
EARLY EVALUATION OF SECURITY FUNTIONALITY – SOME EXPERIENCE USING THE COMMON CRITERIA

1

By Tobias Scherner and Lothar Fritsch

Tobias Scherner is a researcher on multilaterally secure mobile applications
and security assurance at the Chair for M-Commerce & Multilateral Security
at Johann Wolfgang Goethe-University, Gräfstraße 78, 60054 Frankfurt (tel.
+49 69 79825301; fax: +49 69 79825306; e-mail: Tobias.Scherner@M-
Lehrstuhl.de).

Lothar Fritsch is a researcher in privacy-friendly location-based services at
the Chair for M-Commerce & Multilateral Security at Johann Wolfgang
Goethe-University, Gräfstraße 78, 60054 Frankfurt (tel. +49 69 79825301;
fax: +49 69 79825306; e-mail: Lothar.Fritsch@M-Lehrstuhl.de).

This is a research report of Johann Wolfgang Goethe University, Frankfurt am
Main, June 2007.

Abstract—This paper documents the experiences of assurance

evaluation during the early stage of a large software development

project. This project researches, contracts and integrates privacy-

respecting software to business environments. While assurance

evaluation with ISO 15408 Common Criteria (CC) within the

certification schemes is done after a system has been completed,

our approach executes evaluation during the early phases of the

software life cycle. The promise is to increase quality and to

reduce testing and fault removal costs for later phases of the

development process. First results from the still-ongoing project

suggests that the Common Criteria can define a framework for

assurance evaluation in ongoing development projects.

I. INTRODUCTION

There exist several approaches to ensure the quality of

secure software. Some of these approaches have the focus of
quality assurance at a very early stage of the development
process and have weaknesses to ensure the quality of this

process until the product is ready to enter the market. Other
approaches, like the CC, focus on inspection, or more concrete

evaluation, of ready-to-market products. We tried to introduce
an inspection process that is inspired by the CC evaluation
scheme to earlier phases of the software engineering process.

Our newly developed approach tries to bridge the gap between
requirements engineering, code production and post-
evaluation. This is motivated by two effects we expect: First,

faults discovered earlier can be removed faster, and second,
they can be removed cheaper. To show our point, we first have

a look at testing, verification and validation literature from the
software engineering field on knowledge. Then we will briefly
introduce the Common Criteria scheme. Following this, we

describe our process approach to detect security assurance
problems in the ongoing development process. In the end, we

give some first experience from the process application in a

large security software development project.

A. Cost of Testing

First, we will deal with the question whether early testing
efforts in secure software development are economically
justified or not. Early testing introduces cost into the design

phase - and it might not be trivial to find evidence whether it is
worth the investment.
In the literature, one can clearly identify that early fault

removal is more economic than late fault removal. Although
on first sight, one might conclude that early testing and

validation simply shifts testing cost to designers and
developers, some economic evidence exists that due to
network externalities, code re-use and the software engineering

process, early failure detection is notably cheaper than later
failure removal. In [1], the cost of fault removal during

different phases of software engineering increase exponentially
as listed in Table 1.

Phase Cost

Requirements 10 $
Analysis 20 $
Design 30 $

Code 50 $
Testing 200 $
Install 800 $

End User 1500 $

Table 1: Cost of fault removal in software engineering

according to [1].

Here, early fault removal clearly is much cheaper than later
fault removal..

An economic model of bug removal is constructed in [2],

where the authors gather evidence for the argument that early
bug removal is more efficient than later testing and removal.

B. Testing, Verification and Validation

In this part, we focus on fault prevention rather than fault
correction. We looked at several approaches to deal with

testing. The United States of America National Aeronautics
and Space Administration (NASA) hat a strict standard on
software quality [3]. In section 3.2.1.2.1 of the document, the

mission of software assurance is defined in this way: “A
strategy that emphasizes prevention, not correction”.
In [4], a consulting firm suggests to use CC elements for early

software validation due to the fact that the CC provide a large
variety of standardized information and processes on security

vulnerabilities. An example of using the CC during a software

Early Evaluation of Security Functionality in
Software Projects - some Experience on using
the Common Criteria in a Quality Management

Process

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14500988?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

EARLY EVALUATION OF SECURITY FUNTIONALITY – SOME EXPERIENCE USING THE COMMON CRITERIA

2

development process can be found in [5], where a Palm pda
software has been developed using a process based on the CC

requirements.

C. Common Criteria

The Common Criteria for IT Security Evaluation, short CC,

provide a collection of generic components of security
requirements to aid in the specification of product or system
security attributes. The current version 2.21 is similar to the

ISO (International Organization for Standardization) standard
15408. The traditional utilization of the CC is the usage as the

basis for evaluations of security properties of IT-systems and
software. The main objective of the CC, besides a well known
and excepted standard, is the evaluation of products. This can,

among other purposes, be used to provide users and customers
a decision support base if this evaluated object meets the own

requirements. Examples for evaluated Products are Smartcards
from the credit card sector2.
The CC advise to produce Protection Profiles (PP) and

Security Targets (ST). PP’s are an implementation-
independent set of security requirements for a category
(application specific) of Target of Evaluations (TOE) that

meet specific consumer needs. On the other hand ST’s are an
implementation-dependent set of security requirements and

specifications used as the basis for evaluation of the identified
TOE. An ST can be compared to the corresponding PPs to
assess whether the postulations of the PP are met.

Preferably, the CC shall support the developers to meet the
postulated requirements right from the beginning of the

development process. But until now this policy is not a formal
defined part of the ISO 15408 standard.

II. EARLY SECURITY VALIDATION WITH CC

Our approach is to adapt the principles of the CC of building

PP’s and ST’s during the development process without the
standardized components of the CC, but properly reflecting the
security requirements which have been defined for the project

products. The comparison of ST and PP already during the
development revealed different lacks which have been

reported to the developers to solve the problems until the next
evaluation loop. From the perspective of the project, this early
involvement of evaluators offered the chance to fix problems

with a lower cost, effort and to fulfill the high self-expectations
and the expectations of the commission and the future users.

A. Evaluation and the Common Criteria

The basis of the evaluation process is the current official
version 2.2 of the Common Criteria (CC, IS 15408). Essential

for developers is the reading of the “Common Methodology
for Information Technology Security Evaluation” [6]. This
document describes the methodology of different evaluation

assurance levels (EAL) including lists of necessary activities.

1 Common Criteria Project: The Common Criteria, Version 2.2, 2004,

similar to IS 15408: 2004.
2 A list of PP’s and evaluated products can be found under

www.commoncriteriaportal.org.

Following the methodology of the CC the assurance through
evaluation has several meanings, and the following list can be

seen as a basis of the CC evaluation [7]:
a) analysis and checking of process(es) and procedure(s);
b) checking that process(es) and procedure(s) are being

applied;
c) analysis of the correspondence between Target of
Evaluation (TOE) design representations;

d) analysis of the TOE design representation against the
requirements;

e) verification of proofs;
f) analysis of guidance documents;
g) analysis of functional tests developed and the results

provided (by the software developer);
h) independent functional testing;

i) analysis for vulnerabilities (including flaw hypothesis);
j) penetration testing.

The process of the evaluation is an integrated process over the

whole life cycle including the planning of a software project,
developing and integrating of components, installing and using
the software. So, the above listed elements of an evaluation are

far from being complete, but the different evaluation assurance
levels extend the evaluation basis by the assurance aspects

described in [7].
The evaluation of the project components is not bound to
certain evaluation levels and all the formal regulations, but

developers and evaluators have to agree on a defined level.
From the evaluation point of view the general conditions

should follow the requirements of the evaluation level 4. This
recommendation is caused by the project technical design
principles that state very clearly that the maximum of privacy

shall be achieved and to ensure that the principles are fulfilled
we need a high level of assurance.

However, the discussion about which level of assurance is
needed has to be initiated before the next evaluation cycle
starts and we want to invite everybody to contribute to this

process. Nevertheless the contribution of a delegation of the
evaluators is mandatory to come to an agreement. As an
example, the required assurance level for electronic signatures

under the electronic signature directive is EAL4+, while a
smart card reader for patient data is only tested according to

EAL3.

B. Experience with CC based project evaluation

The first cycle of the assurance evaluation according to the

Common Criteria (CC) could not be performed yet for the
version 1 prototype in its earl stage. This was caused by

several reasons. First, our analysis showed that the discrepancy
between the needed and the available documentation was too
high. We investigated this phenomenon and came to the

conclusion that developers and evaluators have a different
view on what an evaluation is. This is a commonly observable
problem while having teams of specialists in different domains

cooperating on projects. An interesting approach is to use a
prototype as a boundary object to come to a common

perspective about the requirements regarding the prototype
[8]. To build a boundary object for evaluation could be a great
chance for the project to reach to consent about the scope and

EARLY EVALUATION OF SECURITY FUNTIONALITY – SOME EXPERIENCE USING THE COMMON CRITERIA

3

to agree about the boundary conditions of evaluations within
the project.

Moreover, the assurance evaluators detected discrepancies
between different statements provided by the component
developers and the integrators about the implementation stage

of security functionalities during the preparation phase of the
evaluation. This problem seems to be caused by two associated
circumstances. The starting points were integration problems

which resulted in deviations from the integration time plan.
Thus, the deviation created stress and inhibited adequate

communication between component developers and
integrators. Thereby, the component developers had no
updated information whether their component was integrated

or not.
Secondly, the implemented security functionalities of

prototype version 1 are not as fully implemented as would
have been necessary for a successful assurance evaluation.
Especially the lack of some basic security functionality which

was omitted for undocumented reasons were strong points of
critique.
Of primary importance were the questions how to deal with the

inaccurate documentation and the lack of important security
functionalities. Facing these problems, the assurance

evaluators came to the decision of suspending the evaluation
process and instead starting to prepare the evaluation process
of version 2, and educating he developers better about

assurance preconditions.
We will now describe the pre-conditions that must be fulfilled

by the different parties to enable the prototype to enter the
evaluation process to avoid future confusions. This guidance is
intended for programmers, documentation writers and project

managers that work on component design and implementation,
or on integration. In the broader sense, this is also the path for

the preparation of the evaluation processes of the future
prototypes. We expect at least two more cycles of security
evaluation before the development is finished.

C. Basic Preconditions for an Evaluation

This section describes the basic needed preconditions for an
evaluation of the project software in general, but with the

focus on the integrated prototype. Under the notion
“precondition” we summarize all documentation that an

evaluator needs to accomplish a basic evaluation process in an
integrated manner like it is described above.
The following sections describe in detail which documentation

an evaluator will expect for:
Implemented security functions.

• Threat analysis, countermeasures, strength of the

implementation.

• Test plans.

• Best practice examples for the application prototype

on how to use the provided interfaces.

D. Implemented Security Functions

An evaluation requires a list of the implemented security

functionalities. This includes on the component level a list of
what kind of security functionalities are implemented

including the specification (e.g. kind of encryption algorithm,
description of the distribution of the keys and the storage),

which countermeasure secures against what kind of threat in
which expected strength.

On the level of the prototype, a description of the interaction
of the different components is mandatory.

E. Threat Analysis

Threat and vulnerability analyses are one of the most
important parts of the preparation material for an evaluation.
The approach of a vulnerability analysis is to find weaknesses

of the security of a system or parts of the system.
The threat analysis is based on the perceptions of the

vulnerability and characterizes the possible effects of the
found weaknesses. The documentation empowers the
evaluators to understand the background of implementations

and to come to an assessment if the known possible threats can
be counter measured by the implemented security functions.

Following the CC part 3 [7] vulnerabilities can arise through
failures in:

a) Requirements – that is, an IT product or system may

possess all the functions and features required of it and still
contain vulnerabilities that render it unsuitable or ineffective
with respect to security;

b) Construction – that is, an IT product or system does not
meet its specifications and/or vulnerabilities have been

introduced as a result of poor constructional standards or
incorrect design choices;
c) Operation – that is, an IT product or system has been

constructed correctly to a correct specification but
vulnerabilities have been introduced as a result of

inadequate control upon the operation of it.
A possible, and from our point of view, adequate presentation
of a threat analysis can be found below.

Example: communication

List of components

Compon

ent’s
name:

Compone

nt’s
number:

Interacts with

the following
components:

Description:

communi
cation

C_1 Event manager Responsible for
the communi-
cation between

the users,
service
providers and

internal
communication.

List of threats

Number of the

threat:

Description:

T_1 Communication can be eavesdropped
(and analysis provides meaningful

results).

T_2 Communication partners can be revealed
to a third party

T_3 Communication can be altered

T_4 Communication partners can forge their
identity.

T_5 ……..

EARLY EVALUATION OF SECURITY FUNTIONALITY – SOME EXPERIENCE USING THE COMMON CRITERIA

4

List of countermeasures

Number of

counter-
measure:

Description of

countermeasure:

Eases

impact of
threat

number:

Strength:

(low /
medium /

high)

CM_1 Use of encryption
mechanism like

3DES and AES

T_1, T_3 High

CM_2 Use of authentication
mechanism like

certificates

T_4 Medium

CM_3 Use of Mixes and
dummy traffic

T_2 Medium /
High

F. Test Plans

Test plans have multiple dimensions. The first dimension
concerns the components, the integration and the system as it

is for example described in [9]. Each of these levels has to be
tested and the tests have to be documented.

The second dimension covers the testing of security
functionalities, tests of the interfaces to later on used parts of
the project and handling of unexpected situations (e.g. test of

stability of the programs if these programs are contacted with
unexpected enquiries).

The documentation of the tests covers:

• The character of the conducted test (e.g. functionality,

security or stability test).

• Scope of the test (e.g. tested components, interaction
with other parts of the project software).

• The documentation of the test procedure. This

includes the test configuration including the used
tools and the underlying infrastructure inclusive test

criteria and conditions that describe why tests have
been terminated.

G. The documentation of the test results.

A suitable test standard is the IEEE standard “829-1998 IEEE
Standard for Software Test Documentation” [10] which

accurately describes the composition of test plans and offers
standardized documents to support the efficiency of the test
team and additionally the evaluators.

H. Enforcement of the Evaluation

We will evaluate the next versions of the prototype by using
the following evaluation model. In this section we describe

why this approach was changed for the integrated prototype
version 1.

1) Process One

The starting point is the test release of the prototype Version 2.

This provides an overview of the security and privacy
functionalities. The next step is to identify the integrated

components. For each component we will do an examination
of its contribution to privacy and security.
This contains in detail:

What is the purpose of the component (e. g. what the benefit of
the implementation for the end-user is)? The main sources for

this are the project- architecture-deliverables.
What are the possible threats? We will do such an analysis for
the input of the developers and create our own threat approach.

For each privacy goal, there might exist several threats. Hence,
we want to summarize how the targeted benefit of each
component can be weakened or totally neutralized through

different threats. This detailed analysis considers the fact that a
system is only as strong as its weakest part.

For the last two items we need input from the developers of the
components, who provide their threat analysis and
countermeasures as described above. The approach do create

our own threat analysis may lead to a more complete
presentation.

The next step is to analyze the specifications. The purpose is
to evaluate if the provided functionalities can deal with the
investigated threats. This should result in a first indication of

whether the prototype fulfils the claimed requirements or not.
To be able to compare the investigated requirements we have
to build a security target (ST) for the integrated prototype.

2) Process Two

Starting from the requirements postulated in the requirements
deliverable, the evaluators have to summarize and structure the
requirements regarding the integrated prototype. In the first

iteration this will not be as formalized as it is claimed in the
Common Criteria. This will be a further step towards creating

protection profiles.
Further on, the next task is to create a lightweight Protection
Profile (PP). The notation “lightweight” was chosen, because

it may not fit the formalized requirements of the Common
Criteria provided that the postulated requirements would apply

one-to-one without transformation into the structure of
functional components of the CC. So, the lightweight PP will
reflect the basic requirements [11] like unlinkablity,

pseudonymity, repudiation building and anonymous
communication in natural language and it will provide a TSF
(TOE Security Functionality) description according to the CC.

3) Joint Process

To combine the two previous parallel processes the evaluators
have to compare the Protection Profile of the users’ point of
view and the security target of the components. At this point

the evaluators have to analyze if the postulations of the
protection profile meet the requirements of the security target.

This operation can be understood as a mapping of the two
constructs. Due to the deviation of the lightweight PP from the
formalized requirements of the CC the mapping is more a

global examination whether the ST claims conformance with
the PP than a real conformance check. Nevertheless, this
should lead to an assessment in how far the prototype meets

the postulated requirements. At the end of this joint process it
is possible to get to a conclusion about the quality of

implementation of the integrated prototype.

EARLY EVALUATION OF SECURITY FUNTIONALITY – SOME EXPERIENCE USING THE COMMON CRITERIA

5

Figure 1 Process to evaluate the integrated prototype

III. CONCLUSION

Even without successfully conducting the first evaluation

cycle, the main conclusion of the iteration of the assurance

evaluation process is that the developers had difficulties to

meet the expectations of the evaluators. Overall threat models,

security mechanisms and code re-use analysis was not done.

Some components had nothing but a claim about their security

functionality, but no documentation. They missed to document

their threat and risk analysis and had to face many integration

difficulties. In addition the lack of communication among the

developers and between developers of the components and

integrators, this led to a dissatisfying first judgment about the

current step of implementation. The suggestions of the

evaluators are that the developers have to follow a more

formal process regarding analysis, specification, developing

and documentation. They should do more reflection on their

work to discover inconsistencies during their decisions and not

at the stage of delivering the prototypes to the evaluators.

Without our evaluation approach, we would not have found

many problems at this early stage. This also allows the

developers to meet the project time plans and quality demands

until the end of the project. A traditional CC evaluation would

have brought up these problems at the end of the project,

which would have endangered the success of the whole project

beyond its deadline.

Our first application of the CC based early evaluation process

discovered many design and documentation inconsistencies

and surfaced several implementation problems. It therefore can

be regarded as a success. After our next step – education of

developers about accurate analysis and documentation – we

are looking forward the next assurance cycle in December

2005 to get deeper insight in the usefulness of our evaluation

process. The results so far suggest that it supports early

security fault detection and removal, which according to

section I.A will lead to lower cost of the software engineering

process.

Much work has yet to be done. After a few more applications

of our process to software development, the economic effects

of its application should be monitored in a real project. Also,

some research among the developers about the cost of

educating and motivating them to model according to CC

requirements should be performed. Finally, modeling our CC

based approach into a procedure like the clean room software

development process might lead to a widely applicable model

for security assurance by early assurance in software projects.

This finally could be compared against other methods of early

validation.

IV. LITERATURE

[1] T. Esko, Quality Assurance in Corporate IT: It Matters More than Ever.
Los Angeles, USA: 2001.

[2] R. L. Vienneau, "The Present Value of Software Maintenance," Journal
of Parametrics. vol. 15, pp. 18-36, 1 1995.

[3] F. Gregory, SOFTWARE ASSURANCE STANDARD NASA-STD-
2201-93. Washington D.C.: 1992.

[4] R. Exler, Security and the Application Development Process. 2004.
[5] M. Vetterling, G. Wimmel and A. Wisspeintner, "Secure systems

development based on the common criteria: the PalME project,"
SIGSOFT Softw. Eng. Notes. vol. 27, pp. 129-138, 6 2002.

[6] Common Criteria Project, Common Methodology for Information
Technology Security Evaluation, Version 2.2, simular to IS 18405.
2004.

[7] Common Criteria Project, The Common Criteria Part 3. 2004.
[8] J. Gunaratne, B. Hwong, C. Nelson and A. Rudorfer, Using

Evolutionary Prototypes to Formalize Product Requirements.
Edinburgh, Scotland : 2004.

[9] R. C. Rocha and E. Martins, "A strategy to improve component
testability without source code," in Testing of Component-Based
Systems and Software Quality, S. Beydeda, V. Gruhn, J. Mayer, R.
Reussner and F. Schweiggert, Ed. Bonn: Köllen Druck+Verlag GmbH,
2004, pp. 47 - 62.

[10] IEEE Standards Association, 829-1998 IEEE Standard for Software
Test Documentation. IEEE,1998.

[11] PRIME Project, Requirements Version 0 – Part 3: Application
Requirements. 2004.

Acknowledgements

Part of this research was funded by the European Union within its IST

PRIME project. Please refer to www.prime-project.eu for further reference.

However note that this paper reflects the authors’ opinions only.

