2,386 research outputs found

    Cavity-based negative images in molecular docking

    Get PDF
    In drug development, computer-based methods are constantly evolving as a result of increasing computing power and cumulative costs of generating new pharmaceuticals. With virtual screening (VS), it is possible to screen even hundreds of millions of compounds and select the best molecule candidates for in vitro testing instead of investing time and resources in analysing all molecules systematically in laboratories. However, there is a constant need to generate more reliable and effective software for VS. For example, molecular docking, one of the most central methods in structure-based VS, can be a very successful approach for certain targets while failing completely with others. However, it is not necessarily the docking sampling but the scoring of the docking poses that is the bottleneck. In this thesis, a novel rescoring method, negative image-based rescoring (R-NiB), is introduced, which generates a negative image of the ligand binding cavity and compares the shape and electrostatic similarity between the generated model and the docked molecule pose. The performance of the method is tested comprehensively using several different protein targets, benchmarking sets and docking software. Additionally, it is compared to other rescoring methods. R-NiB is shown to be a fast and effective method to rescore the docking poses producing notable improvement in active molecule recognition. Furthermore, the NIB model optimization method based on a greedy algorithm is introduced that uses a set of known active and inactive molecules as a training set. This approach, brute force negative image-based optimization (BR-NiB), is shown to work remarkably well producing impressive in silico results even with very limited active molecule training sets. Importantly, the results suggest that the in silico hit rates of the optimized models in docking rescoring are on a level needed in real-world VS and drug discovery projects.Tietokoneiden laskentatehojen ja lääketutkimuksen tuotekehityskulujen kasvaessa tietokonepohjaiset menetelmät kehittyvät jatkuvasti lääkekehityksessä. Virtuaaliseulonnalla voidaan seuloa jopa satoja miljoonia molekyylejä ja valita vain parhaat molekyyliehdokkaat laboratoriotestaukseen sen sijaan, että tuhlattaisiin aikaa ja resursseja analysoimalla järjestelmällisesti kaikki molekyylit laboratoriossa. Tästä huolimatta on koko ajan jatkuva tarve kehittää luotettavampia ja tehokkaampia menetelmiä virtuaaliseulontaan. Esimerkiksi telakointi, yksi keskeisimmistä työkaluista rakennepohjaisessa lääkeainekehityksessä, saattaa toimia erinomaisesti yhdellä kohteella ja epäonnistua täysin toisella. Ongelma ei välttämättä ole telakoitujen molekyylien luonnissa vaan niiden pisteytyksessä. Tässä väitöskirjassa tähän ongelmaan esitellään ratkaisuksi uudenlainen pisteytysmenetelmä R-NiB, jossa verrataan ligandinsitomisalueen negatiivikuvan muodon ja sähköstaattisen potentiaalin samankaltaisuutta telakoituihin molekyyleihin. Menetelmän suorituskykyä testataan usealla eri molekyylisarjalla, lääkeainekohteella, telakointiohjelmalla ja vertaamalla tuloksia muihin pisteytysmenetelmiin. R-NiB:n näytetään olevan nopea ja tehokas menetelmä telakointiasentojen pisteytykseen tuottaen huomattavan parannuksen aktiivisten molekyylien tunnistukseen. Tämän lisäksi esitellään ns. ahneeseen algoritmiin perustuva negatiivikuvan optimointimenetelmä, joka käyttää sarjaa tunnettuja aktiivisia ja inaktiivisia molekyylejä harjoitusjoukkona. Tämän BR-NiB-menetelmän näytetään toimivan ainakin tietokonemallinnuksessa todella hyvin tuottaen vaikuttavia tuloksia jopa silloin, kun harjoitusjoukko koostuu vain muutamista aktiivisista molekyyleistä. Mikä tärkeintä, in silico -tulokset viittaavat optimointimenetelmän osumaprosentin telakoinnin uudelleenpisteytyksessä olevan riittävän korkea myös oikeisiin virtuaaliseulontaprojekteihin

    MS-DOCK: Accurate multiple conformation generator and rigid docking protocol for multi-step virtual ligand screening

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The number of protein targets with a known or predicted tri-dimensional structure and of drug-like chemical compounds is growing rapidly and so is the need for new therapeutic compounds or chemical probes. Performing flexible structure-based virtual screening computations on thousands of targets with millions of molecules is intractable to most laboratories nor indeed desirable. Since shape complementarity is of primary importance for most protein-ligand interactions, we have developed a tool/protocol based on rigid-body docking to select compounds that fit well into binding sites.</p> <p>Results</p> <p>Here we present an efficient multiple conformation rigid-body docking approach, MS-DOCK, which is based on the program DOCK. This approach can be used as the first step of a multi-stage docking/scoring protocol. First, we developed and validated the Multiconf-DOCK tool that generates several conformers per input ligand. Then, each generated conformer (bioactives and 37970 decoys) was docked rigidly using DOCK6 with our optimized protocol into seven different receptor-binding sites. MS-DOCK was able to significantly reduce the size of the initial input library for all seven targets, thereby facilitating subsequent more CPU demanding flexible docking procedures.</p> <p>Conclusion</p> <p>MS-DOCK can be easily used for the generation of multi-conformer libraries and for shape-based filtering within a multi-step structure-based screening protocol in order to shorten computation times.</p

    How to do an evaluation: pitfalls and traps

    Get PDF
    The recent literature is replete with papers evaluating computational tools (often those operating on 3D structures) for their performance in a certain set of tasks. Most commonly these papers compare a number of docking tools for their performance in cognate re-docking (pose prediction) and/or virtual screening. Related papers have been published on ligand-based tools: pose prediction by conformer generators and virtual screening using a variety of ligand-based approaches. The reliability of these comparisons is critically affected by a number of factors usually ignored by the authors, including bias in the datasets used in virtual screening, the metrics used to assess performance in virtual screening and pose prediction and errors in crystal structures used

    DockStream: a docking wrapper to enhance de novo molecular design

    Get PDF
    Recently, we have released the de novo design platform REINVENT in version 2.0. This improved and extended iteration supports far more features and scoring function components, which allows bespoke and tailor-made protocols to maximize impact in small molecule drug discovery projects. A major obstacle of generative models is producing active compounds, in which predictive (QSAR) models have been applied to enrich target activity. However, QSAR models are inherently limited by their applicability domains. To overcome these limitations, we introduce a structure-based scoring component for REINVENT. DockStream is a flexible, stand-alone molecular docking wrapper that provides access to a collection of ligand embedders and docking backends. Using the benchmarking and analysis workflow provided in DockStream, execution and subsequent analysis of a variety of docking configurations can be automated. Docking algorithms vary greatly in performance depending on the target and the benchmarking and analysis workflow provides a streamlined solution to identifying productive docking configurations. We show that an informative docking configuration can inform the REINVENT agent to optimize towards improving docking scores using public data. With docking activated, REINVENT is able to retain key interactions in the binding site, discard molecules which do not fit the binding cavity, harness unused (sub-)pockets, and improve overall performance in the scaffold-hopping scenario. The code is freely available at https://github.com/MolecularAI/DockStream

    AMMOS: Automated Molecular Mechanics Optimization tool for in silico Screening

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Virtual or <it>in silico </it>ligand screening combined with other computational methods is one of the most promising methods to search for new lead compounds, thereby greatly assisting the drug discovery process. Despite considerable progresses made in virtual screening methodologies, available computer programs do not easily address problems such as: structural optimization of compounds in a screening library, receptor flexibility/induced-fit, and accurate prediction of protein-ligand interactions. It has been shown that structural optimization of chemical compounds and that post-docking optimization in multi-step structure-based virtual screening approaches help to further improve the overall efficiency of the methods. To address some of these points, we developed the program AMMOS for refining both, the 3D structures of the small molecules present in chemical libraries and the predicted receptor-ligand complexes through allowing partial to full atom flexibility through molecular mechanics optimization.</p> <p>Results</p> <p>The program AMMOS carries out an automatic procedure that allows for the structural refinement of compound collections and energy minimization of protein-ligand complexes using the open source program AMMP. The performance of our package was evaluated by comparing the structures of small chemical entities minimized by AMMOS with those minimized with the Tripos and MMFF94s force fields. Next, AMMOS was used for full flexible minimization of protein-ligands complexes obtained from a mutli-step virtual screening. Enrichment studies of the selected pre-docked complexes containing 60% of the initially added inhibitors were carried out with or without final AMMOS minimization on two protein targets having different binding pocket properties. AMMOS was able to improve the enrichment after the pre-docking stage with 40 to 60% of the initially added active compounds found in the top 3% to 5% of the entire compound collection.</p> <p>Conclusion</p> <p>The open source AMMOS program can be helpful in a broad range of <it>in silico </it>drug design studies such as optimization of small molecules or energy minimization of pre-docked protein-ligand complexes. Our enrichment study suggests that AMMOS, designed to minimize a large number of ligands pre-docked in a protein target, can successfully be applied in a final post-processing step and that it can take into account some receptor flexibility within the binding site area.</p

    In silico data mining of large-scale databases for the virtual screening of human interleukin-2 inhibitors

    Get PDF
    Interleukin-2 (IL-2) is involved in the activation and differentiation of T-helper cells. Uncontrolled activated T cells play a key role in the pathophysiology by stimulating inflammation and autoimmune diseases like arthritis, psoriasis and Crohn’s disease. T cells activation can be suppressed either by preventing IL-2 production or blocking the IL-2 interaction with its receptor. Hence, IL-2 is now emerging as a target for novel therapeutic approaches in several autoimmune disorders. This study was carried out to set up an effective virtual screening (VS) pipeline for IL-2. Four docking/scoring approaches (FRED, MOE, GOLD and Surflex-Dock) were compared in the re-docking process to test their performance in producing correct binding modes of IL-2 inhibitors. Surflex-Dock and FRED were the best in predicting the native pose in its top-ranking position. Shapegauss and CGO scoring functions identified the known inhibitors of IL-2 in top 1, 5 and 10 % of library and differentiated binders from non-binders efficiently with average AUC of > 0.9 and > 0.7, resp. The applied docking protocol served as a basis for the VS of a large database that will lead to the identification of more active compounds against IL-2

    Performance of machine-learning scoring functions in structure-based virtual screening

    Get PDF
    Classical scoring functions have reached a plateau in their performance in virtual screening and binding affinity prediction. Recently, machine-learning scoring functions trained on protein-ligand complexes have shown great promise in small tailored studies. They have also raised controversy, specifically concerning model overfitting and applicability to novel targets. Here we provide a new ready-to-use scoring function (RF-Score-VS) trained on 15 426 active and 893 897 inactive molecules docked to a set of 102 targets. We use the full DUD-E data sets along with three docking tools, five classical and three machine-learning scoring functions for model building and performance assessment. Our results show RF-Score-VS can substantially improve virtual screening performance: RF-Score-VS top 1% provides 55.6% hit rate, whereas that of Vina only 16.2% (for smaller percent the difference is even more encouraging: RF-Score-VS top 0.1% achieves 88.6% hit rate for 27.5% using Vina). In addition, RF-Score-VS provides much better prediction of measured binding affinity than Vina (Pearson correlation of 0.56 and -0.18, respectively). Lastly, we test RF-Score-VS on an independent test set from the DEKOIS benchmark and observed comparable results. We provide full data sets to facilitate further research in this area (http://github.com/oddt/rfscorevs) as well as ready-to-use RF-Score-VS (http://github.com/oddt/rfscorevs_binary)
    corecore