or may not be provided. Thus, a routing protocol should be projected to attend the needs of the applications considering the limitations of the device that will execute them. Looking to attend the demand of routing protocols for LLNs and, consequently, for IoT networks, the Internet Engineering Task Force (IETF) has designed and standardized the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL). This protocol, although being robust and offering features to fulfill the need of several applications, still presents several faults and weaknesses (mainly related to its high complexity and memory requirement), which limits its adoption in IoT scenarios. An alternative to RPL, the Lightweight On-demand Ad Hoc Distancevector Routing Protocol – Next Generation (LOADng) has emerged as a less complicated routing solution for LLNs. However, the cost of its simplicity is paid for with the absence of adequate support for a critical set of features required for many IoT environments. Thus, based on the challenging open issues related to routing in IoT networks, this thesis aims to study and propose contributions to better attend the network requirements of IoT scenarios. A comprehensive survey, reviewing state-of-the-art routing protocols adopted for IoT, identified the strengths and weaknesses of current solutions available in the literature. Based on the identified limitations, a set of improvements is designed to overcome these issues and enhance IoT network performance. The novel solutions are proposed to include reliable and efficient support to attend the needs of IoT applications, such as mobility, heterogeneity, and different traffic patterns. Moreover, mechanisms to improve the network performance in IoT scenarios, which integrate devices with different communication technologies, are introduced. The studies conducted to assess the performance of the proposed solutions showed the high potential of the proposed solutions. When the approaches presented in this thesis were compared with others available in the literature, they presented very promising results considering the metrics related to the Quality of Service (QoS), network and energy efficiency, and memory usage as well as adding new features to the base protocols. Hence, it is believed that the proposed improvements contribute to the state-of-the-art of routing solutions for IoT networks, increasing the performance and adoption of enhanced protocols.A Internet das Coisas, do inglês Internet of Things (IoT), propõe um paradigma de comunicação disruptivo para possibilitar que dispositivos, que podem ser dotados de comportamentos autónomos ou inteligentes, troquem dados entre eles buscando alcançar um objetivo comum. Os cenários de aplicação do IoT são muito variados e podem abranger desde um simples sistema de iluminação para casa até o controle total de uma linha de produção industrial. Na maioria das instalações IoT, as “coisas” são equipadas com um pequeno dispositivo, responsável por realizar as tarefas de comunicação e processamento de dados, que pode sofrer com severas restrições de hardware e energia. Assim, devido às suas características, a rede de comunicação criada por esses dispositivos é geralmente categorizada como uma Low Power and Lossy Network (LLN). A grande variedade de cenários IoT representam uma questão crucial para as LLNs, que devem oferecer suporte aos diferentes requisitos das aplicações, além de manter níveis de qualidade de serviço, do inglês Quality of Service (QoS), adequados. Baseado neste desafio, os protocolos de encaminhamento constituem um aspecto chave na implementação de cenários IoT. Os protocolos de encaminhamento são responsáveis por criar os caminhos entre os dispositivos e permitir suas interações. Assim, o desempenho e as características da rede são altamente dependentes do comportamento destes protocolos. Adicionalmente, com base no protocolo adotado, o suporte a alguns requisitos específicos das aplicações de IoT podem ou não ser fornecidos. Portanto, estes protocolos devem ser projetados para atender as necessidades das aplicações assim como considerando as limitações do hardware no qual serão executados. Procurando atender às necessidades dos protocolos de encaminhamento em LLNs e, consequentemente, das redes IoT, a Internet Engineering Task Force (IETF) desenvolveu e padronizou o IPv6 Routing Protocol for Low Power and Lossy Networks (RPL). O protocolo, embora seja robusto e ofereça recursos para atender às necessidades de diferentes aplicações, apresenta algumas falhas e fraquezas (principalmente relacionadas com a sua alta complexidade e necessidade de memória) que limitam sua adoção em cenários IoT. Em alternativa ao RPL, o Lightweight On-demand Ad hoc Distance-vector Routing Protocol – Next Generation (LOADng) emergiu como uma solução de encaminhamento menos complexa para as LLNs. Contudo, o preço da simplicidade é pago com a falta de suporte adequado para um conjunto de recursos essenciais necessários em muitos ambientes IoT. Assim, inspirado pelas desafiadoras questões ainda em aberto relacionadas com o encaminhamento em redes IoT, esta tese tem como objetivo estudar e propor contribuições para melhor atender os requisitos de rede em cenários IoT. Uma profunda e abrangente revisão do estado da arte sobre os protocolos de encaminhamento adotados em IoT identificou os pontos fortes e limitações das soluções atuais. Com base nas debilidades encontradas, um conjunto de soluções de melhoria é proposto para superar carências existentes e melhorar o desempenho das redes IoT. As novas soluções são propostas para incluir um suporte confiável e eficiente capaz atender às necessidades das aplicações IoT relacionadas com suporte à mobilidade, heterogeneidade dos dispositivos e diferentes padrões de tráfego. Além disso, são introduzidos mecanismos para melhorar o desempenho da rede em cenários IoT que integram dispositivos com diferentes tecnologias de comunicação. Os vários estudos realizados para mensurar o desempenho das soluções propostas mostraram o grande potencial do conjunto de melhorias introduzidas. Quando comparadas com outras abordagens existentes na literatura, as soluções propostas nesta tese demonstraram um aumento do desempenho consistente para métricas relacionadas a qualidade de serviço, uso de memória, eficiência energética e de rede, além de adicionar novas funcionalidades aos protocolos base. Portanto, acredita-se que as melhorias propostas contribuiem para o avanço do estado da arte em soluções de encaminhamento para redes IoT e aumentar a adoção e utilização dos protocolos estudados

    Socio-economic aware data forwarding in mobile sensing networks and systems

    Get PDF
    The vision for smart sustainable cities is one whereby urban sensing is core to optimising city operation which in turn improves citizen contentment. Wireless Sensor Networks are envisioned to become pervasive form of data collection and analysis for smart cities but deployment of millions of inter-connected sensors in a city can be cost-prohibitive. Given the ubiquity and ever-increasing capabilities of sensor-rich mobile devices, Wireless Sensor Networks with Mobile Phones (WSN-MP) provide a highly flexible and ready-made wireless infrastructure for future smart cities. In a WSN-MP, mobile phones not only generate the sensing data but also relay the data using cellular communication or short range opportunistic communication. The largest challenge here is the efficient transmission of potentially huge volumes of sensor data over sometimes meagre or faulty communications networks in a cost-effective way. This thesis investigates distributed data forwarding schemes in three types of WSN-MP: WSN with mobile sinks (WSN-MS), WSN with mobile relays (WSN-HR) and Mobile Phone Sensing Systems (MPSS). For these dynamic WSN-MP, realistic models are established and distributed algorithms are developed for efficient network performance including data routing and forwarding, sensing rate control and and pricing. This thesis also considered realistic urban sensing issues such as economic incentivisation and demonstrates how social network and mobility awareness improves data transmission. Through simulations and real testbed experiments, it is shown that proposed algorithms perform better than state-of-the-art schemes.Open Acces

    The support of multipath routing in IPv6-based internet of things

    Get PDF
    The development of IPv6-based network architectures for Internet of Things (IoT) systems is a feasible approach to widen the horizon for more effective applications, but remains a challenge. Network routing needs to be effectively addressed in such environments of scarce computational and energy resources. The Internet Engineering Task Force (IETF) specified the IPv6 Routing Protocol for Low Power and Lossy Network (RPL) to provide a basic IPv6-based routing framework for IoT networks. However, the RPL design has the potential of extending its functionality to a further limit and incorporating the support of advanced routing mechanisms. These include multipath routing which has opened the doors for great improvements towards efficient energy balancing, load distribution, and even more. This paper fulfilled a need for an effective review of recent advancements in Internet of Things (IoT) networking. In particular, it presented an effective review and provided a taxonomy of the different multipath routing solutions enhancing the RPL protocol. The aim was to discover its current state and outline the importance of integrating such a mechanism into RPL to revive its potentiality to a wider range of IoT applications. This paper also discussed the latest research findings and provided some insights into plausible follow-up researches

    Secure-Rpl: Approach To Prevent Resource-Based Attacks In Wireless Sensor Networks Using Balanced Clustering

    Get PDF
    Internet of Things (IoT) is an evolving computing technology that enables an interconnection amongst physical devices, which offers many advantages, such as easy access to information, cost effectiveness, automation, efficient resource utilisation, reduced human effort and high productivity, all of which have attracted many industry players and researchers. However, the involvement of a vast number of devices and IoT users introduces many issues, including those related to quality of service and security. In IoT, routing amongst resource-constrained devices and nodes is realised by using the routing protocol for a low-power and lossy network (RPL), which selects an optimal route according to the specific objective function

    Security and Energy Efficiency in Resource-Constrained Wireless Multi-hop Networks

    Get PDF
    In recent decades, there has been a huge improvement and interest from the research community in wireless multi-hop networks. Such networks have widespread applications in civil, commercial and military applications. Paradigms of this type of networks that are critical for many aspects of human lives are mobile ad-hoc networks, sensor networks, which are used for monitoring buildings and large agricultural areas, and vehicular networks with applications in traffic monitoring and regulation. Internet of Things (IoT) is also envisioned as a multi-hop network consisting of small interconnected devices, called ``things", such as smart meters, smart traffic lights, thermostats etc. Wireless multi-hop networks suffer from resource constraints, because all the devices have limited battery, computational power and memory. Battery level of these devices should be preserved in order to ensure reliability and communication across the network. In addition, these devices are not a priori designed to defend against sophisticated adversaries, which may be deployed across the network in order to disrupt network operation. In addition, the distributed nature of this type of networks introduces another limitation to protocol performance in the presence of adversaries. Hence, the inherit nature of this type of networks poses severe limitations on designing and optimizing protocols and network operations. In this dissertation, we focus on proposing novel techniques for designing more resilient protocols to attackers and more energy efficient protocols. In the first part of the dissertation, we investigate the scenario of multiple adversaries deployed across the network, which reduce significantly the network performance. We adopt a component-based and a cross-layer view of network protocols to make protocols secure and resilient to attacks and to utilize our techniques across existing network protocols. We use the notion of trust between network entities to propose lightweight defense mechanisms, which also satisfy performance requirements. Using cryptographic primitives in our network scenario can introduce significant computational overhead. In addition, behavioral aspects of entities are not captured by cryptographic primitives. Hence, trust metrics provide an efficient security metric in these scenarios, which can be utilized to introduce lightweight defense mechanisms applicable to deployed network protocols. In the second part of the dissertation, we focus on energy efficiency considerations in this type of networks. Our motivation for this work is to extend network lifetime, but at the same time maintain critical performance requirements. We propose a distributed sleep management framework for heterogeneous machine-to-machine networks and two novel energy efficient metrics. This framework and the routing metrics are integrated into existing routing protocols for machine-to-machine networks. We demonstrate the efficiency of our approach in terms of increasing network lifetime and maintaining packet delivery ratio. Furthermore, we propose a novel multi-metric energy efficient routing protocol for dynamic networks (i.e. mobile ad-hoc networks) and illustrate its performance in terms of network lifetime. Finally, we investigate the energy-aware sensor coverage problem and we propose a novel game theoretic approach to capture the tradeoff between sensor coverage efficiency and energy consumption

    A critical analysis of mobility management related issues of wireless sensor networks in cyber physical systems

    Get PDF
    Mobility management has been a long-standing issue in mobile wireless sensor networks and especially in the context of cyber physical systems; its implications are immense. This paper presents a critical analysis of the current approaches to mobility management by evaluating them against a set of criteria which are essentially inherent characteristics of such systems on which these approaches are expected to provide acceptable performance. We summarize these characteristics by using a quadruple set of metrics. Additionally, using this set we classify the various approaches to mobility management that are discussed in this paper. Finally, the paper concludes by reviewing the main findings and providing suggestions that will be helpful to guide future research efforts in the area
    corecore