932 research outputs found

    Evaluation of Different Soil Salinity Mapping Using Remote Sensing Techniques in Arid Ecosystems, Saudi Arabia

    Get PDF
    Land covers in Saudi Arabia are generally described as salty soils with sand dunes and sand sheets. Waterlogging and higher soil salinity are major challenges to sustaining agricultural practices in Saudi Arabia principally within closed drainage basins. Agricultural practices in Saudi Arabia were flourishing in the last two decades. The newly reclaimed lands were added annually and distributed all over the country. Irrigation techniques are mostly modernized to fulfill water saving strategies. Nevertheless, water resources in Saudi Arabia are under stress and groundwater levels are depleted rapidly due to heavy abstraction that may exceed crop water requirements in most of the cases due to high evaporation rates. The excess use of irrigational water leads to severe soil salinity problems. Applications of remote sensing technique in agricultural practices became widely distinctive and cover multidisciplinary principal interests on both local and regional levels. The most important remote sensing applications in agricultural practices are vegetation indices which are related to vegetation and water especially in an arid environment. Soil salinity mapping in an arid ecosystem using remote sensing data is a demanding task. Several soil salinity indices were implemented and evaluated to detect soil salinity effectively and quantitatively. Thematic maps of soil salinity were satisfactorily produced and assessed

    Remote sensing-based assessment of mangrove ecosystems in the Gulf Cooperation Council countries: a systematic review

    Get PDF
    Mangrove forests in the Gulf Cooperation Council (GCC) countries are facing multiple threats from natural and anthropogenic-driven land use change stressors, contributing to altered ecosystem conditions. Remote sensing tools can be used to monitor mangroves, measure mangrove forest-and-tree-level attributes and vegetation indices at different spatial and temporal scales that allow a detailed and comprehensive understanding of these important ecosystems. Using a systematic literature approach, we reviewed 58 remote sensing-based mangrove assessment articles published from 2010 through 2022. The main objectives of the study were to examine the extent of mangrove distribution and cover, and the remotely sensed data sources used to assess mangrove forest/tree attributes. The key importance of and threats to mangroves that were specific to the region were also examined. Mangrove distribution and cover were mainly estimated from satellite images (75.2%), using NDVI (Normalized Difference Vegetation Index) derived from Landsat (73.3%), IKONOS (15%), Sentinel (11.7%), WorldView (10%), QuickBird (8.3%), SPOT-5 (6.7%), MODIS (5%) and others (5%) such as PlanetScope. Remotely sensed data from aerial photographs/images (6.7%), LiDAR (Light Detection and Ranging) (5%) and UAV (Unmanned Aerial Vehicles)/Drones (3.3%) were the least used. Mangrove cover decreased in Saudi Arabia, Oman, Bahrain, and Kuwait between 1996 and 2020. However, mangrove cover increased appreciably in Qatar and remained relatively stable for the United Arab Emirates (UAE) over the same period, which was attributed to government conservation initiatives toward expanding mangrove afforestation and restoration through direct seeding and seedling planting. The reported country-level mangrove distribution and cover change results varied between studies due to the lack of a standardized methodology, differences in satellite imagery resolution and classification approaches used. There is a need for UAV-LiDAR ground truthing to validate country-and-local-level satellite data. Urban development-driven coastal land reclamation and pollution, climate change-driven temperature and sea level rise, drought and hypersalinity from extreme evaporation are serious threats to mangrove ecosystems. Thus, we encourage the prioritization of mangrove conservation and restoration schemes to support the achievement of related UN Sustainable Development Goals (13 climate action, 14 life below water, and 15 life on land) in the GCC countries

    Mapping Soil Salinity and Its Impact on Agricultural Production in Al Hassa Oasis in Saudi Arabia

    Get PDF
    Soil salinity is considered as one of the major environmental issues globally that restricts agricultural growth and productivity, especially in arid and semi-arid regions. One such region is Al Hassa Oasis in the eastern province of Saudi Arabia, which is one of the most productive date palm (Phoenix dactylifera L.) farming regions in Saudi Arabia and is seriously threatened by soil salinity. Development of remote sensing techniques and modelling approaches that can assess and map soil salinity and the associated agricultural impacts accurately and its likely future distribution should be useful in formulating more effective, long-term management plans. The main objective of this study was to detect, assess and map soil salinity and and its impact on agricultural production in the Al Hassa Oasis. The presented research first started by reviewing the related literature that have utilized the use of remote sensing data and techniques to map and monitor soil salinity. This review started by discussing soil salinity indicators that are commonly used to detect soil salinity. Soil salinity can be detected either directly from the spectral reflectance patterns of salt features visible at the soil surface, or indirectly using the vegetation reflectance since it impacts vegetation. Also, it investigated the most commonly used remote sensors and techniques for monitoring and mapping soil salinity in previous studies. Both spectral vegetation and salinity indices that have been developed and proposed for soil salinity detection and mapping have been reviewed. Finally, issues limiting the use of remote sensing for soil salinity mapping, particularly in arid and semi-arid regions have been highlighted. In the second study, broadband vegetation and soil salinity indices derived from IKONOS images along with ground data in the form of soil samples from three sites across the Al Hassa Oasis were used to assess soil salinity in the Al-Hassa Oasis. The effectiveness of these indices to assess soil salinity over a dominant date palm region was examined statistically. The results showed that very strongly saline soils with different salinity level ranges are spread across the three sites in the study area. Among the investigated indices, the Soil Adjusted Vegetation Index (SAVI), Normalized Differential Salinity Index (NDSI) and Salinity Index (SI-T) yielded the best results for assessing the soil salinity in densely vegetated area, while NDSI and SI-T revealed the highest significant correlation with salinity for less densely vegetated lands and bare soils. In the third study, combined spectral-based statistical regression models were developed using IKONOS images to model and map the spatial variation of the soil salinity in the Al Hassa Oasis. Statistical correlation between Electrical Conductivity (EC), spectral indices and IKONOS original bands showed that the Salinity Index (SI) and red band (band 3) had the highest correlation with EC. Integrating SI and band 3 into one model produced the best fit with R2 = 0.65. The high performance of this combined model is attributed to: (i) the spatial resolution of the images; (ii) the great potential of SI in enhancing and delineating the spatial variation of soil salinity; and (iii) the superiority of band 3 in retrieving soil salinity features and patterns. Soil salinity maps generated using the selected model showed that strongly saline soils (>16 dS/m) with variable spatial distribution were the dominant class over the study area. The spatial variability of this class over the investigated areas was attributed to a variety factors, including soil factors, management related factors and climate factors.16 dS/m) with variable spatial distribution were the dominant class over the study area. The spatial variability of this class over the investigated areas was attributed to a variety factors, including soil factors, management related factors and climate factors. In the fourth study, Landsat time series data of years 1985, 2000 and 2013 were used to detect the temporal change in soil salinity and vegetation cover in the Al Hassa Oasis and investigate whether there is any linkage of vegetation cover change to the change in soil salinity over a 28-year period. Normalized Difference Vegetation Index (NDVI) and Soil Salinity Index (SI) differencing images were used to identify vegetation and salinity change/no-change for the two periods. The results revealed that soil salinity during 2000-2013 exhibited much higher increase compared to 1985-2000, while the vegetation cover declined for the same period. Highly significant (p In the fifth study, the effects of physical and proximity factors, including elevation, slope, soil salinity, distance to water, distance to built-up areas, distance to roads, distance to drainage and distance to irrigation factors on agricultural expansion in the Al Hassa Oasis were investigated. A logistic regression model was used for two time periods of agricultural change in 1985 and 2015. The probable agricultural expansion maps based on agricultural changes in 1985 was used to test the performance of the model to predict the probable agricultural expansion after 2015. This was achieved by comparing the probable maps of 1985 and the actual agricultural land of 2015 model. The Relative Operating Characteristic (ROC) method was also used and together these two methods were used to validate the developed model. The results showed that the prediction model of 2015 provides a reliable and consistent prediction based on the performance of 1985. The logistic regression results revealed that among the investigated factors, distance to water, distance to built-up areas and soil salinity were the major factors having a significant influence on agricultural expansion. In the last study, the potential distribution of date palm was assessed under current and future climate scenarios of 2050 and 2100. Here, CLIMEX (an ecological niche model) and two different Global Climate Models (GCMs), CSIRO-Mk3.0 (CS) and MIROC-H (MR), were employed with the A2 emission scenario to model the potential date palm distribution under current and future climates in Saudi Arabia. A sensitivity analysis was conducted to identify the CLIMEX model parameters that had the most influence on date palm distribution. The model was also run with the incorporation of six non-climatic parameters, which are soil taxonomy, soil texture, soil salinity, land use, landform and slopes, to further refine the distributions. The results from both GCMs showed a significant reduction in climatic suitability for date palm cultivation in Saudi Arabia by 2100 due to increment of heat stress. The lower optimal soil moisture, cold stress temperature threshold and wet stress threshold parameters had the greatest impact on sensitivity, while other parameters were moderately sensitive or insensitive to change. A more restricted distribution was projected with the inclusion of non-climatic parameters. Overall, the research demonstrated the potential of remote sensing and modeling techniques for assessing and mapping soil salinity and providing the essential information of its impacts on date palm plantation. The findings provide useful information for land managers, environmental decision makers and governments, which may help them in implementing more suitable adaptation measures, such as the use of new technologies, management practices and new varieties, to overcome the issue of soil salinity and its impact on this important economic crop so that long-term sustainable production of date palm in this region can be achieved. Additionally, the information derived from this research could be considered as a useful starting point for public policy to promote the resilience of agricultural systems, especially for smallholder farmers who might face more challenges, if not total loss, not only due to soil salinity but also due to climate change

    Desertification

    Get PDF
    IPCC SPECIAL REPORT ON CLIMATE CHANGE AND LAND (SRCCL) Chapter 3: Climate Change and Land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystem

    Consideration of NDVI thematic changes in density analysis and floristic composition of Wadi Yalamlam, Saudi Arabia

    Get PDF
    Wadi Yalamlam is known as one of the significant wadis in the west of Saudi Arabia. It is a very important water source for the western region of the country. Thus, it supplies the holy places in Mecca and the surrounding areas with drinking water. The floristic composition of Wadi Yalamlam has not been comprehensively studied. For that reason, this work aimed to assess the wadi vegetation cover, life-form presence, chorotype, diversity, and community structure using temporal remote sensing data. Temporal datasets spanning 4 years were acquired from the Landsat 8 sensor in 2013 as an early acquisition and in 2017 as a late acquisition to estimate normalized difference vegetation index (NDVI) changes. The wadi was divided into seven stands. Stands 7, 1, and 3 were the richest with the highest Shannon index values of 2.98, 2.69, and 2.64, respectively. On the other hand, stand 6 has the least plant biodiversity with a Shannon index of 1.8. The study also revealed the presence of 48 different plant species belonging to 24 families. Fabaceae (17&thinsp;%) and Poaceae (13&thinsp;%) were the main families that form most of the vegetation in the study area, while many families were represented by only 2&thinsp;% of the vegetation of the wadi. NDVI analysis showed that the wadi suffers from various types of degradation of the vegetation cover along with the wadi main stream.</p

    Using Multi-indices Approach to Quantify Mangrove Changes Over the Western Arabian Gulf along Saudi Arabia Coast

    Get PDF
    Mangroves habitat present an important resource for large coastal communities benefiting from activities such as fisheries, forest products and clean water as well as protection against coastal erosion and climate related extreme events. Yet they are increasingly threatened by natural pressure and anthropogenic activities. We observed an inaccurate distribution of mangroves over the Western Arabian Gulf (WAG) which is a vital habitat and resource for the local ecosystem, according to the United Stated Geological Survey (USGS) mangrove database through spectral analysis. Change detection analysis is conducted on mangrove forests along the Saudi Arabian coast of the WAG for the years 2000, 2010 and 2018 using Landsat 7 & 8 data. Three supervised classification methodologies are employed for mangrove mapping, including Supported Vector Machine (SVM), Decision Tree (DT), referred to as Classification and Regression Trees (CART) and Random Forest (RF). CART’s accuracy was recorded to be \u3e95% while other classifiers were \u3e90%. The CART supervised learning classifier, mapping mangroves’ distribution and biomass using Google Earth Engine (GEE) online platform, indicates an overall increase in the northern Tarut Bay and Tarut Island, by 0.21 km2 from 2000 to 2010 and by 1.4 km2 from 2010 to 2018. The increase might be due to mitigation strategies such as mangrove breeding and plantation. It can be challenging to detect changes in certain regions due to the inadequate resolution of Landsat where submerged mangroves can be confused with salt marshes and macro algae. We employed a new method to identify and analyze submerged mangrove forests distribution via a submerged mangrove recognition index (SMRI) and Normalized Difference Vegetation Index (NDVI) in Abu Ali Island. Our results show the robustness of SMRI as an effective indicator to detect submerged mangroves in both high and medium spatial resolution satellite images. NDVI values differentiated submerged mangroves from tidal flats between Landsat 7 & 8 as well as during conditions of low and high tides. High resolution WorldView-2 image showed agreement of mangroves distribution with the SMRI and NDVI results

    An Assessment of the Hydrological Trends Using Synergistic Approaches of Remote Sensing and Model Evaluations over Global Arid and Semi-Arid Regions

    Get PDF
    Drylands cover about 40% of the world’s land area and support two billion people, most of them living in developing countries that are at risk due to land degradation. Over the last few decades, there has been warming, with an escalation of drought and rapid population growth. This will further intensify the risk of desertification, which will seriously affect the local ecological environment, food security and people’s lives. The goal of this research is to analyze the hydrological and land cover characteristics and variability over global arid and semi-arid regions over the last decade (2010–2019) using an integrative approach of remotely sensed and physical process-based numerical modeling (e.g., Global Land Data Assimilation System (GLDAS) and Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS) models) data. Interaction between hydrological and ecological indicators including precipitation, evapotranspiration, surface soil moisture and vegetation indices are presented in the global four types of arid and semi-arid areas. The trends followed by precipitation, evapotranspiration and surface soil moisture over the decade are also mapped using harmonic analysis. This study also shows that some hotspots in these global drylands, which exhibit different processes of land cover change, demonstrate strong coherency with noted groundwater variations. Various types of statistical measures are computed using the satellite and model derived values over global arid and semi-arid regions. Comparisons between satellite- (NASA-USDA Surface Soil Moisture and MODIS Evapotranspiration data) and model (FLDAS and GLDAS)-derived values over arid regions (BSh, BSk, BWh and BWk) have shown the over and underestimation with low accuracy. Moreover, general consistency is apparent in most of the regions between GLDAS and FLDAS model, while a strong discrepancy is also observed in some regions, especially appearing in the Nile Basin downstream hyper-arid region. Data-driven modelling approaches are thus used to enhance the models’ performance in this region, which shows improved results in multiple statistical measures ((RMSE), bias (ψ), the mean absolute percentage difference (|ψ|)) and the linear regression coefficients (i.e., slope, intercept, and coefficient of determination (R2))

    Remote sensing approaches and mapping methods for monitoring soil salinity under different climate regimes

    Get PDF
    Soil salinization is one of the severe land-degradation problems due to its adverse effects on land productivity. Each year several hectares of lands are degraded due to primary or secondary soil salinization, and as a result, it is becoming a major economic and environmental concern in different countries. Spatio-temporal mapping of soil salinity is therefore important to support decisionmaking procedures for lessening adverse effects of land degradation due to the salinization. In that sense, satellite-based technologies provide cost effective, fast, qualitative and quantitative spatial information on saline soils. The main objective of this work is to highlight the recent remote sensing (RS) data and methods to assess soil salinity that is a worldwide problem. In addition, this study indicates potential linkages between salt-affected land and the prevailing climatic conditions of the case study areas being examined. Web of science engine is used for selecting relevant articles. "Soil salinity" is used as the main keyword for finding "articles" that are published from January 1, 2007 up to April 30, 2018. Then, 3 keywords; "remote sensing", "satellite" and "aerial" were used to filter the articles. After that, 100 case studies from 27 different countries were selected. Remote sensing based researches were further overviewed regarding to their location, spatial extent, climate regime, remotely sensed data type, mapping methods, sensing approaches together with the reason of salinity for each case study. In addition, soil salinity mapping methods were examined to present the development of different RS based methods with time. Studies are shown on the Köppen-Geiger climate classification map. Analysis of the map illustrates that 63% of the selected case study areas belong to arid and semi-arid regions. This finding corresponds to soil characteristics of arid regions that are more susceptible to salinization due to extreme temperature, high evaporation rates and low precipitation

    Rainwater Harvesting for Agricultural Irrigation: An Analysis of Global Research

    Get PDF
    Within a context of scarce water resources for agriculture, rainwater harvesting constitutes a promising alternative that has been studied by different disciplines in recent years. This article analyses the dynamics of global research on rainwater harvesting for agricultural irrigation over the last two decades. To do this, qualitative systematic analysis and quantitative bibliometric analysis have been carried out. The results reveal that this line of research is becoming increasingly important within research on irrigation. Environmental sciences and agricultural and biological sciences are the most relevant subject areas. Agricultural Water Management, Physics and Chemistry of the Earth, and Irrigation and Drainage are the journals that have published the most articles on the subject. India, China, the United States (USA), South Africa, and the Netherlands are the countries that lead this line of research. Although significant progress has been made in this subject area, it is necessary to increase the number of studies on the capacity of rainwater harvesting systems to cover irrigation needs in different farming contexts, the factors that determine their adoption by farmers, the economic and financial feasibility of their implementation, and their contribution to mitigating global climate change

    Comparison Of Soil Salinity Between Laboratory Analysis And Remote Sensing Data In Al-Jafarah, Libya

    Get PDF
    Matlamat penyelidikan ini adalah untuk memeta ruang taburan tanah masin di lokasi yang berbeza di dataran Al-jafarah dan menentukan tahap kemasinan tanah dan membandingkannya dengan imej yang diperoleh daripada satelit landsat 7 ETM+. Sejumlah enam puluh (60) sampel dikumpul secara rawak daripada permukaan tanah pada kedalaman di antara 10-50 cm. dan diukur kandungan tanah selaras dengan Prosedur Piawaian Makmal Libya. Data kajian diperoleh daripada ujian makmal dan imej satelit landsat ETM+ 2010. Landsat 7 ETM+ (Enhanced thematic mapper plus) digunakan untuk memeta dan mencerap tanah masin di kawasan kajian. Keputusan yang diperoleh daripada makmal dan imej satelit apabila dibandingkan menunjukkan bahawa tanah masin hanya terdapat di kawasan paya. The aim of this research is to map the spatial of the distribution of saline soils in the different locations in the Al-jafarah plain and to determine the level of salinity in the soil and compare against the satellite images landsat 7 ETM+. Sixty samples were collected randomly from the 10-50 cm surface soil layer and measured for salt content in accordance with Libyan laboratory standard procedures. Data collected for this study involves laboratory testing and satellite images landsat ETM+ 2010. Landsat 7 Enhanced thematic mapper plus (ETM+) was used to map and observe saline soil in the study area. The results derived from the laboratory and satellite images, when compared against each other, have found that the saline soil is present in marshes, none in other areas
    corecore