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Abstract  26 

 Mangroves habitat present an important resource for large coastal communities 27 

benefiting from activities such as fisheries, forest products and clean water as well as 28 
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protection against coastal erosion and climate related extreme events. Yet they are 29 

increasingly threatened by natural pressure and anthropogenic activities. We observed an 30 

inaccurate distribution of mangroves over the Western Arabian Gulf (WAG) which is a 31 

vital habitat and resource for the local ecosystem, according to the United Stated 32 

Geological Survey (USGS) mangrove database through spectral analysis. Change 33 

detection analysis is conducted on mangrove forests along the Saudi Arabian coast of the 34 

WAG for the years 2000, 2010 and 2018 using Landsat 7 & 8 data. Three supervised 35 

classification methodologies are employed for mangrove mapping, including Supported 36 

Vector Machine (SVM), Decision Tree (DT), referred to as Classification and Regression 37 

Trees (CART) and Random Forest (RF). CART’s accuracy was recorded to be >95% 38 

while other classifiers were >90%. The CART supervised learning classifier, mapping 39 

mangroves’ distribution and biomass using Google Earth Engine (GEE) online platform, 40 

indicates an overall increase in the northern Tarut Bay and Tarut Island, by 0.21 km2 from 41 

2000 to 2010 and by 1.4 km2 from 2010 to 2018. The increase might be due to mitigation 42 

strategies such as mangrove breeding and plantation.  It can be challenging to detect 43 

changes in certain regions due to the inadequate resolution of Landsat where submerged 44 

mangroves can be confused with salt marshes and macro algae.  We employed a new 45 

method to identify and analyze submerged mangrove forests distribution via a submerged 46 

mangrove recognition index (SMRI) and normalized difference vegetation index (NDVI) 47 

in Abu Ali Island. Our results show the robustness of SMRI as an effective indicator to 48 

detect submerged mangroves in both high and medium spatial resolution satellite images. 49 

NDVI values differentiated submerged mangroves from tidal flats between Landsat 7 & 50 

8 as well as during conditions of low and high tides. High resolution WorldView-2 image 51 

showed agreement of mangroves distribution with the SMRI and NDVI results.   52 

 53 
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 61 

1. Introduction 62 

Mangrove forests are present in the intertidal zone, located within small groups of 63 

trees and shrubs in the harsh interface between sea and land. They are distributed largely 64 

in the tropical and subtropical areas between 30°N and 30°S latitude. As a habitat to rich 65 

and biologically complex species, they are one of the most productive ecosystems in the 66 

world (Donato et al., 2011), providing considerable services to human communities with 67 

ecological and economic values to protect shoreline from storms, erosion, and 68 

sedimentation (Moore et al., 2015), as well as providing nutrients for algae blooms (Li et 69 

al., 2017; Li et al., 2018). The protective role of mangrove forests was also recognized 70 

during Asian Tsunami of 2004 and other natural disasters such as hurricanes (Danielsen, 71 

2005; Kathiresan and Rajendran, 2005). The analysis of the economic values of the 72 

mangrove forests is necessary for integrated land use planning and environmental 73 

decision-making (Vo et al., 2012). A Mangrove Quality Index (MQI), ranking 1(worst) 74 

to 5 (excellent), was developed to evaluate the overall mangrove health status of 75 

mangrove ecosystems in Matang, Malaysia (Faridah-Hanum et al., 2019).  76 

In addition, mangrove forests, acting as significant carbon sinks, play an important 77 

role in climate change (Donato et al., 2011). However, mangroves are threatened due to 78 
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both anthropogenic and natural stressors. For instance, over the western Arabian Gulf, 79 

increased soil contaminations of heavy metals was found in the mangrove habitats (Al-80 

Kahtany et al., 2018; Almahasheer, 2019). One third of their forests has been lost in the 81 

past half century (Alongi, 2002). It is estimated that 35% of the mangrove forests were 82 

lost during 1980 to 2005 ( Millennium Ecosystem Assessment, 2005) in a much faster 83 

declining rate than coral reefs and inland tropical forests (Duke et al., 2007). Mangrove 84 

habitat land use change is used as an indicator for environmental quality, for instance, 85 

such a change can affect soil microbial biomass (Dinesh and Ghoshal Chaudhuri, 2013), 86 

as well as intertidal fish communities (Ellis and Bell, 2013). If no actions are taken to 87 

protect the mangrove ecosystem, 30%-40% of coastal wetlands and 100% of mangrove 88 

forest could lose their functionalities in the next 100 years with the present declining rate 89 

(Shapiro et al., 2015).  90 

Mangrove forests cover around 152,000 km2 in 123 countries and territories in the 91 

tropics and subtropics of the world (Spalding et al., 2010), among which Middle East 92 

region has 624 km2, about 0.4% of global coverage. Arabian Gulf, one of the most 93 

important inland sea at this region, is little known about its coverage and distribution of 94 

mangrove forests. The Arabian Gulf is a shallow basin of an average depth of 35m, 95 

extending approximately 24° - 30°N and 48° - 56°E (Al-Muzaini and Jacob, 1996). Its 96 

coastlines, which is the most arid in the world, were formed in the past 3000 – 6000 years 97 

(Burt, 2014). The water temperature vary from around 12°C - 35°C (Price et al., 1993), 98 

and the surface temperature in intertidal zones can exceed 50°C in the summer (Burt, 99 

2014). The salinity in the Arabian Gulf is as high as 43 psu and may even reach 70-80 100 

psu in tidal pools and lagoons. This is due to the high-latitude geographical location, high 101 

evaporation rates, as well as relative shallowness. In such an extreme environment, most 102 

of the marine species in the Arabian Gulf reach their tolerance limits (Price et al., 1993). 103 
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Mangroves, however, are able to survive in this region because they tolerate the high 104 

salinity at early stages of development (Naser and Hoad, 2011). One type of mangroves, 105 

Avicennia marina, can be sparsely found at the southern shores, confined to sheltered 106 

coastal areas along the coastlines of Saudi Arabia, Arab Emirates and Qatar (Burt, 2014). 107 

Despite the low volume, low diversity and intermittent occurrence of mangroves, the 108 

presence is of significant ecological importance in this region. Mangroves are among the 109 

only trees in the desert landscape, offering food for livestock and other wild animals. 110 

They support a variety of essential species of birds, fish, shrimps and turtles, contributing 111 

substantially to the coastal productivity (Al-Maslamani et al., 2013). It has been reported 112 

that Tarut Bay alone has lost a significant 55% mangrove forests (mostly in the south part) 113 

from 1972 till 2011 (Almahasheer et al., 2013). This is attributed to human and 114 

environmental pressures such as pollutants, land reclamation and urban encroachment. 115 

On the other hand a regional research of decadal changes of the Red Sea mangrove forest 116 

showed a slight increase of its coverage (Almahasheer et al., 2016). Fortunately, the 117 

mangrove forests has been in a recovery process with small increase by plantation 118 

activities by both government (i.e., the Ministry of Agriculture) and industry (Saudi-119 

Aramco 2016) in Saudi Arabia. As early as 1970s, vegetation indices had been used for 120 

quantitative measurement of vegetation conditions (Rouse et al., 1973; Gitelson et al., 121 

1996; Ahamed et al., 2011). High spatial resolution remote sensing imagery could 122 

generate various vegetation indices, such as Normalized Difference Vegetation Index 123 

(NDVI, NDVI2), Normalized Difference Red Edge index (NDRE, NDRE2), Green 124 

Normalized Difference Vegetation Index (GNDVI) and Chlorophyll Vegetation Index 125 

(CVI), which have been widely investigated to mangrove and other species, such as 126 

mangrove canopy chlorophyll concentration (Heenkenda et al., 2014, 2015, Vincini et al., 127 

2007, 2008), feedstock biomass production (Ahamed et al., 2011), and low and high 128 
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density mangrove estimation (Mutanga et al., 2012; Al-Ali et al. 2015; Almahasheer et 129 

al. 2013, 2016).    130 

Mangroves have very distinct spectral features in remote sensing data, especially in 131 

the spectral ranges corresponding to the visible red, near-infrared, and mid-infrared, 132 

making it easier to classify than other land cover types. The best combination of spectral 133 

bands to detect mangroves are Landsat 7 bands 3 (0.63–0.69μm), 4 (0.77–0.90μm), 5 134 

(1.55–1.75μm), and 7 (2.09–2.35μm) (Giri, 2016). Therefore, indices like the Normalized 135 

Difference Vegetation Index (NDVI) are useful in identification it has been employed for 136 

other applications (Kim et al., 2014; Whitney et al., 2018). Recent advancement in 137 

computing and information technology, image-processing methodologies, as well as the 138 

availability of remote sensing data, have provided an opportunity to monitor mangroves 139 

at regional and global scales on a consistent and regular basis. Meanwhile, there has been 140 

an increase in high-performance cloud computing platforms, such as the NASA Earth 141 

Exchange (NEX), Amazon Web Service (AWS), and Google Earth Engine (GEE). The 142 

advantages of cloud computing include the parallel computing, offering nearly unlimited 143 

computer processing capabilities, as well as free access to a large volume of satellite 144 

remote sensing data stored in the remote cloud drives. This eliminates the need for large 145 

external hard disk storage and facilitates easy data access. For example, GEE provides 146 

preprocessed Sentinel data (2014 - present), Landsat data (1982-present), as well as 147 

advanced classification machine learning algorithms accessible through JavaScript and 148 

Python programs (Giri et al., 2015). One research project utilized GEE to analyze the 149 

changes of mangrove forests over 30 years in Thailand (Pimple et al., 2018). It is 150 

noteworthy that this Thailand mangrove study didn’t use the Landsat 7 data after 2003 151 

and had a missing scene in the year of 2012. This is because Landsat 7 Enhanced 152 

Thematic Mapper (ETM) sensor had a failure of the Scan Line Corrector (SLC) on 31 153 
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May 2003. Since that time all Landsat ETM data has wedge-shaped gaps on both sides of 154 

each scene, resulting in approximately 22% of data loss.  155 

Mangrove forests mapping methods are usually based on a single-day imagery 156 

analysis, which can suffer from low or high tides. Such analysis can suffer by not taking 157 

the tide levels into consideration given that mangrove forests are periodically submerged 158 

by tides. This can impose a problem of over or under estimation in mangrove mapping 159 

when the images are observed during high-tide periods. Since mangroves grow along 160 

often-narrow extent along coastlines, detailed mangrove ecosystem characterization 161 

becomes difficult with moderate-resolution (30 m) satellite data and there is a need for 162 

high-resolution imagery to gain more accurate mapping results at different tide levels 163 

(Green et al., 1998). A recent study proposed a new method to identify submerged 164 

mangrove forests via a submerged mangrove recognition index (SMRI) using high-165 

resolution satellites’ images, which considered different spectral signatures of mangroves 166 

under both low and high tide levels (Xia et al., 2018). However, due to naturally and/or 167 

human factors, mangrove communities along the Arabian Gulf coastlines covering more 168 

than 165 km2 are predominantly separated from each other (Almahasheer, 2018). This 169 

fragmentation brings massive cost to study mangrove at a regional scale with only using 170 

high resolution remote sensing images. For example, SA has a 700 km long coastline in 171 

WAG (Bird, 2010). This will cost around $26,600 for getting entire coastline using 172 

WorldView-2 images with 8-bands for one time period (calculated from price listed in 173 

www.landinfo.com: $19/km2 with 2 km minimum order width). The mangrove change 174 

detection study of two periods will cost double the price. Therefore, there is a need to 175 

improve mangrove detection methods through free accessible medium-resolution satellite 176 

imagery (such as Landsat 7/8). Here we employed high resolution images for selected 177 

regions for validation purposes.   178 
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We present a multi-indices based approach, using NDVI and SMRI, for long term 179 

mapping of mangrove forests in the WAG region along the Saudi Arabia coast. In this 180 

study, we evaluate the accuracy of three existing mangrove forests datasets and for the 181 

first time, incorporated SMRI as a new assessment for detecting submerged mangrove at 182 

different tide levels over the WAG region using Landsat medium-resolution remote 183 

sensing images.  184 

 185 

2. Materials and methods 186 

2.1 Data  187 

Three mangrove datasets were used in this research: 1) USGS Global Mangrove 188 

Forest Distribution of year 2000 (Giri et al., 2011). This dataset was generated using 189 

Landsat satellite images of more than 1,000 scenes obtained from the USGS Earth 190 

Resources Observation and Science Center (EROS).  Mangroves were classified using 191 

hybrid supervised and unsupervised digital image classification techniques. 2) World 192 

Atlas of Mangroves. This dataset shows the global distribution of mangroves, and was 193 

produced as a joint initiative of the Food and Agriculture Organization of the United 194 

Nations (FAO), the International Tropical Timber Organization (ITTO), International 195 

Society for Mangrove Ecosystems (ISME), UN Environment World Conservation 196 

Monitoring Centre (UNEP-WCMC) (Spalding et al., 2010), United Nations Educational, 197 

Scientific and Cultural Organization's Man and the Biosphere Programme (UNESCO-198 

MAB), United Nations University Institute for Water, Environment and Health (UNU-199 

INWEH), and The Nature Conservancy (TNC). 3) Global Distribution of Modelled 200 

Mangrove Biomass (2014) (Hutchison et al., 2014). This dataset was developed by the 201 

Department of Zoology in University of Cambridge, with the support from The Nature 202 

Conservancy. It shows the global patterns of above-ground biomass of mangrove forests 203 
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based on a review of 95 field studies on carbon storage and fluxes in mangroves world-204 

wide.  205 

Two kinds of remote sensing images are used here: 1) WorldView-2 image. 206 

WorldView-2 is a high-resolution satellite launched on October 8, 2009 from Vandenberg 207 

Air Force Base, CA. WorldView-2 collects 46-centimeter (cm) panchromatic and 1.85-208 

meter (m) multispectral imagery. In this research, we obtained the image of four 209 

traditional bands (i.e. blue, green, red and NIR) over the Abu Ali Island during 210 

September, 2017 to study for the submerged mangrove detection. 2) Landsat 5, Landsat 211 

7, and Landsat 8 Surface Reflectance Tier 1 dataset from the Landsat 5 TM, Landsat 7 212 

ETM+ sensor and Landsat 8 OLI/TIRS sensors. These images contain 4 visible and near-213 

infrared (VNIR) bands of 30m resolution for Landsat 7 (5 VNIR bands for Landsat 8), 2 214 

short-wave infrared (SWIR) bands of 30m resolution processed to orthorectified surface 215 

reflectance, and one thermal infrared (TIR) band of resampled 30m resolution for Landsat 216 

5/7 (2 thermal bands for Landsat 8) processed to orthorectified brightness temperature. 217 

The surface reflectance dataset was provided from GEE. They have been atmospherically 218 

corrected using The Landsat Ecosystem Disturbance Adaptive Processing System 219 

(LEDAPS), and include a per-pixel saturation mask and a cloud, shadow, water and snow 220 

mask produced using C Function of Mask (CFMASK). In this study, we utilized Landsat 221 

5 image of 1985, Landsat 7 images of 2000, 2010 and 2018, and Landsat 8 images of 222 

2018 for the aforementioned three mangrove datasets for inter comparison. Landsat 7 and 223 

8 images were also used for detecting the mangrove changes between 2000, 2010, and 224 

2018. Moreover, we obtained and processed Landsat 7 and Landsat 8 images of 2017 to 225 

quantify the submerged mangrove in Abu Ali Island based on tidal data. The tidal data 226 

was accessed from the harmonic model by WorldTides™ (https://www.worldtides.info) 227 

that uses a number of public and licensed sources for tidal predictions as well as land-228 

https://www.worldtides.info/
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based station observations from tide gauges and satellite observations when available for 229 

the maximum accuracy. Since tides are caused by the gravitational pull on water from the 230 

sun, moon, and other planets, hence the gravitational pulls’ frequencies are well known, 231 

thus harmonic analysis models are employed here for future water levels prediction based 232 

on past observations. 233 

 234 

2.2 Study region 235 

Fig.1 shows mangrove distribution for the years 2000, 2010 and 2014, respectively, 236 

using the three existing mangrove datasets over the WAG. The 2000 image from USGS 237 

Global Mangrove Forest Distribution is accessed through GEE searching tool, and 2010 238 

image from World Atlas of Mangroves and 2014 image from Mangrove Forest Biomass 239 

are converted into GeoTIFF format files, then imported into GEE. Along the coast of 240 

Saudi Arabia, five regions are studied based on the mangroves’ distribution: 1. Manifah, 241 

2. Al-Khair, 3. Jubail, 4. North Tarut Bay, and 5. North Middle Tarut Bay, all marked by 242 

correspondent numbers in the Fig.1. Fig.1 shows obvious differences among the three 243 

datasets, for instance, mangroves in region 1 (Manifah) and region 2 (Al-Khair) can be 244 

found in 2000 (pointed at by the red arrow), but disappeared in 2010 and 2014. 245 

Mangroves of region 3 (Jubail) are observed in all three years, with the highest coverage 246 

in 2000 highlighted in black squared area, whereas in 2010 and 2014 the mangrove only 247 

be marked in the Gurmah Island (at location 3 in green color 2010 and red color 2014).  248 

On the north side of region 4 (North Tarut Bay), both the 2010 (Fig. 1b) and 2014 249 

(Fig. 1c) are marked with a mangrove distribution (pointed by a red arrow) near Ras 250 

Tanura, but not much appearing in the 2000 data (Fig. 1a). In addition, mangroves are 251 

distributed in region 5 (North Middle Tarut Bay) in the 2010 data (pointed by a red arrow 252 

in Fig. 1b) and 2014 (Fig. 1c), while they do not appear that much in 2000 (Fig. 1a). 253 

https://en.wikipedia.org/wiki/Tide_gauge
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Therefore, it is clear that large discrepancies were identified among these three years 254 

datasets. This could be explained either due to a massive decline and disappearance of 255 

mangroves in 2000 in regions 1&2&3 after 2010 or a misclassification of the mangrove 256 

dataset by USGS accounting for other species as mangroves. Therefore, accurate 257 

assessment and validation work is highly needed to avoid misleading datasets, especially 258 

if it were to be used to build models for future mangrove change detection researches and 259 

for stakeholders and decision makers. In this study, we conducted a spectral analysis over 260 

the commonly recognized mangrove areas (in regions 3, 4 and 5), and from uncertain 261 

mangrove areas (region 3). The unique spectral signatures from mangrove habitats could 262 

help accurately decide on the consistency of distribution for mangrove habitats across the 263 

different data sets and at different locations. 264 

 265 
Figure 1. Mangrove distribution in WAG for regions 1:Manifah, 2:Al-Khair, 3:Jubail, 4:North Tarut Bay, 266 

5:North Middle Tarut Bay using (a) USGS Global Mangrove Forest Distribution of year 2000 (red color) 267 

(b) World Atlas of Mangroves of the year 2010 (blue color) (c) Mangrove Forest Biomass of the year 2014 268 

(black color). The red arrows point to the mangroves, and black box highlights the massive mangrove 269 

coverage of USGS data. 270 

 271 

2.3 Methodology  272 

2.3.1 Classification methods 273 

The workflow of generation and validation of mangrove classification model along 274 

with the procedures of classifying mangrove forests follow the workflow of the change 275 
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detection analysis of coral reef habitat using Landsat data in the Red Sea (Hurghada, 276 

Egypt) (El-Askary et al., 2014). The Landsat 7&8 images of the year 2018 are used to 277 

generate different mangrove detection models, including Supported Vector Machine 278 

(SVM), Decision Tree (DT), referred to as Classification and Regression Trees (CART) 279 

and Random Forest (RF). The results of these models are evaluated by the accuracy 280 

(generated from confusion matrices), and by comparing with high-resolution image from 281 

Google Earth. Then the most effective models are selected to classify the mangrove 282 

distribution for the areas of interest among the year of 2000, 2010, and 2018 using 283 

Landsat 7&8 images. It is noteworthy that Landsat 5 did not provide image after August 284 

1st 2002 in these regions. Alternatively, Landsat 7 images during the year 2010 were 285 

processed with GEE built-in mosaicking method to guarantee ideal results. 286 

2.3.1.1 CART 287 

       CART, a supervised classification mining method, is used here to construct a 288 

decision binary tree structure through iterative analysis based on the training dataset that 289 

consists of features (i.e. spectral signatures) and target variables (i.e. mangrove or other 290 

classes) (Breiman, 1998). It has been widely used in land use analysis and change 291 

detection (Rick L. Lawrence and Andrea Wright, 2001), wetlands and mangrove 292 

distribution classification (Pantaleoni et al., 2009; Zhao et al., 2014).  In this research, we 293 

used the maximum tree depth which controls the maximum number of allowed levels 294 

below the root node to construct the decision tree.  Normally, the larger the maximum 295 

tree depth value, the more complex the decision tree and the higher the classification 296 

accuracy. Through multiple trials and the 10-fold cross validation, a maximum tree depth 297 

value of ten was selected for the CART classification. 298 

2.3.1.2 SVM 299 
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       The SVM machine learning algorithm, a well-adapted technique for solving non-300 

linear, high dimensional space classifications, is used here as it showed a good 301 

performance in mangrove satellite sensing (Heenkenda et al., 2014; Heumann, 2011; 302 

Kanniah et al., 2015; Wang et al., 2018). It was found that SVM has better performance 303 

than maximum likelihood and artificial neural network classifiers using Landsat TM 304 

image (Pal and Mather, 2005). Moreover, SVM outperforms discriminate analysis and 305 

decision-tree algorithms for airborne sensor data (Foody and Mathur, 2006). SVM 306 

uniqueness from other traditional classification approaches stems from its ability to create 307 

a hyperplane through n-dimensional spectral-space. This plane separates classes 308 

(mangroves versus others) based on a user defined kernel function (linear in our case) and 309 

parameters that are optimized using machine-learning to maximize the margin from the 310 

closest point to the hyperplane.  311 

2.3.1.3 RF   312 

RF is a relatively new technique for mangrove species mapping, though it has been 313 

widely applied in landscape (Duro et al., 2012; Li et al., 2016) and plant species (Le 314 

Louarn et al., 2017; Ng et al., 2017) classification with different sensors in recent years. 315 

The RF algorithm is an ensemble algorithm for supervised classification based on CART. 316 

However, by combining the characteristics of CART together with further bootstrap 317 

aggregating, and random feature selecting, independent predictions can be established 318 

and therefore improve accuracies. For the RF algorithm, the tuning parameters mainly 319 

included “number of features”. This controls the size of a randomly selected subset of 320 

features at each split in the tree building process, which could have sensitive impact on 321 

classification (Duro et al., 2012). The other tuning parameter also includes the maximum 322 

number of trees (Su et al., 2017).  In this research, the maximum level of trees used was 323 

five above which the accuracy did not change much.  324 
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2.3.2 Submerged Mangrove Recognition Index (SMRI) 325 

Most previous change detection research of mangrove forests are based on remote 326 

sensing images captured at different dates, not considering the impacts of tide level 327 

changes (Collins et al., 2017; Li et al., 2013; Rogers et al., 2017; Xia et al., 2018).  328 

However, mangrove forests are distributed near the land–sea interface, such as shorelines 329 

and in elongated or fragmented patches, especially in the WAG. These mangroves 330 

periodically receive inundation of sea water, where the fluctuating water underneath the 331 

canopy dramatically changes the spectral signatures as observed using satellite images. 332 

Therefore, it is difficult to retrieve accurate mangrove information using the methods 333 

based on single-day remote sensing imagery comparison of vegetation indices (i.e. 334 

NDVI). Recently, Xia et al. (2018) proposed a submerged mangrove recognition index 335 

(SMRI) by using high-resolution GF-1 images in both low and high tides, to describe the 336 

unique spectral signature of submerged mangroves and to distinguish mangroves forests 337 

submerged by different tide levels.  The detailed form of the SMRI index is based on a 338 

combination of NDVI (Rouse et al., 1973) and near-infrared bands, shown below: 339 

SMRI = ( 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙 −  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ) ×  
𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙 −  𝑁𝑁𝑁𝑁𝑁𝑁ℎ

𝑁𝑁𝑁𝑁𝑁𝑁ℎ
 [1] 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙 − 𝑁𝑁𝑙𝑙
𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙 + 𝑁𝑁𝑙𝑙

 [2] 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ =
𝑁𝑁𝑁𝑁𝑁𝑁ℎ − 𝑁𝑁ℎ
𝑁𝑁𝑁𝑁𝑁𝑁ℎ + 𝑁𝑁ℎ

 [3] 

where 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙 and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ are the NDVI values at low tide and high tide, respectively. 340 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙 and 𝑁𝑁𝑁𝑁𝑁𝑁ℎ are the reflectance values of the near-infrared band at low and high tide, 341 

respectively.  𝑁𝑁𝑙𝑙 and 𝑁𝑁ℎ are the reflectance values of the red band at low and high tide, 342 

respectively. In this research, we apply this index for detecting the submerged mangrove 343 

forests with Landsat medium-resolution imagery. 344 
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We also conducted studies to look at the effects of tide levels on the mangrove 345 

classification.  WorldView-2 image was utilized to provide training data and validation 346 

for unsupervised classification cluster of mangrove in Abu Ali Island during the limited 347 

time period of September 2017. Landsat 7&8 images were used to implement the 348 

unsupervised classification method to explore the attributes of submerged mangroves for 349 

the same time period over the same region. All of the images were preprocessed, subset 350 

for coastal areas only and not including terrestrial vegetation and masked for marine 351 

habitats only and excluding water and land. We also applied the NDVI and SMRI, a new 352 

indicator to improve the submerged mangrove detection and to detect tidal impacts. It is 353 

noteworthy that all the Landsat and WorldView-2 images are visualized with false color 354 

configurations (R: near infrared band, G: red band, B: green band) to highlight the 355 

vegetation as red areas. Supervised classification models using three algorithms (CART, 356 

SVM and Random Forest) are implemented here to distinguish mangrove habitats from 357 

others.   358 

 359 

3. Results and discussion 360 

3.1 Comparison of existing mangrove datasets 361 

Spectral analysis was conducted here to evaluate the data accuracy across different 362 

sources. Mangroves spectral signature is quite unique and has been correctly identified, 363 

used and compared with other sources to avoid misclassification with other marine 364 

habitats, namely salt marshes and macro algae (Benson et al., 2017; Corcoran et al., 2007; 365 

Giri, 2016; Ranjan et al., 2017). The left panel of Fig.2 shows the spectral signature of 366 

end members from the mangrove habitat only identified by USGS Global Mangrove 367 

Forest Distribution dataset (red points in Fig. 2a). They are displayed as Landsat 5 image 368 

of 1985 in Fig. 2c, the Landsat 7 images of 2000 in Fig. 2e and 2010 in Fig. 2g, and 369 
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Landsat 8 image of 2018 in Fig. 2i. The right panel of Fig. 2 shows the spectral signature 370 

of samples from mangrove habitat agreed by all of three datasets (green points in Fig. 2b). 371 

They are displayed as the Landsat 5 image of 1985 in Fig. 2d, the Landsat 7 images of 372 

2000 in Fig. 2f and 2010 in Fig. 2h, and Landsat 8 image of 2018 in Fig. 2j. It is 373 

noteworthy that the bands in Landsat 8 are renamed to have the same spectral range of 374 

Landsat 5 and Landsat 7. It is quite evident that the spectral distributions are coherent as 375 

shown in Figs. 2(d, f, h and j), with high value at band 4 and lower value at band 5 and 376 

band 7. However, Figs. 2(c, e, g and i) does not show the same pattern – band 5 value is 377 

always higher than the value of band 4 which should not be the case. From the above and 378 

based on the conducted spectral analysis using a wide range of endmembers and 379 

comparing with established research, we believe that USGS data overestimated mangrove 380 

habitats distribution. On the other hand, the data obtained from Saudi Aramco (Loughland 381 

and Al-Abdulkader, 2011) shows the misclassified locations in the USGS dataset as 382 

saltmarsh habitats. The Landsat 5 data in 1985 was able to distinguish saltmarsh from 383 

mangroves, which is even more accurate for Landsat 7 & 8. This is because in Landsat 7 384 

&8 the values of each band show more distinctive behavior as compared to Landsat 5 385 

images, where all bands show less distinction Figs. 2(d, f, h and j). Considering these 386 

differences and facts between these sensors, we opted to perform the change detection 387 

analysis on the mangroves habitats using Landsat 7&8 data. 388 
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 389 
Figure 2. Endmembers selection for spectral reflectance analysis using red and green points over (a) Jubail 390 

Conservation; (b) Tarut Bay. Red locations: classified as Mangrove forests according to USGS dataset only 391 

and Green locations: classified as Mangrove forests according to all three datasets with spectral profiles (c 392 

& d), (e & f), (g & h), (i & j) for 1985 Landsat 5, 2000 Landsat 7, 2010 Landsat 7, and 2018 Landsat 8 393 

images, respectively. 394 

 395 

3.2 Mangrove change detection 396 



18 
 

The supervised classification models used in this study (i.e. CART, SVM and RF) 397 

were built using the same training datasets from Landsat 7 (all samples from non-gap 398 

areas) and Landsat 8 images during 2018. Five different categories, namely: arid land, 399 

mangrove, tidal flat, saltmarshes and water body were identified using 30 sample 400 

observation points per category to ensure accuracy. Training datasets accuracy was 401 

assessed against new testing datasets through computing the confusion matrix for each 402 

model. In this work we looked at the “trainAccuracy” parameter that describes how well 403 

the classifier was able to correctly label resubstituted training data (i.e. data 404 

the classifier had already seen). However, to get a true validation accuracy, we showed 405 

our three classifiers a new ‘testing’ data and applied the classifiers to the new testing data 406 

to assess the “errorMatrix” for this withheld validation data. The accuracy values ranged 407 

from > 95% for CART and > 90% for others, being applied on both Landsat 7 & 8.  408 

The mangrove forests distribution following the three models are shown using 409 

Landsat 7 & 8 in the Gurmah Island (GI) (Figs. 3 & 4(a, b and c), North Middle Tarut 410 

Bay (NMTB) (Figs. 3 & 4(e, f and g)), and North Tarut Bay (NTB) (Figs. 3 & 4(i, j and 411 

k) during 2018, respectively. High resolution true color images from Google Map were 412 

included for comparison (Figs. 3 & 4 (d, h and l). The resulting pixel coverage for 413 

mangrove forests based on three classifiers, after vegetation mask (NDVI > 0.15) was 414 

applied, is computed and presented for each location. The areas of the classified 415 

mangroves (in hectares) for Landsat 7 were: SVM (GI: 27.5, NMTB: 162, NTB: 159.3) > 416 

CART (GI: 25.7, NMTB: 140.6, NTB: 135.1) > Random Forest (GI: 24.6, NMTB: 97, 417 

NTB: 111.5) and for Landsat 8 were: SVM (GI: 38.9, NMTB: 180.6, NTB: 268.7) > 418 

CART (GE: 34.8, NMTB: 151.6, NTB: 190.2) > Random Forest (GI: 31.6, NMTB: 150.5, 419 

NTB: 183.8).  It is clear that SVM classifier overestimated the distribution while RF 420 

underestimated it. The three models successfully showed similar mangrove distribution 421 
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over the different locations and using Landsat 7 & 8 datasets, yet we believe that CART 422 

showed the most accurate pixel coverage counting and best performance. Higher pixel 423 

coverage is expected from Landsat 8 images (Fig. 4) due to the absence of gaps exhibited 424 

in Landsat 7 data (Fig. 3). The variance in the pixel coverage following the three 425 

classifiers can be attributed to the sparse growth of mangrove habitats along coastlines, 426 

as seen from the high resolution true color composites, yet SVM failed to identify this 427 

sparsity and hence overestimated and RF did the opposite. Given the CART model higher 428 

performance and accuracy, it is now selected for the mangrove change detection analysis.  429 

 430 
 431 

Figure 3. Supervised classification results of Landsat 7 image of 2018 for the mangrove forests (green area) 432 

and corresponding mangrove coverage (in hectares) using CART (a, e, i), SVM (b, f, j), RF (c, g, k), 433 

compared with high resolution true colour Google Map image (d, h, l), for GI(a-d), NMTB(e-h) and NTB(i-434 

l) 435 
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 436 

Figure 4. Supervised classification results of Landsat 8 image of 2018 for the mangrove forests (green area) 437 

and corresponding mangrove coverage (in hectares) using CART (a, e, i), SVM (b, f, j), RF (c, g, k), 438 

compared with high resolution true colour Google Map image (d, h, l), for GI(a-d), NMTB(e-h) and NTB(i-439 

l) 440 

Change detection analysis is performed between 2000 and 2010 using the CART 441 

classifier based images for Landsat 7, after sub-setting our data to the previously 442 

mentioned five locations (Fig. 1) and masking terrestrial vegetation, land and water for 443 

classification purposes. Masking of terrestrial vegetation was crucial for the classification 444 

accuracy and to avoid overestimation errors by the classifiers. Landsat 7 is specifically 445 

selected against Landsat 8 to look at the change starting 2000 rather than 2013. Figs. 5 & 446 

6 shows that regions 1 (Manifah) and 2 (Al-Khair) already with small mangroves fraction 447 

(0 and 2.3 hectares) in 2000 exhibits almost little to no change in 2010. It is noteworthy 448 

that an artificial island was built in region 1, for ship docking and tourists (Fig. 6, region 449 
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1). Alternatively, regions 3 (GI) and 5 (NMTB), with the larger mangrove distribution 450 

(33.3 and 130.6 hectares) in 2000, showed an expected decline during 2010. This may be 451 

due to coastal developments and surrounding human activities (Amin et al., 2018).  452 

The observed increase of 0.21 km2 over the mangrove habits in the northern Tarut 453 

Bay and Tarut Island from 2.25 km2 to 2.46 km2 during the period 2000-1010 matched 454 

the reported areal increase of 1.4 km2 observed from 1999 (4 km2) (Khan and Kumar 455 

2009) to 2011 (5.4 km2) (Almahasheer et al., 2013) for the whole Tarut Bay. Moreover, 456 

the increase of 1.14 km2 between 2010 (2.46 km2) and 2018 (3.6 km2) also agrees with 457 

the increasing trend of the Tarut Bay mangrove habitats from 2011 to 2014 (Al-Ali et al. 458 

2015). However, we believe that data SLC gaps, shown as empty clear stripes, also played 459 

a role in this observation. As for region 4 (NTB) the mangrove coverage increased from 460 

(94.4 hectares) in 2000 to (117.9 hectares) in 2010. It is highly likely that these 461 

classification results using gap-filled image by GEE mosaicking method contributed to 462 

this increase in the mangroves distribution that was validated with ground observations 463 

over some of the gap areas (Fig.6, region 4). It is clear that mangrove biomass and 464 

distribution in NTB has unexpectedly increased from 94.4 to 117.9 to 190.2 hectares 465 

during 2000 (Fig.5 region 4), 2010 (Fig. 6 region 4) and 2018 (Fig. 4i). Data filling may 466 

have contributed to better accuracy; however, tide levels also affect mangroves that is 467 

evident from their divergent spectral properties in high/low water levels. This will be 468 

discussed further in the next section.  469 

 470 

 471 
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472 

Figure 5. Mangrove forest distribution (green area) using the CART classifier applied on Landsat 7 year 473 

2000. The text at the right panel lists the mangrove area for each location (1-5).  Refer to Fig.1 for 474 

regions.  475 

 476 
Figure 6. Mangrove forest distribution (green area) using the CART classifier applied on Landsat 7 year 477 

2010. The text at the right panel lists the mangrove area for each location (1-5). Refer to Fig.1 for regions.  478 

      479 

3.3 Submerged mangrove detection  480 

As mentioned above, tidal levels could have an impact on mangrove mapping and 481 

detection.  SMRI was generated from low and high tides on the Abu Ali Island located in 482 
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region 3 (Jubail), to use the unique spectral signature of submerged mangroves forest to 483 

distinguish them by different tide levels. The WorldView-2 high resolution images of 484 

Abu Ali Island show mangrove forests in the south coast highlighted by the red square 485 

(Fig. 7a). Fig. 7b shows the sample points for dense high-stand mangroves in the south 486 

east corner (magenta points), tidal submerged mangrove in the middle (orange points), 487 

and tidal flats (red points). The mangroves total area, including tidal and non-tidal areas, 488 

was calculated using the K-means classification method applied on Fig. 7b and was found 489 

to be 19.28 hectares (see green area in Fig. 7c). To assess tidal impacts on mangrove 490 

distribution, the mean sea level (MSL) data was also used, mentioned above in the data 491 

section. False color composites for the region at low tides (MSL = -0.4m) and high tides 492 

(MSL = 0.5) are shown in Figs. 7(d & e) for Landsat 7 and Figs. 7(i & j) for Landsat 8, 493 

respectively. It is noteworthy that Landsat 7 SLC failure gaps did not intercede the areas 494 

of mangrove forests in the case of Abu Ali Island. Figs. 7(d & i) representing mangroves 495 

at low tides (marked as the red vegetation) from Landsat 7 & 8 exhibits larger distribution 496 

than the submerged mangroves that almost disappeared during the high tides (Figs. 7(e & 497 

j). This indicates that change detection analysis of such area could be dramatically altered 498 

if images are not compared at the same water level. The NDVI images of low tides (Figs. 499 

7f & 7k), and high tides (Figs. 7g & 7l) show that the NDVI index could be helpful to 500 

distinguish high-stand mangrove from others, but fails to discriminate the submerged 501 

mangroves and tidal flats in low tides, as well as submerged mangrove and land. While 502 

in the SMRI images (Figs. 7h & 7m), submerged mangroves could be seen as grey areas. 503 

The SMRI images indicate that: 1) for non-tidal regions such as land or high-stand 504 

mangrove, the SMRI value is close to 0; 2) for non-vegetation tidal flats regions, the 505 

SMRI value could be very high above 1 (Fig. 7m), but also could be closer to submerged 506 
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mangrove. One can use the spectral properties of submerged mangrove and tidal flats 507 

under high tides condition to separate them.  508 

Figure 7. WorldView-2 image of Abu Ali Island: (a) the mangrove forest in red square; (b) Sample points 509 

for tidal flats (red), high-stand mangroves (orange) and submerged mangrove (magenta); (c) Total 510 

mangrove area (green area). Landsat 7 and 8 images: (d, i) low tide; (e, j) high tide; (f, k) NDVI of low tide; 511 

(g, l) NDVI of high tide; (h, m) SMRI, respectively. 512 

 513 

Figure 8 exhibits the ranges of NDVI and SMRI values of the samples for high-stand 514 

mangrove (Figs. 8a-c), submerged mangrove (Figs. 8d-e) and tidal flats (Figs. 8g-i) in 515 

Landsat 7&8 images displayed in Fig. 7. The NDVI values in low tides are higher than 516 

those in high tides in general. However, NDVI values of Landsat 8 images between tide 517 

levels are very close as seen in Fig. 8b. In the Fig. 8f, the SMRI values have very similar 518 

ranges (0.18 to 0.60 and 0.19 to 0.57) regardless of the different satellite images. This 519 

proves the robustness of SMRI as a submerged mangrove detection method. However, 520 

the ranges of SMRI values for Landsat 7 are overlapped between submerged mangroves 521 
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and tidal flats (Fig. 8f and 8i). This could be solved by applying the divergence of high 522 

tide NDVI values for submerged mangrove (-0.18 to 0.09 in Fig. 8e) and tidal flats (-0.51 523 

to -0.42) in Fig. 8h), which could be used to mask out tidal flats from SMRI-indicated 524 

mangrove areas.   525 

 526 

Figure 8. First two columns: Range of NDVI values of the samples for high-stand mangrove (a,b), 527 

submerged mangrove (d,e) and tidal flats (g,h) for low tides (blue) and high tides (orange) of Landsat 7 and 528 
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8 images in Fig. 7. Third column: Range of SMRI values of the samples for high-stand mangrove (c), 529 

submerged mangrove (f) and tidal flats (i) for Landsat 7 (blue) and Landsat 8 (orange) images in Fig. 7. 530 

Figure 9 shows the detection results for both high-stand mangrove as green areas 531 

using K-means unsupervised method, and submerged mangrove as yellow areas by 532 

choosing regions with SMRI values (0.18 to 0.60 for Landsat 7, 0.19 to 0.57 for Landsat 533 

8, then masking with high tide NDVI > -0.2). The areas of submerged mangroves are 8.25 534 

and 10.67 hectares for Landsat 7 and Landsat 8 images, respectively. The classified 535 

mangrove areas of Figs. 9(b & d) cover most of the targeted mangrove areas shown in the 536 

background using the high resolution WorldView-2 image. The summation of high-stand 537 

mangrove in high tide and submerged mangrove areas (19.2 hectares using Landsat 8, 538 

18.42 hectares using Landsat 7) are very close to high resolution WorldView-2 image 539 

result (19.28 hectares), indicating that this approach could provide an effective estimate 540 

and addresses the tidal impact on mangrove mapping.  541 

 542 

 543 
Figure 9. (a) High-stand mangrove forests (green area) in high tide of Fig. 7e; SMRI indicated submerged 544 

mangrove forests (yellow area). (b) High-stand mangrove forests (green area) in low tide of Fig. 7d; same 545 

submerged mangrove forests as Fig. 9a. (d) High-stand mangrove forests (green area) and in high tide of 546 

Fig. 7j; SMRI indicated submerged mangrove forests (yellow area). (b) High-stand mangrove forests (green 547 



27 
 

area) in low tide of Fig. 7i; same submerged mangrove forests as Fig. 9c. The text at the very right panel 548 

lists the mangrove area. 549 

 550 

4. Conclusions 551 

The spatial distribution and spatial-temporal changes of mangrove forests in Arabian 552 

Gulf along the Saudi Arabia during the period of 2000 to 2018 were explored using large 553 

data sets and spatial analysis. First, we compared the spectral reflectance signatures 554 

between identified mangrove forest and other coastal vegetation habitats (such as 555 

seagrasses and saltmarshes) using Landsat 5&7&8 data. Mangrove habitat detection in 556 

the WAG was carried out through the evaluation of the three widely-used mangrove 557 

classification methods, namely Supported Vector Machine (SVM), Classification and 558 

Regression Trees (CART) and Random Forest (RF). CART was validated as the most 559 

effective classifier (accuracy > 95%) for WAG mangrove detestation. Later, we used the 560 

medium-resolution Landsat 7&8 images to build a CART-based mangrove supervised 561 

classification model to obtain mangrove areas and distributions for 2000, 2010 and 2018. 562 

With both Landsat and the high resolution WorldView-2 images, the new SMRI method 563 

was applied in the area of Abu Ali Islands with the usage of K-means unsupervised 564 

method to identify and evaluate the biomass and distribution of submerged mangroves in 565 

the tidal area. We investigated the protocol to detect overall mangrove distribution from 566 

samples taken from Abu Ali Island with indices SMRI and NDVI values generated from 567 

Landsat 7&8 images. By employing these two indices, there was a good match between 568 

the estimates of the mangrove area to the south of Abu Ali Island at 19.20 hectares using 569 

Landsat 8 and 19.28 hectares calculated from the high resolution WorldView-2. This 570 

studies presents a unique approach of SMRI to detect mangroves with historical Landsat 571 

images that has historical record and can be used to address tidal impacts on mangrove 572 
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mapping and areas estimation over different locations, which could achieve more accurate 573 

outcomes of mangrove detection within limited usage of costly high resolution remote 574 

sensing imagery. 575 
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