99,655 research outputs found

    Early evaluation of security functionality in software projects - some experience on using the common criteria in a quality management process

    Get PDF
    This paper documents the experiences of assurance evaluation during the early stage of a large software development project. This project researches, contracts and integrates privacy-respecting software to business environments. While assurance evaluation with ISO 15408 Common Criteria (CC) within the certification schemes is done after a system has been completed, our approach executes evaluation during the early phases of the software life cycle. The promise is to increase quality and to reduce testing and fault removal costs for later phases of the development process. First results from the still-ongoing project suggests that the Common Criteria can define a framework for assurance evaluation in ongoing development projects.Dieses Papier dokumentiert den Versuch, mittels der Common Criteria nach ISO 15408 bereits während der Erstellung eines Softwaresystems dessen Sicherheitseigenschaften zu überprüfen. Dies geschieht im Gegensatz zur üblichen Post-Entwicklungs-Evaluation

    Towards Identifying and closing Gaps in Assurance of autonomous Road vehicleS - a collection of Technical Notes Part 1

    Get PDF
    This report provides an introduction and overview of the Technical Topic Notes (TTNs) produced in the Towards Identifying and closing Gaps in Assurance of autonomous Road vehicleS (Tigars) project. These notes aim to support the development and evaluation of autonomous vehicles. Part 1 addresses: Assurance-overview and issues, Resilience and Safety Requirements, Open Systems Perspective and Formal Verification and Static Analysis of ML Systems. Part 2: Simulation and Dynamic Testing, Defence in Depth and Diversity, Security-Informed Safety Analysis, Standards and Guidelines

    SensorCloud: Towards the Interdisciplinary Development of a Trustworthy Platform for Globally Interconnected Sensors and Actuators

    Get PDF
    Although Cloud Computing promises to lower IT costs and increase users' productivity in everyday life, the unattractive aspect of this new technology is that the user no longer owns all the devices which process personal data. To lower scepticism, the project SensorCloud investigates techniques to understand and compensate these adoption barriers in a scenario consisting of cloud applications that utilize sensors and actuators placed in private places. This work provides an interdisciplinary overview of the social and technical core research challenges for the trustworthy integration of sensor and actuator devices with the Cloud Computing paradigm. Most importantly, these challenges include i) ease of development, ii) security and privacy, and iii) social dimensions of a cloud-based system which integrates into private life. When these challenges are tackled in the development of future cloud systems, the attractiveness of new use cases in a sensor-enabled world will considerably be increased for users who currently do not trust the Cloud.Comment: 14 pages, 3 figures, published as technical report of the Department of Computer Science of RWTH Aachen Universit

    Web engineering security: essential elements

    Get PDF
    Security is an elusive target in today’s high-speed and extremely complex, Web enabled, information rich business environment. This paper presents the idea that there are essential, basic organizational elements that need to be identified, defined and addressed before examining security aspects of a Web Engineering Development process. These elements are derived from empirical evidence based on a Web survey and supporting literature. This paper makes two contributions. The first contribution is the identification of the Web Engineering specific elements that need to be acknowledged and resolved prior to the assessment of a Web Engineering process from a security perspective. The second contribution is that these elements can be used to help guide Security Improvement Initiatives in Web Engineering

    A Framework for Evaluating Model-Driven Self-adaptive Software Systems

    Get PDF
    In the last few years, Model Driven Development (MDD), Component-based Software Development (CBSD), and context-oriented software have become interesting alternatives for the design and construction of self-adaptive software systems. In general, the ultimate goal of these technologies is to be able to reduce development costs and effort, while improving the modularity, flexibility, adaptability, and reliability of software systems. An analysis of these technologies shows them all to include the principle of the separation of concerns, and their further integration is a key factor to obtaining high-quality and self-adaptable software systems. Each technology identifies different concerns and deals with them separately in order to specify the design of the self-adaptive applications, and, at the same time, support software with adaptability and context-awareness. This research studies the development methodologies that employ the principles of model-driven development in building self-adaptive software systems. To this aim, this article proposes an evaluation framework for analysing and evaluating the features of model-driven approaches and their ability to support software with self-adaptability and dependability in highly dynamic contextual environment. Such evaluation framework can facilitate the software developers on selecting a development methodology that suits their software requirements and reduces the development effort of building self-adaptive software systems. This study highlights the major drawbacks of the propped model-driven approaches in the related works, and emphasise on considering the volatile aspects of self-adaptive software in the analysis, design and implementation phases of the development methodologies. In addition, we argue that the development methodologies should leave the selection of modelling languages and modelling tools to the software developers.Comment: model-driven architecture, COP, AOP, component composition, self-adaptive application, context oriented software developmen

    TANGO: Transparent heterogeneous hardware Architecture deployment for eNergy Gain in Operation

    Get PDF
    The paper is concerned with the issue of how software systems actually use Heterogeneous Parallel Architectures (HPAs), with the goal of optimizing power consumption on these resources. It argues the need for novel methods and tools to support software developers aiming to optimise power consumption resulting from designing, developing, deploying and running software on HPAs, while maintaining other quality aspects of software to adequate and agreed levels. To do so, a reference architecture to support energy efficiency at application construction, deployment, and operation is discussed, as well as its implementation and evaluation plans.Comment: Part of the Program Transformation for Programmability in Heterogeneous Architectures (PROHA) workshop, Barcelona, Spain, 12th March 2016, 7 pages, LaTeX, 3 PNG figure

    Agent oriented AmI engineering

    Get PDF

    STOP-IT: strategic, tactical, operational protection of water infrastructure against cyberphysical threats

    Get PDF
    Water supply and sanitation infrastructures are essential for our welfare, but vulnerable to several attack types facilitated by the ever-changing landscapes of the digital world. A cyber-attack on critical infrastructures could for example evolve along these threat vectors: chemical/biological contamination, physical or communications disruption between the network and the supervisory SCADA. Although conceptual and technological solutions to security and resilience are available, further work is required to bring them together in a risk management framework, strengthen the capacities of water utilities to systematically protect their systems, determine gaps in security technologies and improve risk management approaches. In particular, robust adaptable/flexible solutions for prevention, detection and mitigation of consequences in case of failure due to physical and cyber threats, their combination and cascading effects (from attacks to other critical infrastructure, i.e. energy) are still missing. There is (i) an urgent need to efficiently tackle cyber-physical security threats, (ii) an existing risk management gap in utilities’ practices and (iii) an un-tapped technology market potential for strategic, tactical and operational protection solutions for water infrastructure: how the H2020 STOP-IT project aims to bridge these gaps is presented in this paper.Postprint (published version
    • …
    corecore