62,783 research outputs found

    Evaluation of Performance Measures for Classifiers Comparison

    Full text link
    The selection of the best classification algorithm for a given dataset is a very widespread problem, occuring each time one has to choose a classifier to solve a real-world problem. It is also a complex task with many important methodological decisions to make. Among those, one of the most crucial is the choice of an appropriate measure in order to properly assess the classification performance and rank the algorithms. In this article, we focus on this specific task. We present the most popular measures and compare their behavior through discrimination plots. We then discuss their properties from a more theoretical perspective. It turns out several of them are equivalent for classifiers comparison purposes. Futhermore. they can also lead to interpretation problems. Among the numerous measures proposed over the years, it appears that the classical overall success rate and marginal rates are the more suitable for classifier comparison task

    A Comparative Study of Text Classification Methods: An Experimental Approach

    Get PDF
    Text classification is the process in which text document is assigned to one or more predefined categories based on the contents of document. This paper focuses on experimentation of our implementation of three popular machine learning algorithms and their performance comparative evaluation on sample English Text document categorization. Three well known classifiers namely Naïve Bayes (NB), Centroid Based (CB) and K-Nearest Neighbor (KNN) were implemented and tested on same dataset R-52 chosen from Reuters-21578 corpus. For performance evaluation classical metrics like precision, recall and micro and macro F1-measures were used. For statistical comparison of the three classifiers Randomized Block Design method with T-test was applied. The experimental result exhibited that Centroid based classifier out performed with 97% Micro F1 measure. NB and KNN also produce satisfactory performance on the test dataset, with 91% Micro F1 measure and 89% Micro F1 measure respectively

    CMRF: analyzing differential gene regulation in two group perturbation experiments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prediction methods are increasingly used in biosciences to forecast diverse features and characteristics. Binary two-state classifiers are the most common applications. They are usually based on machine learning approaches. For the end user it is often problematic to evaluate the true performance and applicability of computational tools as some knowledge about computer science and statistics would be needed.</p> <p>Results</p> <p>Instructions are given on how to interpret and compare method evaluation results. For systematic method performance analysis is needed established benchmark datasets which contain cases with known outcome, and suitable evaluation measures. The criteria for benchmark datasets are discussed along with their implementation in VariBench, benchmark database for variations. There is no single measure that alone could describe all the aspects of method performance. Predictions of genetic variation effects on DNA, RNA and protein level are important as information about variants can be produced much faster than their disease relevance can be experimentally verified. Therefore numerous prediction tools have been developed, however, systematic analyses of their performance and comparison have just started to emerge.</p> <p>Conclusions</p> <p>The end users of prediction tools should be able to understand how evaluation is done and how to interpret the results. Six main performance evaluation measures are introduced. These include sensitivity, specificity, positive predictive value, negative predictive value, accuracy and Matthews correlation coefficient. Together with receiver operating characteristics (ROC) analysis they provide a good picture about the performance of methods and allow their objective and quantitative comparison. A checklist of items to look at is provided. Comparisons of methods for missense variant tolerance, protein stability changes due to amino acid substitutions, and effects of variations on mRNA splicing are presented.</p

    Multilingual Twitter Sentiment Classification: The Role of Human Annotators

    Get PDF
    What are the limits of automated Twitter sentiment classification? We analyze a large set of manually labeled tweets in different languages, use them as training data, and construct automated classification models. It turns out that the quality of classification models depends much more on the quality and size of training data than on the type of the model trained. Experimental results indicate that there is no statistically significant difference between the performance of the top classification models. We quantify the quality of training data by applying various annotator agreement measures, and identify the weakest points of different datasets. We show that the model performance approaches the inter-annotator agreement when the size of the training set is sufficiently large. However, it is crucial to regularly monitor the self- and inter-annotator agreements since this improves the training datasets and consequently the model performance. Finally, we show that there is strong evidence that humans perceive the sentiment classes (negative, neutral, and positive) as ordered

    The Long-Short Story of Movie Description

    Full text link
    Generating descriptions for videos has many applications including assisting blind people and human-robot interaction. The recent advances in image captioning as well as the release of large-scale movie description datasets such as MPII Movie Description allow to study this task in more depth. Many of the proposed methods for image captioning rely on pre-trained object classifier CNNs and Long-Short Term Memory recurrent networks (LSTMs) for generating descriptions. While image description focuses on objects, we argue that it is important to distinguish verbs, objects, and places in the challenging setting of movie description. In this work we show how to learn robust visual classifiers from the weak annotations of the sentence descriptions. Based on these visual classifiers we learn how to generate a description using an LSTM. We explore different design choices to build and train the LSTM and achieve the best performance to date on the challenging MPII-MD dataset. We compare and analyze our approach and prior work along various dimensions to better understand the key challenges of the movie description task

    A Comparative Analysis of Ensemble Classifiers: Case Studies in Genomics

    Full text link
    The combination of multiple classifiers using ensemble methods is increasingly important for making progress in a variety of difficult prediction problems. We present a comparative analysis of several ensemble methods through two case studies in genomics, namely the prediction of genetic interactions and protein functions, to demonstrate their efficacy on real-world datasets and draw useful conclusions about their behavior. These methods include simple aggregation, meta-learning, cluster-based meta-learning, and ensemble selection using heterogeneous classifiers trained on resampled data to improve the diversity of their predictions. We present a detailed analysis of these methods across 4 genomics datasets and find the best of these methods offer statistically significant improvements over the state of the art in their respective domains. In addition, we establish a novel connection between ensemble selection and meta-learning, demonstrating how both of these disparate methods establish a balance between ensemble diversity and performance.Comment: 10 pages, 3 figures, 8 tables, to appear in Proceedings of the 2013 International Conference on Data Minin
    corecore