
Sam
i Kurkinen

D
 1577

A
N

N
A

LES U
N

IV
ERSITATIS TU

RK
U

EN
SIS

ISBN 978-951-29-8580-7 (PRINT)
ISBN 978-951-29-8581-4 (PDF)
ISSN 0355-9483 (Print)
ISSN 2343-3213 (Online)

Pa
in

os
al

am
a,

 T
ur

ku
, F

in
la

nd
 2

02
1

TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS

SARJA – SER. D OSA – TOM. 1577 | MEDICA – ODONTOLOGICA | TURKU 2021

CAVITY-BASED NEGATIVE 
IMAGES IN MOLECULAR 

DOCKING
Sami Kurkinen





 
 
 
 

Sami Kurkinen 

CAVITY-BASED NEGATIVE 
IMAGES IN MOLECULAR 

DOCKING 

TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS 
SARJA – SER. D OSA – TOM. 1577 | MEDICA – ODONTOLOGICA | TURKU 2021 



University of Turku 

Faculty of Medicine 
Institute of Biomedicine 
Pharmacology, Drug Development and Therapeutics 
Drug Research Doctoral Programme 

Supervised by 

Professor, Olli Pentikäinen, PhD 
Institute of Biomedicine 
University of Turku 
Turku, Finland 

Docent, Pekka Postila, PhD 
Institute of Biomedicine 
University of Turku 
Turku, Finland 

Reviewed by 

Professor, Daniela Schuster, Dr. 
Institute of Pharmacy 
Paracelsus Medical University 
Salzburg, Austria 

Professor, Mark Johnson, PhD 
Faculty of Science and Engineering 
Åbo Akademi University 
Turku, Finland 

Opponent 

Docent, Henri Xhaard, PhD 
Centre for Drug Research 
Faculty of Pharmacy 
University of Helsinki 
Helsinki, Finland  

 

The originality of this publication has been checked in accordance with the University 
of Turku quality assurance system using the Turnitin OriginalityCheck service. 

ISBN 978-951-29-8580-7 (PRINT) 
ISBN 978-951-29-8581-4 (PDF) 
ISSN 0355-9483 (Print) 
ISSN 2343-3213 (Online) 
Painosalama, Turku, Finland 2021 



 

 

 
“Facts are meaningless. You could use facts to prove anything that’s even 

remotely true.” 
 

Homer Simpson 



 4 

UNIVERSITY OF TURKU 
Faculty of Medicine 
Institute of Biomedicine 
Pharmacology, Drug Development and Therapeutics 
SAMI KURKINEN: Cavity-Based Negative Images in Molecular Docking 
Doctoral Dissertation, 147 pp. 
Drug Research Doctoral Programme (DRDP) 
September 2021 

ABSTRACT 

In drug development, computer-based methods are constantly evolving as a result of 
increasing computing power and cumulative costs of generating new 
pharmaceuticals. With virtual screening (VS), it is possible to screen even hundreds 
of millions of compounds and select the best molecule candidates for in vitro testing 
instead of investing time and resources in analysing all molecules systematically in 
laboratories. However, there is a constant need to generate more reliable and 
effective software for VS. For example, molecular docking, one of the most central 
methods in structure-based VS, can be a very successful approach for certain targets 
while failing completely with others. However, it is not necessarily the docking 
sampling but the scoring of the docking poses that is the bottleneck. In this thesis, a 
novel rescoring method, negative image-based rescoring (R-NiB), is introduced, 
which generates a negative image of the ligand binding cavity and compares the 
shape and electrostatic similarity between the generated model and the docked 
molecule pose. The performance of the method is tested comprehensively using 
several different protein targets, benchmarking sets and docking software. 
Additionally, it is compared to other rescoring methods. R-NiB is shown to be a fast 
and effective method to rescore the docking poses producing notable improvement 
in active molecule recognition. Furthermore, the NIB model optimization method 
based on a greedy algorithm is introduced that uses a set of known active and inactive 
molecules as a training set. This approach, brute force negative image-based 
optimization (BR-NiB), is shown to work remarkably well producing impressive in 
silico results even with very limited active molecule training sets. Importantly, the 
results suggest that the in silico hit rates of the optimized models in docking 
rescoring are on a level needed in real-world VS and drug discovery projects. 

KEYWORDS: molecular docking, negative image-based rescoring (R-NiB), 
negative image-based (NIB) model, virtual screening (VS), computer-aided drug 
discovery (CADD), brute force negative image-based optimization (BR-NiB)   
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TURUN YLIOPISTO 
Lääketieteellinen tiedekunta 
Biolääketieteen laitos 
Farmakologia, lääkekehitys ja lääkehoito 
SAMI KURKINEN: Sitoutumistaskun negatiivikuvat molekyylien 
telakoinnissa 
Väitöskirja, 147 s. 
Lääketutkimuksen tohtoriohjelma 
Syyskuu 2021 

TIIVISTELMÄ 

Tietokoneiden laskentatehojen ja lääketutkimuksen tuotekehityskulujen kasvaessa 
tietokonepohjaiset menetelmät kehittyvät jatkuvasti lääkekehityksessä. Virtuaali-
seulonnalla voidaan seuloa jopa satoja miljoonia molekyylejä ja valita vain parhaat 
molekyyliehdokkaat laboratoriotestaukseen sen sijaan, että tuhlattaisiin aikaa ja 
resursseja analysoimalla järjestelmällisesti kaikki molekyylit laboratoriossa. Tästä 
huolimatta on koko ajan jatkuva tarve kehittää luotettavampia ja tehokkaampia 
menetelmiä virtuaaliseulontaan. Esimerkiksi telakointi, yksi keskeisimmistä 
työkaluista rakennepohjaisessa lääkeainekehityksessä, saattaa toimia erinomaisesti 
yhdellä kohteella ja epäonnistua täysin toisella. Ongelma ei välttämättä ole 
telakoitujen molekyylien luonnissa vaan niiden pisteytyksessä. Tässä väitöskirjassa 
tähän ongelmaan esitellään ratkaisuksi uudenlainen pisteytysmenetelmä R-NiB, 
jossa verrataan ligandinsitomisalueen negatiivikuvan muodon ja sähköstaattisen 
potentiaalin samankaltaisuutta telakoituihin molekyyleihin. Menetelmän suoritus-
kykyä testataan usealla eri molekyylisarjalla, lääkeainekohteella, telakointiohjel-
malla ja vertaamalla tuloksia muihin pisteytysmenetelmiin. R-NiB:n näytetään 
olevan nopea ja tehokas menetelmä telakointiasentojen pisteytykseen tuottaen 
huomattavan parannuksen aktiivisten molekyylien tunnistukseen. Tämän lisäksi 
esitellään ns. ahneeseen algoritmiin perustuva negatiivikuvan optimointimenetelmä, 
joka käyttää sarjaa tunnettuja aktiivisia ja inaktiivisia molekyylejä harjoitus-
joukkona. Tämän BR-NiB-menetelmän näytetään toimivan ainakin tietokone-
mallinnuksessa todella hyvin tuottaen vaikuttavia tuloksia jopa silloin, kun 
harjoitusjoukko koostuu vain muutamista aktiivisista molekyyleistä. Mikä tärkeintä, 
in silico -tulokset viittaavat optimointimenetelmän osumaprosentin telakoinnin 
uudelleenpisteytyksessä olevan riittävän korkea myös oikeisiin virtuaaliseulonta-
projekteihin. 

AVAINSANAT: molekulaarinen telakointi, negatiivikuva, NIB mallin optimointi, 
R-NiB, BR-NiB, uudelleenpisteytys, virtuaaliseulonta, tietokonepohjainen lääke-
ainekehitys   
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1 Introduction 

Proteins are large biomolecules responsible for practically every process within a 
cell. These processes include metabolism, transportation of molecules and signaling, 
to name a few examples. In biochemistry, ligands are substances such as small 
molecules, peptides or even ions that interact with their target, most often a protein, 
and regulate its function. A simple endogenous example is testosterone that binds to 
and activates its target protein androgen receptor and causing, for example, muscle 
growth. A defect or noxious function of a protein is a typical cause of diseases that 
are very often treated with drugs, which are typically natural or synthetic ligands that 
affect their target proteins causing biological responses. 

Global pharmaceutical markets increased from 390 billion US dollars in 2001 to 
1.2 trillion US dollars in 2018 (Aitken et al., 2019). Similarly, the drug costs for each 
patient have increased as drastically during the recent decades (Morgan et al., 2020). 
Additionally, it has been estimated that the median cost to bring one new drug to the 
market has been increased in less than two decades from hundreds of millions of 
dollars to even billions of dollars (Adams and Van Brantner, 2006; DiMasi et al., 
2003, 2016). Thus, there is an increasing interest to cut down the expenses during 
the drug development process. 

In drug development, the initial problem is to find compounds that bind to the 
target protein, such as a receptor, an enzyme or an ion-channel, and determine how 
strong this interaction is. This can be a very laborious, expensive and time-
consuming task, as typically massive amounts of molecules need to be tested in order 
to find the suitable one. Computer-aided drug design (CADD) has evolved as one 
potential solution to these problems and consists of various computational tools and 
software to be used in different stages of a drug development process (Macalino et 
al., 2015; Song et al., 2009; Veselovsky and Ivanov, 2003). Thanks to the constantly 
increasing amount of computing power and freely available digital data considering 
protein structures, chemical interactions and molecule structures, CADD has become 
an essential part of drug design. Computationally, it is possible to screen a huge 
number of molecules much faster and more economically than in laboratories 
without chemicals, reagents or animal experiments. Nowadays, a large collection of 
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different tools is available to evaluate, for example, molecular interactions, stability, 
oral availability and toxicity of potential drug candidates. 

One of the central methods in CADD is molecular docking that estimates the 
correct binding pose of a ligand against its target, such as a receptor, and the affinity 
of this interaction (Morris and Lim-Wilby, 2011; Meng et al., 2011). With docking, 
it is possible to virtually screen several millions of molecules and select the most 
promising drug candidates for further testing. As the performance of regular docking 
is often case-selective, there is a need for more universal and accurate methods. In 
this thesis, the focus was to develop rescoring methods to improve the ability of 
docking to recognize the potential molecules binding to the target protein from the 
less favourable ones.  
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2 Review of the Literature 

2.1 High-throughput virtual screening 
During the early stages of drug development, the aim is to find molecules, called 
hits, which show some activity in binding to the target protein of interest. Typically, 
a huge number of molecules need to be tested to find even a few hit molecules, and 
the process is often likened to searching for a needle in a haystack. In traditional drug 
development, high-throughput screening (HTS) is an experimental method 
developed for this purpose (Bleicher et al., 2003; Hertzberg and Pope, 2000; Martis 
et al., 2011). Nowadays, it automatically, systematically and rapidly tests even 
hundreds of thousands of molecules and their binding affinities to the target a day. 
However, large HTS set-ups demand financial resources and equipment typically 
possible only for large pharmaceutical companies. Accordingly, HTS has often been 
criticized for its lack of efficiency; although some initial hit molecules might be 
found, there is little chance to develop it into a lead compound, i.e., a compound with 
likely therapeutically suitable properties. 

To ease at least some of these problems, computer-aided drug design (CADD) 
has evolved. In CADD, an analogous process to HTS is high-throughput virtual 
screening (HTVS) that can easily screen several millions of molecules with only 
marginal costs compared to HTS (Bajorath, 2002; Klebe, 2006; Schichet, 2004). In 
HTVS, data from the target structure or known bioactive ligands is used to evaluate 
the molecule potency. By computationally selecting a smaller subset of the potential 
molecules to be tested in vitro, the hit rates can be improved remarkably in 
comparison to a random HTS approach. This can greatly reduce the economical 
investments needed for the initial or later stage testing and molecule synthesis. 
HTVS can be divided into structure-based and ligand-based virtual screening (VS) 
methods, which are discussed more closely in the next chapters. However, these 
methods are not necessarily mutually exclusive and it is common that a drug 
discovery project mixes both approaches.  
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2.1.1 Ligand-based virtual screening 
In ligand-based virtual screening, chemical data from the known active ligands are 
used to identify new molecules binding to the target (Geppert et al., 2010; 
Ripphausen et al., 2011). When there are no structure data from the target available, 
ligand-based methods are practically the only option to proceed in a drug discovery 
project. These approaches are based on the structure-activity relationship, a 
hypothesis that presumes compounds with similar properties having similar 
activities, and these properties are evaluated with algorithms. Similarity properties 
can be one-dimensional (1D), such as affinity data or lipophilicity, two-dimensional 
(2D), such as common fragments or bonding information or even three-dimensional 
(3D) including chemical space, electrostatics, shape or 3D pharmacophore 
properties. These properties aim to identify common factors between the active 
molecules and find the best matching structures from the screened compounds.  

Similarity searching is a simple and computationally inexpensive method to find 
molecules similar to a reference structure (Maldonado et al., 2006; Willett et al., 
1998). Certain properties of a reference structure, such as 2D substructures, are 
determined and compared against the molecules in the database of interest. The more 
similar the molecule is with the reference structure, the higher score it gets. For 
example, one of the popular similarity methods is based on molecular fingerprints. 
Each property of a molecule, such as every fragment, is encoded in a binary string 
(the property either exists or not) called a fingerprint. The presence of similar 
fingerprints in both query structure and the examined structure is compared and the 
similarity is calculated with Jaccard/Tanimoto coefficient or with some other 
similarity coefficients (Haranczyk and Holliday, 2008; Willett, 2006). 

Another ligand-based method is quantitative structure-activity relationship 
(QSAR) that aims to create correlation between a set of ligands and their 
pharmacological activity (Verma et al., 2010). It can be used, for instance, in the 
modelling of binding affinity, toxicity or absorption, distribution, metabolism, and 
excretion (ADME) properties, such as oral bioavailability (Hu and Aizawa, 2003; 
Kruhlak et al., 2007; Toropova et al., 2010). For a case example, the physicochemical 
properties of 232 drugs with known bioavailability were analysed by Yoshilda and 
Topliss to create a model for the human bioavailability (Yoshida and Topliss, 2000). 
Lipophilicity together with the presence of certain structural parameters, such as 
ketones or phenolic hydroxyl groups, were used to generate a predictive QSAR 
model with a Spearman rank correlation coefficient of over 0.8. The generated model 
can be used to predict the human bioavailability of unknown molecules by 
calculating the aforementioned structural parameters. 

Ligand-based pharmacophore modelling aims to generate a 3D model containing 
the relevant features of known active ligands needed for the binding to the protein 
target (Yang, 2010). Algorithms consider the flexibility of a set of active ligand 3D 
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structures and align them to recognize the relevant features to generate a 
pharmacophore model. These features can be, for example, possible hydrogen bond 
acceptors and donors, aromatic rings or hydrophobic interactions. Finally, the model 
is used in VS to search hits that fit best to the model (Ananthula et al., 2008; Yu et 
al., 2007). 

2.1.2 Molecular docking is a key method in structure-based 
virtual screening 

Structure-based VS uses the 3D structure of a target protein to find new drug 
candidates (Cheng et al., 2012; Lyne Paul D., 2002). The protein 3D structure can 
be obtained, for example, from X-ray crystallography, nuclear magnetic resonance 
spectroscopy or it can be computationally modelled. The structure-based methods 
can be used also for novel targets, as no ligand information is necessarily needed. 
Because there were over 175,000 protein structures available at RSCB Protein Data 
Bank (PDB; www.rcsb.org) on the 18th of March 2021, structure-based methods are 
very plausible approaches in drug discovery projects (Berman et al., 2002; Burley et 
al., 2019). 

In structure-based pharmacophore modeling, the 3D information about the target 
protein or protein-ligand complex is used to create the model. The binding site is 
analysed to recognize possible interaction points for small molecules, such as 
locations for hydrogen bonding (Yang, 2010). In contrast to the ligand-based 
pharmacophore modeling, a set of known active ligands are not needed for the model 
generation. However, the receptor information can be included, for example, in 
QSAR models to improve the reliability of the approach (Cherkasov et al., 2008; 
Sippl et al., 2001). 

Molecular docking is a fundamental part in CADD and structure-based virtual 
screening (Morris and Lim-Wilby, 2011; Meng et al., 2011; Shoichet et al., 2002). It 
aims to predict the binding pose and affinity of a molecule when it binds to the target 
protein (Figure 1, right). This is done by evaluating steric and electrostatic 
interactions of the molecule-protein complex. In the first phase, docking tries to 
generate the correct binding pose of a molecule with a sampling algorithm, and in 
the second phase, a scoring function is used to evaluate the binding affinity and to 
recognize the most suitable pose out of the pool of alternative docking solutions. In 
VS, the scoring function needs also to separate the active molecules from the inactive 
ones, in other words, recognize the binding affinity differences between dissimilar 
molecules. 



Sami Kurkinen 

 16 

 
Figure 1.  Principles of negative image-based rescoring and molecular docking. First, in both 

methods, the centroid of the target protein ligand binding cavity is determined to 
generate a negative image-based model and dock the molecules (top, center). The 
generated model considers both shape and electrostatics of the cavity (center, left). The 
gray cavity atoms are nonpolar whereas the red and blue atoms correspond negative 
and positive charges of the pocket, respectively, caused by, for example, polar amino 
acids side chains. The shape/electrostatic similarity of the docking solutions (center, 
right) is compared against the generated NIB model, and the new ranking is calculated 
based on this similarity score (bottom, left). The rescoring approach (red curve) 
outperforms regular docking approaches (blue curve) and greatly improves the 
enrichment metrics (bottom, right). Modified from Studies II and III. 
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Thanks to the increasing computing power, the original rigid docking with a 
simple lock-and-key approach, in which the molecule and target are treated as rigid 
bodies, has evolved to flexible docking that allows the flexibility of a molecule 
during the docking process (Kuntz et al., 1982; Rosenfeld, 1995; Sousa et al., 2006). 
This has still led to induced-fit docking, a method that treats the desired parts of the 
target protein as flexible. Nowadays, plenty of docking software is available from 
commercial to freeware that use different sampling approaches and scoring functions 
(Pagadala et al., 2017). A selection of them is introduced in Table 1. 

Table 1.  A collection of docking programs used in virtual screening. 

Software Sampling method Scoring function License* References 

AutoDock Stochastic (genetic algorithm) Empirical Free Morris et al., 
2010 

AutoDock 
Vina 

Stochastic (quasi-Newton 
method) 

Empirical+knowledge-
based 

Free Trott and 
Olson, 2010 

DOCK Systematic (incremental 
construction) 

Force field-based Academic Allen et al., 
2015 

FlexX Systematic (incremental 
construction) 

Empirical Commercial Rarey et al., 
1996 

Glide Systematic+stochastic 
(incremental construction with 
Monte Carlo sampling) 

Empirical+force field-
based 

Commercial Friesner et al., 
2014; Halgren 
et al., 2004 

GOLD Stochastic (genetic algorithm) Originally force field-
based, also empirical 
possible 

Commercial Gareth et al., 
1997 

MCDOCK Stochastic (Monte Carlo 
sampling) 

Force field-based Academic Liu and Wang, 
1999 

LigandFit Shape complementarity with 
stochastic (Monte Carlo 
sampling) 

Empirical+shape 
comparison+similarity 
clustering 

Academic Venkatachalam 
et al., 2003 

PLANTS Stochastic (ant colony 
optimization) 

Empirical Academic Korb et al., 
2006; 2009 

Surflex Systematic (Incremental 
construction algorithm) with 
surface-based molecular 
similarity method 

Empirical Academic Jain, 2003 

* Software licensing information: Free is freely downloadable for everyone, academic is only for 
non-profit institutions, and commercial usage needs a purchasable license. 

Computationally even more demanding molecular dynamics (MD) and quantum 
mechanical approaches treat the entire molecular system, such as protein and its 
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ligand, flexibly and simulates its behavior over time (Ganesan et al., 2017). MD 
simulations give information about the relevant conformational changes and other 
time-dependent variations that can have a significant role in the protein-ligand 
binding properties. Although not suitable for HTVS or simulating long time periods, 
MD gives one solution to the fundamental docking problem regarding protein 
flexibility. 

2.1.2.1 Sampling methods 

In the sampling phase, docking considers the ligand flexibility and aims to predict 
its plausible binding orientation in the protein binding site (Brooijmans and Kuntz, 
2003; Kitchen et al., 2004; Sousa et al., 2006). The search methods can be roughly 
divided into two categories: systematic and random/stochastic search methods. 

Six degrees of rotational and translational freedom describe the movement of a 
rigid molecule. In the case of a flexible molecule, the conformational degrees of 
freedom must also be considered during the sampling process. While the number of 
rotatable bonds in the molecule increases, also the conformational degrees of 
freedom rapidly increase. The principal idea in a systematic search is to cover all the 
degrees of freedom during the sampling (Friesner et al., 2004; Halgren et al., 2004; 
Sousa et al., 2006). Because this is typically computationally impossible, as the 
number of combinations easily gets far too high, several methods have been 
developed to facilitate the calculations (Table 1). For example, only a limited number 
of fixed rotations is performed per rotatable bond to cover the whole 360˚ scene. In 
the fragmentation method that utilizes the incremental construction algorithm, the 
docked molecule is first broken into fragments, and the main fragment is anchored 
in the cavity and fixed. The remaining fragments are then docked separately before 
rejoining them back to the anchor fragment again (Allen et al., 2015; Jain, 2003). 

In random search methods, the conformational space of the molecule is screened 
by making random changes to the rotatable bonds. Thus, the results might vary a 
little when repeating the process. To name a few examples, in the Monte Carlo 
method, the starting point is a randomly generated initial conformation (Hart and 
Read, 1992). This conformation is then treated in a stepwise process generating small 
random changes to the molecule. If the new conformation fulfils a certain energy 
threshold, it is selected for the next round. This process is continued until a new 
conformation cannot be created. Genetic algorithms are based on the idea of 
biological evolution and utilize it in docking (Gareth et al., 1995, 1997; Guan et al., 
2017). It starts from the initial population of randomly generated molecule 
conformations. With operations such as crossovers, mutations and recombinations, 
a new population is made from the parent population. The fitness of each individual 
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is calculated with a certain energy function and the best conformation is selected for 
the next cycle. These steps are repeated until the optimization is finished. 

In the last part of docking, a scoring function is used to evaluate the binding 
affinity of each conformation to recognize the correct pose (Kitchen et al., 2004; 
Sousa et al., 2006). These typically aim to evaluate the differences in binding free 
energies. For HTVS, computationally expensive free-energy simulation methods, 
such as Molecular Mechanics/Generalized Born Surface Area or Poisson-Bolzmann 
Surface Area (MM-GBSA and MM-PBSA), are usually too time-consuming. Thus, 
several simplifications need to be done to enable the efficient use of the scoring 
functions, and particularly the effects of entropy, protein flexibility and solvent are 
difficult to evaluate. 

2.1.2.2 Scoring functions 

Docking scoring functions can be divided into different subtypes (Huang et al., 2010; 
Liu and Wang, 2015). Force field-based scoring functions evaluate the sum of the 
ligand-target interaction energy and the internal energy of the ligand (Gareth et al., 
1997; Morris et al., 2010; Sousa et al., 2006). There are several force fields available, 
and they are used to calculate electrostatic, van der Waals and steric interactions 
between the docking pose and the binding site to rank the molecules and their 
conformations. Empirical scoring functions utilize experimentally studied binding 
energies and 3D data to calculate coefficients for several terms with regression 
analysis (Eldridge et al., 1997; Guedes et al., 2018). These coefficients are used to 
approximate the binding energies between the compound and the target protein by 
calculating a diverse set of terms, such as hydrophobic contacts or a number of 
hydrogen bonds, between them. Knowledge-based scoring functions utilize PDB or 
other large 3D databases to collect information about the intermolecular interactions 
of the functional groups between the ligand and protein (Gohlke et al., 2000; 
Muegge, 2000). These are used to evaluate the corresponding atomic interaction 
potential in the docking solutions. Thus, the focus is in reproducing the 
experimentally confirmed poses rather than energetically the most favorable ones. 
Furthermore, it is common that the docking software use combinations of several 
scoring functions (Table 1) (Friesner et al., 2004; Halgren et al., 2004; Korb et al., 
2009; Trott and Olson, 2010). 

During the last decade, the machine learning (ML) approaches have become 
commonplace also in CADD (Lo et al., 2018; Vamathevan et al., 2019). In the field 
of scoring function development, ML and neural networks have been shown to be 
promising (Ain et al., 2015). The construction of ML scoring functions is based on 
diverse training sets that contain, for example, the structures of protein-ligand 
complexes and their affinity data. The training sets are used to train and optimize the 
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scoring function, whereas a smaller test set is used for validation. As the freely 
available online structural databases are increasingly comprehensive, the 
construction of diverse training and test sets is becoming effortless (Table 2). For 
example, a freely available RF-Score-VS scoring function is trained with over 
15,000 active and 890,000 inactive molecules docked into 102 targets, and it is 
shown to easily outperform the docking program Autodock Vina and its scoring 
function (Wójcikowski et al., 2017). 

Table 2.  A selection of molecular databases available online for virtual screening. 

Database No of 
molecules Website Other 

Asinex 530,000 www.asinex.com Commercial 

ChEMBL 2,000,000 www.ebi.ac.uk/chembl Non-commercial 

Chembridge 1,300,000 www.chembridge.com Commercial 

DrugBank 14,000 www.drugbank.ca 
Non-commercial, 

contains data of drugs 
and their targets 

Enamine 2,700,000 www.enamine.net Commercial 

Molport 7,000,000 www.molport.com 
Commercial, compiles 

data from other 
suppliers 

NCI 260,000 www.cactus.nci.nih.gov 
Non-commercial, for 

cancer and AIDS 
research 

Specs 350,000 www.specs.net Commercial, drug-like 
molecules 

SuperNatural II 330,000 http://bioinf-
applied.charite.de/supernatural_new 

Non-commercial natural 
compound collection 

Vitas-M 1,400,000 www.vitasmlab.biz Commercial 

Zinc 230,000,000 https://zinc.docking.org Non-commercial 

 

2.2 Measuring the docking performance 
Although docking is a popular and effective method in HTVS, there is an ongoing 
debate as to which of the docking algorithms and scoring functions, if any, is better 
than the other in reproducing and selecting the correct binding pose among the 
different conformations and inactive molecules (Bursulaya et al., 2003; Cross et al., 
2009; Elokely and Doerksen, 2013; Ferrara et al., 2004; Mohan et al., 2005; Pagadala 
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et al., 2017; Wang et al., 2003, 2016). Rather, the docking success is typically case-
specific, and the results vary depending on the target and docking program. 
However, the problem has mainly focused on the scoring functions rather than the 
sampling algorithms, i.e., docking is often able to create the correct binding pose but 
it has difficulties in recognizing it (Dariusz et al., 2010; Pagadala et al., 2017; Warren 
et al., 2006). Several studies show that the consensus scoring strategy, which 
combines the results of several scoring methods or docking software, typically 
generates the best results (Charifson et al., 1999; Cheng et al., 2009; Houston and 
Walkinshaw, 2013; Oda et al., 2006). However, the selection of a suitable type of 
consensus scoring might be challenging, and docking with several programs is very 
time-consuming. Thus, the development of more accurate and universal scoring 
functions and other post-processing techniques is still a topical issue. 

Not only the unbiased comparison of different docking programs is difficult, but 
also the evaluation of the docking performance can be complicated. The most 
obvious way for that is to examine how well docking is able to reproduce the 
experimentally verified binding conformation, such as the co-crystallized ligand in 
an X-ray structure. This can be done, for example, by calculating the root-mean-
square deviation (RMSD) between the atoms in the superimposed co-crystallized 
ligand structure and the docked molecule (Kramer et al., 1999; Li et al., 2010; 
Pagadala et al., 2017). The smaller the value, the better the docked molecule 
superimposes with the crystallized binding conformation. The RMSD method is not 
an ideal approach, as the difficulty of evaluating small molecules or determination 
of a suitable threshold is difficult. Moreover, ligands may have multiple binding 
orientations, and, for example, the crystallographic binding pose is not necessarily 
the only correct one (Mobley and Dill, 2009). Furthermore, docking success is highly 
dependent on the target structure, and it is possible that the “verified binding 
conformation” is not the correct one, as the crystal structure represents only a certain 
snapshot of a dynamic protein-ligand complex formation (Jain, 2009). Although 
containing several problems, the RMSD method is probably the most used approach 
when evaluating the docking poses against the experimentally determined ones 
(Kirchmair et al., 2008). 

Typically, a significant number of active ligands lack any crystal structure 
making previously described comparisons impossible. Another approach is to 
examine how well a docking program is able to separate active molecules from the 
inactive ones and ignore the RMSD comparison to the actual structures. For this 
approach, a reliable benchmarking set is needed that contains a set of known active 
molecules and a sufficiently large number of decoy molecules that are supposed to 
be inactive (Lagarde et al., 2015; Réau et al., 2018). Although originally used in 
medicinal imaging, the receiver operating characteristic (ROC) curve is a graphical 
presentation that can be used to plot the active molecule rate against the decoy rate 
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illustratively (Swets, 1979). In other words, the plot describes the sensitivity vs. 
specificity relation by plotting, for example, the ranking list from docking so that the 
x-axis contains the percentage of the found decoys whereas the y-axis contains the 
percentage of the found actives. Area under the curve (AUC) is a metric that is 
calculated from the ROC curve and roughly describes the probability of a single 
molecule in a test set to be recognized as active or decoy (Figure 1, bottom right) 
(Hanley and McNeil, 1982; Truchon and Bayly, 2007). It takes values from 0 to 1 in 
which 0 indicates the perfectly inaccurate ability to separate actives from decoys: all 
decoys get a higher score than the active molecules. On the contrary, AUC of 1 
indicates that all active molecules are ranked higher than decoys. In practice, AUC 
varies between 0.5 (random picking or the 50/50 probability to separate molecules) 
to 1. 

In HTVS, in which even millions of compounds are screened against one target, 
the ability to find those few active molecules out of the inactive ones is essential. 
Because only a tiny part of the best-ranked molecules from HTVS can be screened 
in vitro, the active molecules need to be ranked high enough. Thus, in addition to 
AUC, another interesting metric is the early enrichment. Although there are several 
approaches to define the enrichment factors (EFs), in this thesis, EF describes the 
percentage of actives ranked higher than the certain percentage of decoys (Lätti et 
al., 2016). For example, EF 5 % = 10.5 implies that 10.5 % of the active molecules 
are ranked higher than 5 % of the top-ranked decoy molecules in the set. Typically, 
the main interest is in maximizing the very early enrichment, such as EF 1 % or EF 
0.1 %: if there are 1,000,000 molecules in a database and only 1,000 of them can be 
screened in vitro according to the docking score, the active molecules should be 
ranked higher than 0.1 % of the best inactive ones. 

A high AUC value does not tell anything about the early enrichment. Rather, it 
describes the overall performance of the method. Ironically, the AUC value can be 
high, but the method is still too inefficient for practical HTVS. Similarly, a high EF 
factor does not guarantee the overall success. A high EF with the low AUC value 
describes that the method recognizes only a part of the active molecules well: it can 
be specific only to a certain ligand subgroup. Thus, although typically more complex 
and less intuitive, metrics that consider better both the early enrichment and the 
overall performance have been developed, such as the Boltzmann-enhanced 
discrimination of receiver operating characteristic (BEDROC) or the robust initial 
enhancement (RIE) (Truchon and Bayly, 2007; Zhao et al., 2009). BEDROC 
includes a user adjustable parameter so that the importance of the early part of the 
ROC curve can be adjusted. However, the ratio of actives and inactives as well as 
the test set size need also be considered to minimize the error. 
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2.3 Molecule preparation for virtual screening 
As well as selection and preparation of the target structure, the molecule preparation 
is a critical part in HTVS (Figure 3) (Madhavi et al., 2013). In molecular databases, 
the compounds are typically downloadable in 2D structure-data file (SDF) format, 
which is capable of including associated data, such as rotatable bond number, 
lipophilicity or molecular weight (Dalby et al., 1992). Other formats are also 
possible, such as a simplified molecular-input line-entry system (SMILES), which 
describes the structure as a 1D line notation saving a significant amount of storage 
capacity (Weininger, 1988). However, the molecules need to be converted to the 3D 
format before docking. Additionally, stereochemistry of the structures needs to be 
retained during the conversion, or created extensively if not determined, and the 
relevant protonation state or states should be considered (Brink and Exner, 2009; 
Castaño and Maurer, 2015). Instead of covering all possible ionization states, in 
HTVS, covering the most relevant ones at physiological pH is more desirable. This 
minimizes the number of the screened compounds and prevents the occurrence of 
false positives caused by infeasible protonation states. 

 
Figure 2.  Sildenafil conversion from 1D or 2D to 3D format. One- or two-dimensional structures 

are converted to 3D with plausible protonation states and partial charges. If needed, 
molecule conformations are created to cover the energetically plausible poses. In the 
case of molecules with a high number of rotatable bonds, such as sildenafil with seven 
of them, the conformation number easily gets very large. 

Furthermore, although usually underestimated, tautomerism is another issue that 
need to be considered, and particularly the most common tautomers should be 
identified and considered (Martin, 2009; Pospisil et al., 2003). Tautomerism does 
not only affect the shape, hydrophobicity or fragmentation of the molecule, but it 
may also have a critical effect on the hydrogen bonding. 
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Determining the partial atomic charges is another crucial factor in the molecule 
preparation (Kukic and Nielsen, 2010; Pissurlenkar et al., 2009). Today, there are 
several force fields, such as Gasteiger-Marsili, Merck molecular force field (MMFF) 
and optimized potentials for liquid simulations (OPLS), to assign partial charges for 
the molecules and the development is ongoing (Gasteiger and Marsili, 1980; 
Halgren, 1996; Jorgensen and Tirado-Rives, 1988; Roos et al., 2019). In order to 
efficiently approximate the partial charges of even millions of molecules in a 
database, several simplifications for the calculations need to be made, the greatest of 
which is treating the atomic charges as fixed. To overcome this issue, 
computationally more demanding polarizable force fields have also been developed, 
mainly for MD simulations (Halgren and Damm, 2001; Lin and MacKerell, 2019). 

 After all these steps have been considered, the database is typically ready for 
docking. However, if the database is used in similarity comparisons or the negative 
image-based (NIB) screening (described in the next chapter), also the molecule 
conformations need to be generated (Figure 3, right) (Hawkins, 2017). As described 
previously in Chapter 2.1.2.1, the number of rotatable bonds is a key factor in 
determining the number of conformations to be generated, and the conformation 
generation is based on the same principles as the docking sampling. To cover all 
energetically plausible poses of the molecule without the combinatorial explosion, a 
balance between the number of conformations and rotatable bonds needs to be found 
(Figure 3). 

For molecule preparation, there are several computer programs from commercial 
to freely distributed ones that are able to handle most, if not all, of the 
aforementioned issues, such as ChemAxon (www.chemaxon.com) or Maestro tools 
(www.schrodinger.com), RDKit (www.rdkit.org), OpenBabel, SPORES and 
Balloon (Brink and Exner, 2009; O’Boyle et al., 2011; Vainio and Johnson, 2007). 
Accordingly, different workflows are available for molecule preparation and 
docking, as well as for other cheminformatics approaches to ease the process (Gally 
et al., 2017; Kooistra et al., 2018; Pearce et al., 2009). 

2.4 Negative image-based approaches 
Although the computing power is constantly increasing and parallel computing can 
be utilized with many central processing units (CPU) even with regular computers, 
docking is a relatively slow method. It is typical that several docking runs are needed 
for numerous protein conformations to obtain satisfactory results. Furthermore, it 
might be necessary to screen several molecular databases, the biggest of which can 
easily contain millions of molecules (Table 2). Additionally, several conformations 
for each compound might be needed to generate to find the correct one. Thus, 
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balancing between speed and accuracy is the essence in docking, as with any other 
HTVS method. 

In NIB screening, the idea is to determine the properties of the ligand binding 
area by utilizing protein structural data to create a model that can be used in HTVS 
(Bauer and Mackey, 2019; Fukunishi et al., 2006; Niinivehmas et al., 2015; Tran-
Nguyen et al., 2019; Virtanen and Pentikäinen, 2010). This thesis focuses on the use 
of software called Panther that generates a negative image from the ligand binding 
area and is specially developed for HTVS purposes (Niinivehmas et al., 2015). The 
ligand binding site is filled with positively and negatively charged atoms together 
with neutral atoms to create a ligand-like model that preserves the complement shape 
and electrostatic properties of the area. This model is then used in similarity searches 
to screen molecular databases using the program ShaEP (Vainio et al., 2009). 
Originally developed for the similarity evaluation of ligand-sized molecules, it 
superimposes and compares the shape and electrostatic similarity between the NIB 
model and the molecule of interest and calculates the similarity score based on these 
two properties. As no tedious sampling of molecules against the target protein is 
needed, the NIB screening is much faster in comparison to docking but still considers 
the properties of the binding pocket. Accordingly, it gives a high weight for the 
importance of shape in protein-ligand interaction while still allowing some overlap 
with the protein. A more detailed description of ShaEP is given in Chapter 4.5.2. 

The idea of determining the binding cavity originates from the binding site 
prediction problem for which a high number of computational methods have been 
developed, such as VOIDOO, GRID, SiteMap and VolSite (Desaphy et al., 2012; 
Goodford, 1985; Halgren, 2007, 2009; Kleywegt and Alwyn Jones, 1994). The 
importance of shape in HTVS has been recognized for a long time and there are 
several shape comparison programs available including ROCS, MSC and USR, for 
example (Ballester and Richards, 2007; Masek et al., 1993; Rush et al., 2005). A 
docking program DOCK that determines the binding area with spheres was among 
the first programs where the shape complementarity was considered (Allen et al., 
2015; Kuntz et al., 1982). Some newer docking programs, such as LigandFit, MS-
DOCK and QSDock, are even based on the shape complementarity of the ligand 
binding cavity and this information is used for the compound selection (Goldman 
and Wipke, 2000; Sauton et al., 2008; Venkatachalam et al., 2003). Nevertheless, 
although a very important aspect in the ligand binding, the importance of shape 
complementarity is typically underestimated in docking software, and the scoring 
functions focus more on electrostatics (Hawkins et al., 2007; Kahraman et al., 2007; 
Kirchmair et al., 2009; Virtanen and Pentikäinen, 2010; Warren et al., 2006). 

This thesis introduces two methods that are based on the NIB screening. The first 
method, called negative image-based rescoring (R-NiB), ranks the molecule poses 
generated by a docking program (Table 1) based on their similarity to the negative 
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image of the binding cavity. It compares the shape and electrostatic similarity 
between the NIB model and the docking poses without superimposing them, i.e., the 
docked molecule is kept in place in the binding pocket during the similarity 
comparison (Figure 1, left). In contrast to the NIB screening, R-NiB requires docking 
and only rescores the docking solutions, whereas the NIB screening scores the 
molecule conformations generated ab initio. The second method, labelled as brute 
force negative image-based optimization (BR-NiB), optimizes the NIB model using 
known active and decoy molecules as a training set (Figure 2). Based on the 
observation that Panther typically generates too bold NIB models, the NIB models 
are optimized by removing excess cavity atoms one by one. 

 
Figure 3.  A simplified presentation of the brute-force negative image-based optimization. A) A 

diverse set of active and inactive molecules are used as a training set for the negative 
image-based (NIB) model optimization. Generation #0 (Gen #0, in this example only five 
cavity atoms) corresponds to the original NIB model. Cavity atoms (gray spheres) are 
removed one by one and the enrichment metrics are calculated for each new model 
similarly to the NIB rescoring (Figure 1, left). The model, now containing n-1 cavity atoms 
(Gen #1), that produces the best enrichment, is selected for the next round (green 
arrow). This cycle is continued until the attainment of Gen #X in which the enrichment 
improvement is no longer achieved. B) Model shrinks and the enrichment improves 
during the optimization process. The semi-logarithmic ROC plot shows the improvement 
of the early enrichment from Gen #0 to Gen #17. Modified from Study IV. 

BR-NiB is based on the greedy algorithm principle, which has already been utilized 
in bioinformatics, such as in DNA alignment and phylogenetics (Florea et al., 1998; 
Steel, 2005). Furthermore, greedy approaches have been used in docking sampling 
in incremental construction algorithms, for example (Allen et al., 2015; Rarey et al., 
1996). Greedy approaches avoid the combinatorial explosion of the exhaustive 
search by always selecting the locally optimal solution, such as a certain number of 



Review of the Literature 

 27 

the energetically best conformations, to the next step. Despite being ideal for solving 
only problems with the optimal substructure, such as the local energy minimum of a 
molecule conformation instead of the global minimum, greedy algorithms are often 
able to find a solution close enough to the optimal one.
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3 Aims 

The aim of this thesis was to develop methods for using the NIB models in improving 
molecular docking-based VS performance. Preliminary testing by Prof. Olli 
Pentikäinen and M.Sc. Sakari Lätti suggested that, in addition to the shape-based 
NIB screening (Niinivehmas et al., 2015), the NIB models could also be utilized in 
rescoring of the docking solutions. Inspired by this idea, this thesis introduces two 
novel methods that use the NIB models in re-ranking docked compounds: 1) The R-
NiB method ranks the docking poses based on their shape and electrostatic similarity 
to the cavity-based NIB model. 2) The BR-NiB method optimizes the NIB model 
using known active and inactive molecules included in a training set. In Study I, the 
aim was to show that the NIB models could effectively be used to rescore the docking 
solutions of PLANTS docking program with different target proteins. In Study II, it 
was shown that the R-NiB method works effectively also with alternative docking 
software. In Studies I and II, the performance of the R-NiB method was compared 
to a few other scoring functions and docking approaches. In Study III, practical 
instructions are provided for performing the NIB screening and R-NiB, and the effect 
of the computational molecule 3D preparation and conformation generation to their 
performance was analysed. In Study IV, the aim was to show that by optimizing the 
NIB model with a greedy search method utilizing benchmarking sets, the ability of 
the model to separate the active molecules from the inactive ones could be improved 
remarkably for docking rescoring. 
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4 Materials and Methods 

The most relevant methods used in the thesis are described here, and the used 
programs are listed in Table 3. A more detailed description of the methods can be 
found from the original publications. 

Table 3.  The most central methods and programs used in Studies I-IV. 

 Method Version References Original 
publication 

Molecular 
databases 

DUD 
DUD-E 

 (Huang et al., 2006) 
(Mysinger et al., 2012) 

I, II 
I-IV 

Negative 
image 
generation 

Panther 0.8.15 (Niinivehmas et al., 2015) I-IV 

Protein 
preparation 

Reduce 
Bodil 

3.24 
0.9 

(Word et al., 1999) 
(Lehtonen et al., 2004) 

I-IV 
I-IV 

Docking PLANTS 
Glide 
 
GOLD 
DOCK 
AutoDock 
AutoDock Vina 

1.2 
2018-1 
 
5.6.3 
6.8 
4.2.6 
1.1.2 

(Korb et al., 2006, 2009) 
(Friesner et al., 2004; Halgren 
et al., 2004) 
(Gareth et al., 1997) 
(Allen et al., 2015) 
(Morris et al., 2010) 
(Trott and Olson, 2010) 

I-IV 
III 
 
III 
III 
III 
III 

Alternative 
rescoring 
methods 

X-Score 
Smina 

1.2.1 
11.9.2017 

(Wang et al., 2002) 
(Koes et al., 2013) 

I 
III 

Visualization Raster3D 
MolScript 
VMD 

3.0.2 
2.1.2 
1.9.2 

(Merritt and Murphy, 1994) 
(Kraulis, 1991) 
(Humphrey et al., 1996) 

I,II 
I,II 
I-IV 

Data analysis ShaEP 
 
 
 
Rocker 

1.0.7.915 
1.1.2.1036 
1.1.3 
1.3.1 
0.1.4 

(Vainio et al., 2009) 
 
 
 
(Lätti et al., 2016) 

I 
II 
III, IV 
IV 
I-IV 
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4.1 Benchmarking sets 
To evaluate the performance of different scoring functions, docking software and 
other VS methods, reliable benchmarking sets are essential. In this thesis, the 
Directory of Useful Decoys (DUD) and the Database of Useful Decoys: Enhanced 
(DUD-E) were used for the validation of the methods (Huang et al., 2006; Mysinger 
et al., 2012). 

DUD is a benchmarking set that contains 40 protein targets with 2950 known 
ligands (Huang et al., 2006). For each ligand, there are 36 physicochemically similar 
but topologically different decoy molecules selected from the ZINC database (Irwin 
and Shoichet, 2005). DUD-E is an upgraded version of the DUD set and it should be 
a more comprehensive, less biased and more challenging benchmarking set 
(Mysinger et al., 2012). It contains 102 protein targets with 22,886 active molecules 
in total. For each active molecule, the number of decoy molecules is increased to 50 
obtained from the ZINC database. 

Although criticized for containing biases or a too low ratio of active and decoy 
molecules, the DUD and DUD-E databases are widely used and still reasonable as 
benchmarking sets for VS protocols (Chaput et al., 2016; Chen et al., 2019; Good 
and Oprea, 2008; Sieg et al., 2019). They were also used in the original NIB 
screening study with Panther (Niinivehmas et al., 2015). Thus, these benchmarking 
sets were a logical selection also for the thesis work to easily compare the 
performance of the methods. 

ChEMBL is a freely available online database of bioactive molecules (Mendez 
et al., 2019). It was used in Study IV to select active molecules for mineralocorticoid 
receptor (MR) and neuraminidase (NR) validation sets. Because the ratio of active 
molecules in the DUD-E set is as “high” as at least 1.5 %, the validation sets were 
generated to better correspond a more realistic situation in which the ratio between 
actives and decoys was lowered to 0.014 %. Active molecules with different affinity 
values (the half maximal inhibitory concentration (IC50) of < 1 µM, < 50 µM and 1-
50 µM) and not present in the DUD-E set were randomly selected for the validation 
sets using compounds from the commercial Specs database (Table 2) as decoy 
molecules. Naturally, some molecules in the Specs set might be false negatives by 
binding to the protein targets. However, this unlikely occurrence should increase the 
reported hit rates only slightly. 

4.2 Target protein preparation 
All protein structures used in the studies were acquired from the PDB (Berman et 
al., 2002; Burley et al., 2019). For a certain target, mainly the same PDB entry was 
used as listed in the DUD and DUD-E databases. Because of the usage of several 
docking programs, it was essential to use different tools for the protein preparation. 
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However, the aim was to keep the preparation process as similar as possible between 
the docking programs. For PLANTS (Studies I-IV) and GOLD (Study III) docking, 
the necessary structure editing was done with Bodil Molecular Modeling 
Environment and the protonation was performed with Reduce (Lehtonen et al., 2004; 
Word et al., 1999). In the case of Glide docking (Study III), the target preprocessing 
was performed with Protein Preparation Wizard in Maestro (Schrödinger Release 
2018-1, Epik, Schrödinger, LLC, New York, NY, USA). In AutoDock and Vina 
docking (Study III), AutoDockTools provided with AutoDock was used in protein 
editing. When using DOCK for docking (Study III), Dock Prep tool was used in 
molecule visualization software UCSF Chimera 1.12 (Goddard et al., 2004). 

4.3 Small molecule preparation 
Molecular database preparation and 3D conversion were done with Maestro tools 
(Studies I, III and IV) using OPLS3 force field. In Study II, the preparation and 
molecule conformation generation were performed for comparison also with 
OpenBabel, RDKit and Marvin tools. Commercial Maestro tools are widely used in 
CADD and considered as one of the state-of-the-art tools in the field. Maestro tools 
are fast and easy to use for large molecular database conversions including all the 
essential steps in molecule preparation: the 3D conversion, protonation at 
physiological pH, tautomerization, partial charge calculation and conformer 
generation. Maestro tools were also used in the original publication of Panther 
(Niinivehmas et al., 2015). 

However, alternative tools were also used for comparison in Study II. The aim 
was to select software that is freely available, reliable enough, widely used and cover 
tools as comprehensively as possible for complete molecule preparation. OpenBabel 
is a freely available tool for molecule file conversion and is also able to, for example, 
3D conversion, conformer generation and partial charge calculation. RDKit, also 
freely available software, is based on Python programming language and contains 
tools and scripts for molecule 3D conversion and conformer generation. However, 
at least during the preparation of Study II, it lacked some functionalities such as 
tautomer generation. Marvin tools are freely available for academic institutions and 
contain several software for thorough molecule preparation and file conversion. 

In Study III, ligand-based screening with ShaEP was performed. The ab initio 
generated conformers were prepared with ConfGenX in Maestro (Schrödinger 
Release 2018-1, Epik, Schrödinger, LLC, New York, NY, USA) using OPLS3 force 
field. The conformer number was limited to 64. 
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4.4 Molecular docking 
In this thesis, PLANTS was used for docking in all of the studies. PLANTS is 
docking software based on a stochastic ant colony optimization sampling method 
and includes two empirical scoring functions: PLANTSCHEMPLP as a default and 
PLANTSPLP (Table 1). PLP function was only used for docking rescoring in Study 
I. Two piecewise linear potential (PLP) functions are used in both functions, one for 
repulsive or attractive interactions and the other for only repulsive interactions, to 
evaluate the steric complementarity between the ligand and the protein target. In the 
case of ChemPLP, the empirical scoring function ChemScore implemented in the 
docking program GOLD is also used to determine angle-dependent terms in 
hydrogen and metal bonds (Eldridge et al., 1997; Verdonk et al., 2003). ChemScore 
evaluates the total free energy change during the ligand binding and is based on the 
affinity data from 82 protein-ligand complexes. A more detailed description of the 
PLANTS scoring functions or sampling method is provided in the original PLANTS 
publications (Korb et al., 2006, 2009). 

PLANTS was selected as the primary docking program, because it is 
straightforward to use and considered reliable in our experience. It always generates 
the desired amount of docking poses. Moreover, PLANTS practically always docks 
all the molecules in the dataset and does not skip them if they, for instance, lack some 
physicochemical properties. PLANTS is also reviewed to be very convincing 
docking software in reproducing the binding pose of a ligand co-crystallized with 
the protein (Ren et al., 2018). 

In Study III, four other docking software were used to study the performance of 
the R-NiB method with other popular docking programs. GOLD uses genetic 
algorithm for sampling (Table 1) but the same default scoring function ChemPLP as 
PLANTS in versions newer than 5.0. However, ChemScore, the original GoldScore 
and some other functions are also available. 

Glide (Study III) is a part of Maestro tools and uses a combination of systematic 
and stochastic sampling with a combination of empirical and force field-based 
scoring functions. The empirical scoring function GlideScore, based on ChemScore, 
is used to rank the different molecules and evaluate the ligand binding affinity. Then, 
the force field-based Emodel scoring function is used to select the best pose of a 
single docked ligand. It is based mainly on the Coulombic and van der Waals 
energies between the receptor and ligand but some contribution from GlideScore is 
also received. There are three modes available in Glide docking based on the balance 
between speed and accuracy, HTVS, SP and XP. Only Glide HTVS and SP were 
used in the Study II, as XP is too time-consuming for VS approaches. Glide SP is 
described being the recommended choice for a standard VS study and performs a 
more exhaustive sampling than Glide HTVS that is designed for docking very large 
databases. 
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DOCK (Study III) uses an incremental construction algorithm in sampling. 
Particularly in the newer versions of DOCK, several scoring functions, or even their 
combinations, can be used. In Study II, the grid-based scoring was selected as it was 
also used in the rigid and flexible ligand docking tutorials (Lang, 2018). In DOCK, 
a high number of parameters are user adjustable. However, the principle was to use 
as default settings as possible to keep the results somewhat comparable between the 
other docking programs and protein targets. 

Since version 4, AutoDock has been utilized a genetic algorithm for docking 
sampling and a semiempirical free energy force field for scoring (Table 1). The 
scoring function evaluates the free energy change during ligand binding with pair-
wise atomic terms including hydrogen bonding, desolvation, electrostatics, 
dispersion and repulsion (Huey et al., 2007). The empirical approach is used to 
evaluate the contribution of dissolved water by utilizing the data from 188 protein-
ligand complexes. 

AutoDock Vina is a newer docking program than AutoDock both developed by 
the same Molecular Graphics Lab. It uses a quasi-Newton sampling method with a 
combination of empirical and knowledge-based scoring functions by utilizing data 
from both known protein-ligand complexes and affinity measurements (Table 1). 
The scoring function calculates the protein-ligand binding affinity by evaluating 
steric, hydrophobic and hydrogen bonding interactions. 

4.5 Negative image-based rescoring 
The NIB screening is based on the usage of two software tools. First, Panther is used 
to generate a NIB model from the binding cavity (Figure 1). Secondly, the actual 
rescoring of the docked molecules is done with ShaEP by comparing the shape and 
electrostatics similarity between the NIB model and the docking solutions using the 
noOptimization option, which keeps both the orientation of the docking solutions 
and the NIB model fixed. Finally, Rocker is used to calculate the enrichment metrics 
(Lätti et al., 2016). The EF’s were calculated as true positive rates when 1 or 5 % of 
the decoys have been discovered. 

4.5.1 Cavity detection and negative image-based model 
generation using Panther 

Panther is software developed to predict small molecule binding into proteins with 
NIB screening. It generates a NIB model based on the shape and electrostatic 
complementarity of the binding cavity properties considering protein environment, 
such as possible explicit water molecules, ions or cofactors. The outputted model is 
a negative image of the binding cavity and it can be used in VS approaches. Although 
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there are plenty of parameters the user can adjust, in this thesis, the principle was to 
keep the setting as simple as possible. The settings and NIB model input files are 
described and available in the original studies (I-IV). The main options adjusted in 
the studies are listed below: 

• Center determines the centroid of the generated NIB model. Typically, 
the center coordinates of the co-crystallized ligand in the protein structure 
file were used. 

• Box radius defines the radius how far the filler atoms are generated from 
the centroid in ångströms. This value varied depending on the target and 
the size of its binding cavity. 

• Ligand distance limit determines the dimensions of the NIB model in 
ångströms. Generated atoms are not farther than this limit from the 
specified ligand. The box radius option still affects, i.e., the atoms that 
are farther from the center than defined with box radius, are removed 
anyway. 

• Packing method determines the lattice how the atoms are packed in the 
NIB model. Either the body-centered cubic (BCC) or the denser face-
centered cubic (FCC) method was used. 

4.5.2 Similarity comparison with ShaEP 
ShaEP is freely downloadable software for similarity comparison and is used in the 
original NIB screening protocol (Niinivehmas et al., 2015). Thus, it is an obvious 
choice also for R-NiB and BR-NiB to evaluate the similarity between the NIB model 
and the docked molecule without geometry optimization. Accordingly, in 
comparison to the other similarity comparison software, the advantage of ShaEP is 
that it compares both the shape and electrostatic similarity in a relatively 
straightforward manner: both scores get values from 0 to 1, and the user can adjust 
the weight of both similarities to the total score if the default equal 50/50 weight 
distribution is not suitable (Vainio et al., 2009). The 3D conformation of the 
molecule is used to generate vertexes, connected with graphs, around the molecule, 
and at these points, the electrostatic potential (ESP) is calculated with a Coulombic 
function and computed in volts: 

𝜑𝜑𝐸𝐸 = 1
4𝜋𝜋𝜀𝜀0𝜀𝜀𝑟𝑟

∑ 𝑞𝑞𝑖𝑖
𝑑𝑑𝑖𝑖𝑖𝑖   

in which 1/4πε0 is the Coulomb constant, εr is the relative static permittivity of the 
medium, qi is the partial charge of atom i in Coulombs, and di is the Euclidean 
distance between the atom and the vertex in meters. 
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Shape is described as a histogram vector. The shape-density at the vertex 
coordinates r is the sum of all individual atomic densities and expressed as a spherical 
Gaussian surface: 

𝜌𝜌𝑖𝑖(𝑟𝑟) = 𝑝𝑝𝑖𝑖
−𝛼𝛼𝑖𝑖(𝑟𝑟−𝑅𝑅𝑖𝑖)2 

in which Ri is the atomic coordinate, pi is the amplitude (set to 2√2), and αi is the 
decay factor. In the next phase, graph matching is calculated with a backtracking 
search algorithm to find maximal subgraph isomorphism between a graph of the NIB 
model and docked molecule pose. 

Both R-NiB and BR-NiB are based on the similarity comparison without overlay 
optimization, i.e., ShaEP only scores the similarity between the existing docking 
poses and the NIB model rather than generating the optimal alignment between the 
template and target. The scoring of the template and target alignment is based on the 
overlap of their shape-densities and field-graphs. A more detailed description of 
ShaEP algorithm is reported in the original publication (Vainio et al., 2009). 

4.5.3 Brute force negative image-based optimization 
BR-NiB (Study II) is the next step for R-NiB, where the NIB model is optimized 
using a training set of molecules (Figure 2). The size of the benchmarking set used 
for the model optimization was varied to evaluate this effect on the results: typically, 
large benchmarking sets are not necessarily available in the early-stage drug 
discovery projects. The model optimization starts by calculating the shape and ESP 
score between the original NIB model and every conformation of the docked 
molecules in the benchmarking set with ShaEP. Then, Rocker is used to calculate 
the enrichment metrics AUC, EF and BEDROC based on the ranking order provided 
by the similarity comparison. In the next step, the NIB model cavity atoms are 
removed one by one, and the same enrichment metrics are calculated for every new 
NIB model containing n-1 atoms. If the selected enrichment is improved, the model 
with the best enrichment is picked for the next editing round, and the cycle starts 
again. 

The NIB model optimization was tested with alternative target metrics AUC, EF 
1 % and BEDROC with α = 20 (in Study IV referred as BR20) to see which of the 
metrics produce the best results. The α value gives a weight for the early part of the 
ROC curve in the BEDROC calculation, i.e., it determines the importance of the 
early recognition (Truchon and Bayly, 2007). If α is high, more weight is given for 
the early part of the accumulation curve. When α is 20, approximately 85 % from 
the BEDROC results comes from the first 10 % of the ranked molecules in the 
benchmarking set. 
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4.6 Other rescoring methods 
To compare the R-NiB performance to other rescoring methods, X-Score and 
SMINA were used in Studies I and II, respectively. X-Score has three empirical 
scoring functions calibrated with 200 protein-ligand complexes, and they are 
combined to form a single consensus scoring function (Wang et al., 2002). All the 
scoring functions evaluate the binding free energy by calculating the sum of van der 
Waals, hydrogen bonding, deformation and hydrophobic effects. In X-Score, three 
different algorithms are used to calculate hydrophobic effects, resulting in three 
different scoring functions. 

Smina is a fork of AutoDock Vina and developed for scoring and minimization 
(Koes et al., 2013). It enables the usage of custom scoring functions but also contains 
its own empirical scoring function trained with 293 protein-ligand structures. Based 
on Pearson’s correlation and manual selection, van der Waals, solvation, hydrogen 
bond and torsion terms were used in the default scoring function. 

4.7 Figure preparation and data analysis 
Figures used in Studies I-IV as well as Figures 1-4 used in this thesis presenting 
protein structures, NIB models or ligands were generated using Bodil, VMD, 
MolScript, Raster3D and Maestro. The enrichment metrics were calculated and the 
ROC plots were generated with Rocker that uses the Wilcoxon statistics in the error 
estimation (Hanley and McNeil, 1982).
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5 Results 

5.1 The effect of ligand preparation (II) 
Ligand-based virtual screening methods, such as similarity comparison or 
pharmacophore modelling, require a careful generation of molecule 3D structures 
and conformations. Unlike R-NiB that uses the molecule conformations generated 
by external docking sampling, the NIB screening requires low-energy 3D molecule 
conformations for the similarity comparison with rigid superimposition. In Study II, 
molecule preparation for cyclo-oxygenase 2 (COX2) benchmarking set obtained 
from DUD and DUD-E databases was performed using four different conformer 
generators: Maestro tools, Obabel, RDKit and Marvin tools. The effect of these 
molecule preparation tools for the NIB screening results was evaluated using 
different NIB model compositions. In the case of Maestro tools, ConfGen (Watts et 
al., 2010) was used to generate the conformers, and it was shown to generate a 
remarkably smaller number of conformations in comparison with the other software 
(Study II; Table 1). 

When only a single molecule conformation was used, RDKit was shown to be 
the best program for COX2 molecule preparation with the DUD set while Maestro 
tools came in a close second (Study II; Table 2). In the case of the DUD-E set, 
molecules generated with Marvin tools produced the best results. When working 
with multiple conformations, RDKit was shown to be the best program for the DUD 
set whereas Marvin tools were the best choice for DUD-E (Study II; Table 3). 
Surprisingly, the computationally expensive generation of multiple conformations 
was not very beneficial for COX2, and the enrichment metrics, particularly the EF, 
was increased only when generating the conformers with RDKit, or occasionally 
with Marvin tools, for the DUD set (Study II; Table 2 vs. 3). 

5.2 Negative image-based rescoring improves 
docking results (I, III) 

In Study I, eleven benchmarking sets from both DUD and DUD-E were docked and 
rescored with R-NiB. The model generation was based either on the co-crystallized 
ligand dimensions (ligand distance limit) in the protein structure or a certain radius 
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(box radius) from the co-crystallized ligand centroid but keeping the other settings 
as default as possible. For R-NiB, the results are summarized in Table 4. 

Table 4.  Summary table of the R-NiB results using DUD and DUD-E benchmarking sets (Study 
I). If the AUC or the EF at 1 % of the R-NiB method was higher and outside the error 
range than that of PLANTS docking, it is marked with x. If the EF 1 % was over five 
percentage points higher than in the case of original docking, the x is underlined. The 
DUD set did not contain NEU and CYP3A4 sets, whereas DUD-E lacked ERag and 
ERantag sets. Modified from  Study I. 

Target1 

DUD DUD-E 

AUC EF 1% AUC EF 1% 

LIG2 BOX3 LIG2 BOX3 LIG2 BOX3 LIG2 BOX3 

ER x x x x     

ERag   x x - - - - 

ERantag x  x x - - - - 

AR x x x  x x x x 

GR x x x x x x x x 

MR x x x  x x x x 

PPARγ   x      

PR   x x x x x x 

RXRα x x x x x x   

COX2 x x x x x    

PDE5   x x     

NEU - - - - x x x x 

CYP3A4 - - - -   x x 
1 ER, estrogen receptor alpha (mixed set of agonists and antagonists); ERag, estrogen receptor 
alpha agonists; ERantag, estrogen receptor alpha antagonists; AR, androgen receptor; GR, 
glucocorticoid receptor; MR, mineralocorticoid receptor; PPARγ, peroxisome proliferator activated 
receptor gamma; PR, progesterone receptor; RXRα, retinoid X receptor alpha; COX2, cyclo-
oxygenase 2; PDE5, phosphodiesterase type 5; NEU, neuraminidase; CYP3A4, cytochrome P450 
3A4 
2 NIB model generated with the ligand distance limit option 
3 NIB model generated with the box radius option 

 
According to AUC, PLANTS docking performed moderately well with the DUD 

and DUD-E benchmarking sets, although the results varied significantly depending 
on the target (Study I; Tables 2 and 3). AUC varied from 0.60 to 0.95 with DUD sets 
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and 0.54 to 0.85 with the more demanding DUD-E sets. At its best, the R-NiB 
approach improved AUC even 0.20 units, such as in the case of glucocorticoid 
receptor (GR) in the DUD dataset (0.60 to 0.80) or androgen receptor (AR) in the 
DUD-E dataset (0.54 to 0.76), but typically the improvement was about 0.10 units 
or fewer. Some targets, such as peroxisome proliferator activated receptor gamma 
(PPARγ) and phosphodiesterase type 5 (PDE5), were particularly demanding for the 
R-NiB approach. 

The performance of docking in the early enrichment (EF 1% and EF 5 %) varied 
remarkably depending on the target (Study I; Tables 4 and 5). Particularly some 
nuclear receptors, such as estrogen receptor alpha (ER) in DUD (EF 1% = 0.0) or 
GR in DUD-E (EF 1% = 1.2), were problematic cases. However, EF 1% was even 
69.1 with PPARγ (DUD) and 21.7 with ER (DUD-E). Still, the R-NiB methodology 
performed convincingly and was able to improve the early enrichment greatly for 
every DUD set tested. In the case of DUD-E, the success was not as systematic. 
However, in most cases, EF was improved also for DUD-E. At its best, EF 1% was 
improved even 10 percentage points (pp) (1.5 to 13.0 and 4.1 to 13.3 in the cases of 
AR and neuraminidase (NEU), respectively). 

With cytochrome P450 3A4 (CYP3A4), the advantage of R-NiB can be only 
seen in the late enrichment (EF 5% and later); otherwise, the performance was on 
the same level with docking (Study I; Tables 3 and 5 and Figure 3). PPARγ, with a 
large binding cavity, was clearly a more difficult case for R-NiB. Similarly, ER and 
PDE5 with mixed ligand sets were demanding to rescore with a single NIB model. 
Separating the ER agonists and antagonists from the DUD-E set and rescoring them  
individually showed that the NIB model separated the antagonists much better than 
the agonists: for agonists, AUC and EF 1% were only 0.73 and 16.1 whereas for 
antagonists, the values were 0.88 and 61.1, respectively. In Study III, the R-NiB 
results for PDE5 were improved when using two different NIB models. The first one 
was made by limiting the cavity dimensions based on the crystal structure of 
sildenafil and the other on tadalafil (Study III; Figure S12). The best results were 
obtained when two models were fused together (Study III; Tables 3 and S7). 

Overall, R-NiB was particularly able to improve the early enrichment of the 
datasets (Study I; Figures 2 and 3). This result can also be seen from the 
summarization table (Table 4). Furthermore, the ligand distance limit option in the 
NIB model generation was shown to be more efficient than using only the box radius 
option. For both docking and R-NiB, the DUD-E set turned out to be more 
demanding. Especially, PDE5, PPARγ and ER were demanding targets for R-NiB. 

A practical guide for performing R-NiB or the regular NIB screening was 
described in detail in Study II. 
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5.2.1 The performance with alternative docking software 
(III) 

After testing the R-NiB performance with PLANTS, a logical continuation was to 
study the rescoring performance also with other docking software. Thus, R-NiB was 
tested together with five other popular docking programs, Glide (HTVS and SP 
modes), GOLD, DOCK, AutoDock and AutoDock Vina (referred as Vina), using 
five diverse targets from the more demanding DUD-E test set: retinoid X receptor 
alpha (RXRα), COX2, PDE5, mineralocorticoid receptor (MR), and NEU. Again, 
the philosophy was to use each docking software settings as default as possible. 
However, the settings were fine-tuned during the NIB model generation in the case 
of some targets. Thus, the models and results are not fully comparable with the 
previous Study I. 

Especially Glide and DOCK skipped a relatively large number of molecules, 
some of them even the active ones, during the docking process. In order to keep the 
results comparable, the skipped molecules were added to the bottom of the ranking 
list in the order that corresponds random picking. However, no docking software was 
clearly better than the other, and AUC results varied from a complete failure (e.g., 
AUC 0.48 in the case of MR with Glide) to great (e.g., AUC 0.88 in the case of 
RXRα with AutoDock) between the targets and the used software (Study III; Table 
2; Figure 3). From the early enrichment point of view, Glide and Vina produced 
typically slightly better enrichment than the others did. Although DOCK seemed to 
perform worse than the other software, it is probably because it cannot be used as 
productively as the other programs with “default settings”, and fine-tuning the 
settings could likely have improved the performance. 

R-NiB was shown to work well with different docking software and targets and 
it improved the results in most cases, although some docking programs are more 
suitable for R-NiB than others (Study III; Table 3, Figure 3). The typical AUC 
improvement was as high as 0.10-0.20 units, but even higher improvement could 
occasionally be seen (e.g., AUC improvement of 0.29 in the case of MR with GOLD 
or 0.23 in the case of RXRα with DOCK docking). However, also moderate AUC 
improvement between 0.04 and 0.09 was seen in several cases (e.g., COX2 and MR 
with DOCK or RXRα and NEU with PLANTS docking). Comparably, the EF 
improvement was usually over 10 pp although many cases performed even better 
(e.g., EF 1% improvement of 40.5 pp in the case of RXRα with DOCK or EF 5% 
improvement of 66.3 pp in the case of NEU with GOLD docking). R-NiB failed in 
the early enrichment enhancement mainly in the case of RXRα when docking with 
Vina or AutoDock, that performed exceptionally well already without rescoring 
(e.g., AUC=0.88 and EF 1%= 54.2 in the case of AutoDock). Particularly, Glide was 
the difficult case for the R-NiB method, and neither AUC nor EF values were 
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improved with the only exception being NEU (e.g., AUC improvement of 0.21 pp 
and EF 1% improvement of 21.4 pp with HTVS docking).  

Although the results varied depending on the target, the best results were usually 
obtained when the docking results of GOLD were rescored with R-NiB: AUC varied 
between 0.70-0.93 and EF 1% between 10.3 and 62.6 with every target (Study III; 
Table 3). Particularly, DOCK, GOLD and PLANTS were well suited for R-NiB: the 
AUC and EF values for PLANTS or DOCK rescoring were almost as high as with 
GOLD if excluding some docking failures, such as MR docked with DOCK. 
Rescoring of AutoDock and Vina docking poses improved the results in most cases, 
but technically the rescoring process itself was more laborious. Accordingly, Vina 
and AutoDock docking solutions contain only polar protons, so the R-NiB 
methodology was also tested when adding all protons to the docking poses. Again, 
the results varied and it is difficult to say whether R-NiB works better or not when 
including all protons. 

5.2.2 Comparing the performance to other methods (I, III, 
IV) 

Rescoring of the datasets with the alternative program X-Score did not outperform 
R-NiB (Study I; Tables 2-5). In fact, X-Score showed to be more case-specific 
performing exceptionally well, for example, with RXRα (AUC 0.97 and EF 1% = 
70 with DUD set). However, some nuclear receptors, such as MR and AR, were 
particularly difficult for X-Score. Furthermore, the sets difficult for R-NiB were 
problematic also for X-Score: PDE5, PPARγ and ER, to some extent. X-Score 
outperformed R-NiB only with the RXRα and GR sets of DUD. 

The docking solutions were also scored with PLANTSPLP scoring function 
included in PLANTS. However, the success of this scoring function was not very 
convincing, and only COX2 set seemed to benefit from this scoring method (Study 
I; Tables 2-5). Although occasionally, PLANTSPLP produced slightly better AUC or 
EF than the original docking scoring function PLANTSCHEMPLP, only the EF 1% and 
EF 5% values of the COX2 set from DUD-E were improved in comparison to the R-
NiB method. 

In Study III, the R-NiB performance was compared with the default empirical 
scoring function of Smina. Although clearly more case-specific than R-NiB, Smina 
seemed to be a more efficient competitor than the previously mentioned approaches 
(Study III; Table 4, Figure 3). As well as R-NiB, also Smina worked well with 
PLANTS, GOLD and DOCK. Particularly, NEU and MR were difficult targets for 
it, as well as the docking program Vina and Glide. However, Smina outperformed 
R-NiB with PDE5 and in some other occasional cases. Similar to R-NiB, also Smina 
improved particularly the early enrichment rather than AUC. 
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In HTVS methods, balancing between speed and accuracy is a key issue. Thus, 
the time consumption of the R-NiB similarity comparison was compared with X-
Score and PLANTSPLP rescoring in Study I. If excluding the time used for the NIB 
model generation, R-NiB is an ultrafast method being at least 10 times faster than 
X-Score and took approximately 2 to 4 ms/comp depending on the size of the NIB 
model and docked ligands. Scoring of the docked molecules with a single scoring 
function PLANTSPLP was still two times slower than R-NiB. 

The intended usage of ShaEP is ligand-based similarity comparison: the structure 
of a query molecule is used to identify similar compounds from molecular databases. 
As the NIB model can be made by restricting the cavity dimensions with the co-
crystallized ligand pose in the target structure (ligand distance limit option), it was 
probed in Study III if the performance of a simple ligand-based screening is 
analogous to R-NiB (Study III; Table S6). A ligand pose included in the crystal 
structure was used as a query, and the molecule conformations of the set were 
generated ab initio. The results show that although the method occasionally 
produced better AUC and EF values than docking, such as in the case of COX2 
(AUC = 0.71 and EF 1% = 19.3) that contains structurally mainly similar ligands as 
celecoxib that was used as the reference structure, R-NiB clearly outperformed the 
traditional ligand-based approach. 

In Study IV, similarity comparison was performed between the crystal structure 
ligand and docking poses generated by a docking program without any geometry 
optimization similarly to the R-NiB method (Study IV; Table S6). Again, the results 
show that particularly the COX2 but also the MR set suited well for ligand-based 
similarity comparison outperforming the original docking. In the case of COX2, the 
EF 1 % enrichment was even better in comparison to R-NiB, but this can be counted 
as an exception and otherwise, R-NiB performed clearly better. 

To exclude the possibility that R-NiB only finds a certain subgroup of ligands, 
i.e., the ligands similar to the one used in the NIB model generation, the active 
molecules of the benchmarking sets were clustered based on Daylight’s Fingerprint 
and Tanimoto similarity (Study III; Figure S11). The clustering shows that the ability 
of R-NiB to find different molecule subgroups was not any weaker than that of 
Smina or the original docking. 

5.2.3 Shape is the determining factor in the scoring process 
(III) 

In Study III, the shape and ESP scores were separated from the R-NiB results to 
evaluate the importance of both factors in the rescoring process (Study III; Table 
S5). The absolute numbers of the shape score were practically always at least two 



Results 

 43 

times higher than the ESP score making the shape similarity the major element in 
the total score. 

When calculating the AUC and EF values using only the shape or ESP score, in 
most cases, the best enrichment metrics were obtained when using the shape score 
(Study III; Table S5). In some cases, such as MR and PDE5, the EF values were even 
better with many docking programs if using only the shape score rather than the 
equal 50/50 weight distribution for both scorings. However, typically the shape score 
alone did not produce the best enrichment, and the ESP score needed to be 
considered when calculating the total score. Particularly, in the case of RXRα, the 
ESP score alone produced better enrichment metrics with all the other docking 
programs but PLANTS. Nevertheless, it did not outperform the default 50/50 
scoring. 

The better the molecule aligns against the NIB model, the better similarity score 
it acquires. Thus, it could be presumed that the R-NiB performance is just based on 
its ability to give the molecules docked further from the cavity, and NIB model, 
center a lower score instead of actually considering the shape and electrostatic 
similarity. As the same center coordinates were used for both docking and NIB 
model generation, this presumption was evaluated by comparing the average 
distance of 10 % of the top-ranked docking and R-NiB poses from the cavity center 
(Study III; Table S4). The results show that in the case of RXRα, COX2 and MR, 
the average distance of the R-NiB-selected poses is not remarkably shorter than that 
of the docking poses. However, in the case of PDE5 with a spacious cavity and NEU 
containing a surface pocket, the average distance is over 0.5 Å shorter for the R-NiB 
poses with several docking programs.  

5.2.4 Consensus scoring approach has potential (I, II) 
Several studies indicate that a combination of several scoring functions or docking 
methods generally produce better enrichment than any of the methods alone 
(Charifson et al., 1999; Cheng et al., 2009; Houston and Walkinshaw, 2013; Oda et 
al., 2006). As previously described, this can be also seen in ShaEP scoring in which 
the combination of shape and ESP scores produced better enrichment than either of 
the scoring functions alone. Inspired by these observations, this approach was tested 
by normalizing and combining the original PLANTS docking score and ShaEP 
similarity score and adjusting their relative weight (from 0 to 1). 

In Study I, the results show that it is difficult to determine an optimal weight 
between docking and similarity score, and the results vary depending on the target 
(Study I; Tables 6 and 7). For example, in the case of DUD sets, the best EF 1% 
enrichment was obtained when using the weight of 1.0 for ShaEP scoring with MR 
and RXRα sets, i.e., the total score came entirely from the ShaEP rescoring. In the 
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case of AR, only the weight of 0.25 for ShaEP rescoring was needed for the best 
enrichment. When using the optimal weight, all DUD and DUD-E datasets produced 
better EF 1% and EF 5 % enrichments than the original docking. However, the AUC 
was not necessarily improved. Similar results were obtained also from Study II 
where the consensus scoring was tested with DUD and DUD-E sets for COX2 using 
two different target structures and three alternative NIB model compositions. The 
optimal weight for ShaEP was shown to vary between 0.60-0.95 depending on the 
used target structure and NIB model (Study II; Table 4). 

However, determining the optimal weight requires testing and is not possible 
with new targets or targets that lack a benchmarking set. Thus, equal 50/50 weight 
for both docking and ShaEP score was used to test if it is possible to find a more 
universal approach for consensus scoring (Study I; Tables 6 and 7; Figures 2-3). In 
Study I, the results show that although the equal weight always produced better early 
enrichment than the original docking scoring (PPARγ in DUD-E set being the only 
exception), the regular R-NiB approach without considering the docking score 
produced better enrichment in several cases. In Study II, the equal weight did not 
work as well with the COX2 set of DUD as with the DUD-E (Study II; Table 4). 
Although the early enrichment was practically improved in every case when using 
the DUD-E set, the equal weight approach worked only when the NIB model was 
generated using the box radius option in the case of the DUD set. 

5.2.5 Can the correct ligand pose be found? (I, II, III) 
In Study III, the binding poses selected by R-NiB, SMINA rescoring or docking 
software were compared with the co-crystal ligand poses, if available. Out of the five 
benchmarking sets, 31 active molecules with a protein-ligand structure available in 
the PDB database were found. Although there was a relatively limited amount of 
structures to study, the similarity between the crystal structure and the docked pose 
was compared using the root mean square deviation (RMSD) calculations. By 
finding 18 out of 31 poses (61 %), Vina was shown to be the best software in 
recognizing the correct binding orientation with the RMSD value less than 2.0 (Study 
III; Table 5). If considering only the poses with the RSMD similarity less than 1.0, 
GOLD and Glide (in SP mode) were the most successful programs (39 % 
recognition). For every docking software, MR was the easiest case in reproducing 
the correct binding orientation whereas PDE5 was the most difficult. 

From the rescoring point of view, it is more relevant to recognize if docking 
software is able to sample the correct binding pose despite the docking scoring 
function does not recognize it as the best solution. Therefore, all outputted poses 
generated by the docking programs were evaluated to study if any of the docking 
solutions is the correct pose. With this approach, PLANTS and Vina were shown to 
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be the best programs by reproducing 87 % and 84 % of the crystallized ligand poses, 
respectively, with the RMSD less than 2.0 (Study III, Table 5). When studying the 
R-NiB ability to select the pose closest to the crystal structure as the best pose, it was 
shown that R-NiB was slightly more successful than the original docking software 
or Smina rescoring. 27 out of 31 ligands with a crystal structure, PLANTS generated 
a conformation with less than 2.0 Å of RMSD in comparison to the crystal structure 
pose. 16 of them were recognized as the best pose by R-NiB (original docking 
recognized 15, Smina 8). GOLD was able to generate corresponding conformations 
for 23 ligands, and R-NiB recognized 21 of them as the best pose (original docking 
and Smina recognized 17). 

In Studies I and II, the best-ranked docking pose and the R-NiB-selected pose 
were compared with the experimentally determined crystal structures. The best-
ranked docking pose of and COX2 inhibitor, that closely reminds celecoxib, was 
ranked to be the 8585th best molecule by PLANTS (Study II; Figure 6). R-NiB scored 
another conformation of that molecule to be the best pose and it resembles more 
closely the crystal structure of celecoxib. More importantly, R-NiB ranked this 
molecule significantly higher, 3rd best, than the original docking. In the case of 
hydrocortisone, which is an agonist of the MR receptor and highly resembles 
aldosterone, docking with PLANTS resulted as a binding pose that is the most 
probably docked a wrong way around (Study I; Figure 5). The R-NiB methodology 
selected the conformation that resembles more the crystal structure of aldosterone to 
be the best pose. However, the improvement in the ranking was only minor: this pose 
was ranked to be as the 13th best pose by R-NiB, whereas PLANTS ranked it to be 
the 17th best. 

5.2.6 Model generation is a critical step (I, II, III) 
There are two different approaches to generate a NIB model with Panther after 
determining the cavity location. The model dimensions can be simply determined 
with a certain radius, and cavity atoms farther from the determined centroid are 
removed (box radius option). This approach considers the entire shape of the binding 
pocket. Another option is to restrict the NIB model dimensions with the help of the 
crystallized ligand in the target protein structure (ligand distance limit option). This 
approach removes the cavity atoms farther than a certain radius from the ligand and 
highlights the shape occupancy of the existing ligand. It is also important to consider 
the used lattice when filling the model with cavity atoms (packing method option), 
which affects directly the density of the model. 

If possible, the model is typically better to be constrained using an existing ligand 
present in the target structure (ligand distance limit option). This approach was 
shown to produce the best results in most cases in Study I (Table 4) and was also 
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used when preparing the NIB models in Study III. Similar results were obtained also 
in Study II. Here, the R-NiB performance was evaluated using different approaches 
in the NIB model generation (Study II; Figure 4). Although only one target, COX2, 
was used, NIB models generated with the ligand distance limit option produced 
clearly better improvement when rescoring both DUD and DUD-E benchmarking 
sets (Study II, Table 4). However, the results were not as straightforward when 
considering the effect of the used lattice. Although denser FCC packing performed 
better in most of the cases, BCC worked better in DUD-E when using PDB structure 
complexed with celecoxib (PDB code 3ln1) as a target structure. 

In fact, the similar trend to the ligand distance limit option can be seen also with 
the original NIB screening method based on the rigid superimposition (Niinivehmas 
et al., 2015). Typically, the usage of this setting produced higher AUC and 
enrichment values than using the box radius option regardless of the program used 
in the molecule preparation (Study II; Tables 2 and 3). The usage of a single or 
multiple ligand conformers did not affect these results. However, a regular NIB 
screen was shown to work better for COX2 when using a less dense BCC lattice in 
the model generation. 

In Study I, the NIB models used in the original NIB screening publication 
(Niinivehmas et al., 2015) were shown to give quite different enrichment results in 
R-NiB in comparison to the models generated intentionally for the R-NiB study 
(Study I; Tables 2-5). Similarly, adjusting the NIB models for Study III, such as just 
removing a single critical polar atom, improved particularly the early enrichment 
even remarkably (Study III; Table S2). For instance, the EF 1% of RXRα set was 
increased from 6.9 to 21.4 in Study III in comparison to Study I. 

5.3 Model optimization pushes the performance to 
the next level (IV) 

Optimization of the NIB model was performed based on a greedy optimization 
method, named brute force negative image-based rescoring (Study IV). The cavity 
atoms are removed one by one and after every removal, enrichment metrics for the 
training set of molecules are calculated (Figure 2). The new model producing the 
best enrichment, being short by one cavity atom, is selected for the next round: 
another cavity atom is removed, and the enrichments are calculated again. This cycle 
is continued until the improvement is no longer acquired. To learn which of the 
enrichment metrics, AUC, EF or BEDROC is the most suitable one for BR-NiB, the 
optimization was done by using all the three metrics separately (Study IV, Table S4). 
Although there were target-specific differences, the BEDROC was generally shown 
to produce the best enrichment metrics. Optimizing the model using EF caused BR-
NiB to stop relatively fast (e.g., only two and nine generations for MR and COX2, 
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respectively) and it was clearly shown to be the worst metrics to use in the 
optimization. With BEDROC, the optimization proceeded typically the largest 
number of generations (e.g., 17 and 24 generations in the case of MR and COX2, 
respectively). In the case of MR, the optimization with BEDROC produced good EF 
metrics (EF 1% = 33.0) but relatively low AUC (0.76). In contrast, the optimization 
with AUC produced better AUC (0.86) but lower EF metrics (EF 1% = 18.1). 

5.3.1 Enrichment metrics are boosted comprehensively (IV) 
The performance of the BR-NiB optimization was tested with seven benchmarking 
sets from the DUD-E database (COX2, RXRα, MR, NEU, PDE5, ER and PPARγ) 
divided randomly into training and test sets of different sizes. The full 100:100 ratio 
was used as a starting point where the whole benchmarking set was used for the 
model optimization (Study IV; Table S1). In typical ML approaches, the training set 
size is larger than 50 %, commonly 70 % or 80 %, of the whole data set (Rácz et al., 
2021). From this basis, 70:30 ratio between training and test set was selected also for 
this study to represent a situation in which the user has a large set of active 
compounds available. The second ratio, 10:90, represents a more realistic case when 
the user has only a limited number of known active molecules available (e.g., NEU 
with nine active molecules in the training set). The enrichment metrics were 
calculated using the default 50/50 weight distribution for shape and ESP score as 
well as using only the shape score (Study IV; Table 1). 

Although it was difficult to determine the best scoring method (50/50 of shape 
and ESP or only the shape score) as it depended on the target, it was clear that the 
BR-NiB optimization improved both AUC and EF metrics considerably in 
comparison to the original docking or R-NiB (Study IV; Tables 1 and S2, Figures 
S2-S9). Only the optimization of the PPARγ model with smaller training sets did not 
outperform the original docking but still generated relatively satisfying enrichments. 
On average, the AUC values improved from 0.74 to 0.83 with 100:100 and 70:30 
sets. Even with 10:90 sets, AUC improved from 0.74 to 0.81. BR-NiB worked 
particularly well, for instance, in the case of NEU and RXRα, and at its best, the EF 
1% improvement was even 20-fold. However, the EF 1% improvement varied from 
1.3 to 25.3-fold depending on the success of docking. With smaller 70:30 and 10:90 
ratios, the results were typically less dramatic, but, importantly, the BR-NiB 
optimization worked well also with these small training sets. Optimization of COX2, 
PDE5 and PPARγ worked better when using only the shape score than the 50/50 
weight distribution in the enrichment calculations. 

Similar to the Study III, the NIB model for PDE5 set was generated using two 
models, sildenafil- and tadalafil-based, and this merged model was shown to work 
better than either of the models alone (Study IV; Table S3). After the optimization, 
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at its best, the combined model produced the AUC value of 0.87, EF 1% of 27.6 and 
BEDROC of 0.46 when using 100:100 set. For example, the sildenafil-based model 
alone produced only AUC of 0.72, EF 1 % of 15.1 and BEDROC of 0.29. 

A similar RMSD comparison was performed also for the molecules selected by 
BR-NiB as described in Section 5.2.5 for R-NiB. When analysing the molecules with 
experimentally determined binding poses using 1-3 Å RMSD range, it was shown 
that BR-NiB was not remarkably better or worse than R-NiB or docking scoring 
selecting the binding poses closely related to the experimentally determined ones 
(Study IV; Table S13). 

5.3.2 The optimization process with different docking 
algorithms (IV) 

The BR-NiB method was tested with three alternative docking programs (DOCK, 
GOLD and Glide in SP mode) using four targets (COX2, RXRα, NEU and MR). The 
BR-NiB method was shown to work well also with different docking software. In 
some cases, such as NEU with Glide or COX2 with GOLD, it worked even better 
than with PLANTS docking (Study IV; Table S9). In the case of Glide, BR-NiB 
improved the enrichment metrics less than with the other software, as the results 
were already relatively high, and the AUC was not improved with COX2 and RXRα. 
However, the best enrichment metrics were often obtained with Glide and/or by 
optimizing the NIB model with Glide docking solutions (e.g., COX2 and NEU sets). 
Nevertheless, it should be noted that the tendency of Glide to skip molecules during 
the docking process made it too biased to even calculate the enrichment metrics for 
the MR set. 

The optimized models generated using different docking sampling methods 
remarkably resemble each other, but they still have some different cavity atoms 
(Study IV, Figure 5). To study how well an optimized NIB model based on the 
docking solutions of a certain docking program works in rescoring of poses from 
other docking software, the BR-NiB models were cross-used (Study IV; Table S11). 
The optimized models were shown to work relatively well in the cross-usage and 
occasionally produced even better enrichments than the original BR-NiB approach 
with PLANTS. This was the case when rescoring the NEU docking solutions 
generated with Glide using any of the NIB models optimized for PLANTS, DOCK 
or GOLD, for example. 

5.3.3 Which cavity atoms are removed? (IV) 
During the optimization process, the NIB model shrinks remarkably. On average, 40 
% of the cavity atoms were removed during the process. However, in the case of 
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large models (PDE5 and PPARγ with 129 and 144 cavity atoms, respectively) over 
50 % of the cavity atoms can be removed (Study IV; Table S7). The percentage of 
polar atoms increased 2-5 % during the optimization regardless of the scoring 
method used (50/50 weight distribution of shape and ESP score or only the shape 
score). This is not surprising as the polar cavity atoms are typically relevant showing 
the locations of hydrogen bonds or ionic interactions, while the nonpolar cavity 
atoms fill the pocket and define the model dimensions, which is a much more elusive 
concept to determine. 

It is easy to understand that the nonpolar cavity atoms not overlapping with the 
docked active molecules can be considered irrelevant in separating the actives from 
the inactives. This is typically the case with the cavity atoms located on the NIB 
model surface and these atoms are removed first (Study IV; Figure 4). Particularly, 
during the last generations, cavity atoms are removed from inside the NIB model 
generating even holes and shafts. Although these removals might be harder to 
understand intuitively, even a tiny improvement in the BEDROC value is enough to 
remove a cavity atom during the optimization. If there is a cavity atom that 
practically overlaps with every molecule in the training set, its effect on the overall 
enrichment is minor. Thus, it can be either removed or retained depending on the 
changes in the fifth decimal of the BEDROC value. 

5.3.4 The model enhancement takes time (IV) 
Although the original R-NiB rescoring is very fast, the BR-NiB approach is more 
time-consuming despite the fact it only follows a certain path by selecting the most 
advantageous choice at each stage. In the case of a NIB model composed of 50 cavity 
atoms, the greedy search needs to perform the rescoring calculation for 50 different 
NIB models until it can proceed to the next generation (Gen #1) with the model that 
has the best enrichment (Figure 2A). In the next generation (Gen #2), the rescoring 
needs to be done for 49 different NIB models, and so on. Thus, the duration of the 
optimization depends not only on the size of the training set but also heavily on the 
size of the NIB model and, obviously, the number of generations. In a regular BR-
NiB run, the rescoring calculation needs to be done several hundred times. 

The computational demands of BR-NiB were tested using two small 
benchmarking sets, MR (n = 39,090, includes alternative docking poses) and NEU 
(n = 48,860), and one large set COX2 (n = 176,830) with 70/30 training and test set 
ratio and 15 CPUs. The first generation was shown to take 8 min for MR, which had 
57 atoms in the NIB model. In the case of NEU with 79 cavity atoms, the first 
generation took 12 min. COX2 had the smallest NIB model with 44 cavity atoms, 
but a large number of molecules increased the calculation time of the first generation 
to 21 minutes. In total, COX2 took about 5 h 50 min (13 generations), MR 2 h (15 
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generations) and NEU 4 h 40 min. A much more time-consuming case was PPARγ, 
with 144 cavity atoms and about 180,000 docking poses. However, using parallel 
computing with 40 CPUs instead of 20, the calculation time of the first generation 
was shortened from 1.5 h to 1 h. 

The simplest ways to speed up the optimization are to ensure that the input NIB 
model is not any larger than necessary and limiting the number of outputted docking 
poses as low as possible. The more poses are generated, the higher is the probability 
reproducing the biologically relevant binding orientation. On the other hand, this 
easily leads to the generation of energetically unfavourable docking poses that only 
distract the NIB screening or rescoring, which do not consider the internal energies 
of the molecule poses at any level. However, it is also possible to stop the 
optimization after a certain number of generations to save time and potentially avoid 
overfitting of the model with the training set data. Accordingly, with several 
benchmarking sets, it was shown that the highest boost to the enrichment metrics 
was achieved during the first generations of the BR-NiB optimization (Study IV, 
Figures S2 and S3). In most cases, BR-NiB produced good enrichment metrics 
already at the halfway of the process. However, in some cases, such as with EF 1% 
in PDE5, the improvement increased relatively constantly over the generations. If 
the optimization was stopped after 35 generations, the EF 1 % would be < 15. 
However, it was even 27.6 after the last generation (#72). In the case of ER, the 
improvement in AUC was achieved as late as during the generations 20-35 (AUC 
improvement from 0.67 to 0.82, 41 generations in total). 

It was also tested if several cavity atoms could be removed already during the 
first generation based on their effect on the enrichment metrics instead of removing 
them one by one (Study IV, Table S15 and Figure S10). The results show that it 
could be possible to recognize the important and detrimental cavity atoms in the 
beginning of the optimization process. This could greatly speed up the BR-NiB run 
without affecting significantly the enrichment metrics. 

5.3.5 Are the optimized models suitable for practical 
usage? (IV) 

In the DUD-E set, the ratio of active and decoy molecules is relatively high, at least 
1.5 % (Study IV, Table S1). However, in real HTS studies, the actual hit rates are 
much lower (Zhu et al., 2013). To mimic the conditions of actual drug discovery 
projects, in Study IV, validation sets with the active/decoy ratio of 0.014 were 
generated for MR and NEU using a real commercial HTVS database as a decoy set. 
20 active molecules, which were verified to not have been included in the original 
DUD-E sets, were picked randomly from the ChEMBL database based on their 
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affinity (IC50) to generate validation sets with different activity ranges (IC50 < 1 µM, 
< 50 µM and 1–50 µM). 

It was clearly shown that BR-NiB outperformed the original docking with these 
validation sets (Study IV, Table 2). More importantly, when examining the very 
early enrichments EF 0.1 and 0.5 %, corresponding the top 140 and 700 compounds, 
respectively, the results show that some active molecules were ranked above these 
thresholds. In the case of MR, the original docking scoring was not able to rank 
hardly any active molecules among the best 140 or 700 compounds. BR-NiB instead 
ranked 1–3 active molecules among these groups depending on the activity 
thresholds given to the validation sets. The NEU sets were easier for the PLANTS 
docking scoring: at its best, it was able to rank one molecule among the top 140 
compounds and three molecules at the top 700. However, BR-NiB was much more 
efficient ranking even 7 active molecules at the top 140 compounds and 11 at the top 
700. In general, validation sets with high-level potency ligands performed better than 
the low-level ones at least with BR-NiB, but this trend, although logical, was not 
entirely consistent. 

Overall, the results show that the performance of the BR-NiB method has 
potential to work satisfactorily in actual drug discovery projects in which at least a 
couple hundred of molecules are typically selected for in vitro screening depending 
on the available resources.
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6 Discussion 

6.1 Defining the cavity dimensions 
R-NiB was shown to be a very fast and efficient docking rescoring method, and its 
performance is not based solely on refocusing of docking or simple ligand-based 
similarity. However, it was also shown that careful generation of the NIB model is 
critical, and the results can be improved notably if paying attention to the model 
composition rather than just using the “default” settings. The best results were 
obtained when limiting the NIB model dimensions based on the bound ligand present 
in the target structure. This indicates that certain parts of the cavity are more 
important than others in ligand binding. When generating a NIB model and limiting 
its volume using the co-crystallized ligand, the most critical parts of the cavity are 
covered, as the binding pocket is defined more tightly than just applying a simple 
cavity center. Using a cavity center radius in the model generation makes the NIB 
model bulkier and enables it to cover subcavities more or less irrelevant for the ligand 
binding. However, excluding certain parts of the cavity from the NIB model should 
always be performed carefully: the benchmarking sets only contain known active 
molecules, which typically occupy similar parts of the cavity. The results are likely 
worsened if the model is increased including a subcavity that none of the active 
molecules in the benchmarking set occupies, but it does not mean that a novel drug 
could not bind there. 

Selecting a suitable lattice (FCC or BCC) is a demanding part as the results in 
Studies I-III showed this parameter to be case-specific. Thus, it might be necessary 
to test both lattices in the model generation. In addition, the polar cavity atoms in the 
model need to be inspected carefully as they might have a big impact on the results. 
For example, if the generated NIB model lacks an important polar cavity atom that 
should represent a hydrogen bonding partner in a central cavity position, the settings 
should be optimized so that this atom is included in the model. On the contrary, some 
useless polar atoms should be deleted even manually. 

The performance of the R-NiB or BR-NiB methods in docking rescoring is mostly 
based on the shape match of the ligand binding cavity, and the electrostatics have a 
smaller, yet important, role in the similarity comparison that should not be 
underestimated. For instance, even the electrostatic complementarity alone has been 
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used to predict the binding affinity of small molecules in the binding site (Bauer and 
Mackey, 2019). In fact, shape complementarity has been considered carefully 
particularly in some newer docking software. For example, QSDock focuses only on 
the shape complementarity, and DOCK determines, although in a relatively coarse 
way, the shape of the cavity prior to the docking progress (Allen et al., 2015; Goldman 
and Wipke, 2000; Kuntz et al., 1982). A commercial docking program LigandFit 
considers both the shape and electrostatic complementarity of the binding pocket 
during the docking reminding the NIB principle, at least to some extent 
(Venkatachalam et al., 2003). However, this software has not been shown to be 
superior to other docking approaches in the comparison studies (Wang et al., 2016). 
The idea behind the R-NiB approach is different: as docking software is already 
successful at generating the relevant binding conformations and often recognizes well 
the electrostatics, such as possible hydrogen bonding, the docking poses need only to 
be scored better by highlighting the importance of shape similarity. ShaEP unites shape 
and electrostatics straightforwardly and picks the best parts from both approaches. 

However, determining the cavity dimensions can be a difficult task. The presence 
of water and possible side chain rotations during the ligand binding affect the cavity 
shape and, thus, the final composition of the NIB model. These differences can be 
notable even when handling relatively similar ligands (Boström et al., 2006; Wang 
et al., 2008). In these cases, it is difficult to generate a universal NIB model. 
Furthermore, for NEU and other surface pockets, defining the binding cavity limits 
is a much more arbitrary operation than for the buried cavities, such as MR. In these 
cases, the NIB performance comes also from its ability to refocus the docking 
solutions: the NIB model highlights the site where the docking solutions should be 
located. This is valuable information providing that the NIB model dimensions are 
determined correctly.  

6.2 Some targets are difficult for negative image-
based rescoring 

Although R-NiB was shown to be an efficient method, it is clear that some targets 
are more demanding than others, and alternative methods can work better than R-
NiB with certain targets. For R-NiB, particularly ER, PDE5 and PPARγ sets were 
problematic. The original docking scoring performed already well with these targets 
achieving convincing AUC and early enrichment results. In the case of ER, at its 
best, R-NiB only slightly improved the early enrichment while AUC decreased, 
which suggests that only a certain ligand subgroup, most likely the antagonists, can 
be found when using the generated NIB model. This was not a surprising result as 
the ER set contains both agonists and antagonists, the former of which lacks the long 
tail typical for antagonists, and the NIB model was generated by limiting its 
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dimensions based on the antagonist binding pose (Figure 4A). Separation of the 
agonist and antagonists from the benchmarking set showed, also unsurprisingly, that 
the NIB model worked excellent for the antagonists set than for the mixed set 
(agonists and antagonists together). Thus, it is clear that improved results would be 
acquired by searching for agonists and antagonists separately, which requires the 
generation of a distinct NIB model focusing only on the agonist space occupancy. 

 
Figure 4. The cavity dimensions of ER, PDE5 and PPARγ with certain ligands. Figure A represents 

a binding cavity of ER, highlighted in yellow, with agonist (estrogen, gray) and antagonist 
(hydroxytamoxifen, green). The NIB model of ER covers approximately the same area. 
Although agonists and antagonists otherwise cover the same ligand binding site, the tail 
part of antagonists inhabits a distinct subcavity (PDB codes 1A52 and 3ERT). Figure B 
highlights the large binding cavity of PDE5 (white). Although creating the NIB model 
using two different ligands, sildenafil (Sild, pink) and tadalafil (Tad, yellow), even 
together they only occupy a small part of the cavity. Furthermore, the space occupancy 
of these two molecules is different (PDB codes 1UDT and 1XOZ). Figure C shows the 
binding cavity of PPARγ. Two molecules of a bigger ligand (NSI, orange, PDB code 
2HFP) is shown to bind in the binding cavity. Another ligand (SP3, white, PDB code 
2G0H) shows very different binding orientation occupying the middle part of the cavity. 
For clarification, 2D structures of PDE5 and PPARγ ligands are shown in Figure D. 
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PDE5 set enrichment metrics were not improved by the R-NiB approach. The 
PDE5 binding cavity is relatively large, and the bound ligands, sildenafil and 
tadalafil, used for the NIB model generation each occupy only a small sub-cavity 
(Figure 4B; Study III, Figure S12). In addition, these two molecules are structurally 
very different, and their space occupancy differ considerably. When two separate 
NIB models, one limited by the dimensions of sildenafil and the other by tadalafil, 
were combined, the enrichment metrics were improved only slightly in comparison 
to using either of the models alone. Still, R-NiB outperformed the original docking 
only occasionally. Although sildenafil- and tadalafil-like molecules might be 
discovered in the actual rescoring, if docked properly, the hybrid-NIB model still 
occupies a relatively small part of the cavity. Alternatively, generating a NIB model 
that fills the entire cavity (box radius option) was shown to perform even worse. This 
is likely because the actual cavity is relatively spherical (in Figure 4B towards the 
viewer) allowing also the NIB model to be globular. Thus, it is difficult to consider 
the shape parameter in the “shapeless” pocket of PDE5. Additionally, there are water 
molecules and even ions in the binding pocket that affect the shape of the cavity 
during the binding of a certain ligand (Wang et al., 2008). 

With PPARγ, the situation is quite similar, and R-NiB did not improve any of 
the enrichment metrics. Molecules that bind to PPARγ are structurally very diverse 
(Sauer, 2015). Moreover, the size of the ligands is relatively large: the active ligands 
of PPARγ in DUD-E have an average rotatable bond number as high as 9.5 and the 
average molecular weight of 464 g/mol (for comparison, 5.3 and 408 g/mol for 
RXRα actives). In fact, it is impressive that the docking scoring performed as well 
as it did with the molecules of this size. Additionally, The PPARγ cavity is really 
spacious. Perplexingly, there is an X-ray crystal structure in which the same small 
molecule also included in the DUD-E set, has acquired two utterly different binding 
poses simultaneously within the cavity (Figure 4C, orange) (Hopkins et al., 2006). 
To make the matter even more complex, the verified binding pose of yet another 
DUD-E compound is highly different from either of the alternative poses (Figure 4C, 
white). Considering the sizes of the ligands and their cavity occupancies, it is not 
surprising that the NIB model generated with the box radius option performed the 
best, as it is impossible to cover all ligand binding orientations using a single NIB 
model limited by the dimensions of a single bound ligand (ligand distance limit 
option). However, the rescoring performance was not very satisfying: as in the case 
of the PDE5 set, in general, a large NIB model generated with the box radius option 
has a limited specificity to separate active molecules, which only occupy certain 
parts of the cavity volume, from the inactive ones. This should be considered during 
the NIB model generation, and it could be advantageous to generate several models 
each focusing on a certain molecule subgroup. 
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Similarly, resolution of R-NiB and BR-NiB for recognizing small differences in 
the ligand structures might not be high enough if using a single model. This could 
be the case when aiming to generate a model that should recognize ligands selective 
only for certain receptor subtype. If the differences between the binding cavities and 
selective ligands are minor, such as in the case of estrogen receptor alpha and beta 
(Manas et al., 2004; Shanle and Xu, 2010), it is likely that a single NIB model is 
unable to separate molecules that bind only one of these targets. 

6.3 Model optimization causes overfitting? 
When using different settings in the model generation, comparison of the R-NiB 
results already suggests that slimmer models typically produce higher enrichment 
than the bulkier ones. From this basis, the success of removing the excess cavity 
atoms, albeit with a greedy algorithm, was presumable. However, it was surprising 
that the enrichment improvement was so consistent: when the training set was 
comprehensive enough, the BR-NiB approach always produced better results than 
docking, or at least very good enrichment metrics (AUC > 0.80 and EF 1% > 25). 
Interestingly, also the targets difficult for R-NiB, such as PDE5 and ER, were shown 
to work remarkably better with the BR-NiB approach. BR-NiB succeeded also well 
when using a small training set for the model optimization (e.g., only nine active 
molecules for MR and NEU). Although some important interactions might be 
omitted when using a small number of actives, it is typically a realistic situation in 
actual drug discovery projects. Thus, the BR-NiB optimization could truly be a 
useful tool for drug development. 

Most importantly, the BR-NiB was shown to give great enrichment for validation 
sets with the active molecule ratio of only 0.014 % that corresponds to a typical 
situation in an actual VS project. Nevertheless, the results do not suggest that highly 
different or novel compounds can be found using the BR-NiB-optimized models in 
rescoring: as novel ligands are often just variations of the known drugs, the active 
molecules in the validation sets are likely similar to the ones in the training and test 
sets (Chen et al., 2019; Eckert and Bajorath, 2007; Müller, 2003). Thus, the results 
might vary depending on the composition of the active molecules in the validation 
sets (only 20 compounds).  

Because the model optimization was selected to be based on BEDROC, it is 
possible that the model could focus only a certain subgroup of molecules explaining 
why AUC may even lower while the early enrichment increases (e.g. ER and PDE5 
sets). This could happen particularly if the active molecule subgroup is large enough: 
the early enrichment could be remarkably improved over several generations 
although some other molecule subgroup is separated worse from the decoy 
molecules. Similarly, if the active molecule group in a training set is small, it is 
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possible that some chemotypes included in the test set are completely missing. In 
these cases, it is possible that the NIB models are overfitted with respect to the certain 
training set. This might be the case, for example, with PDE5 that produced a lot 
better enrichment results with the training set than with the test set. However, it 
should be noted that the BR-NiB method itself did not perform any worse in 
recognizing different active molecule chemotypes in comparison to docking or other 
rescoring methods. 

If there is not clearly a major molecule subgroup, it is also possible that the model 
gets scattered when trying to overlap with all active molecules in the training set. This 
is done by removing the cavity atoms that enable the decoy molecules to be ranked 
high in the scoring list. In fact, the composition of the decoy set is a surprisingly 
relevant issue for the optimization (Réau et al., 2018). As the BR-NiB optimization 
only tries to separate active molecule poses from the decoy ones, the size and content 
of the decoy set can remarkably affect the final NIB model composition, and typically, 
the quality is at least as important as the quantity. For example, it is easy to get great 
enrichment results if using a small number of decoys, but it is also easy to recognize 
the active molecules when using a large set of decoys structurally very distinct to the 
active ones. In other words, the decoy set should be complex and comprehensive 
enough to enable BR-NiB to train the model sufficiently diversely. 

However, in the BR-NiB approach, the overfitting problem (Hawkins, 2004) 
might be quite persistent. Typically, the further the BR-NiB run is continued, the 
smaller the improvement effect is when removing a cavity atom and the more 
difficult it is to rationalize the reason for the removal. In fact, one could argue that 
the model automatically gets overfitted if the BR-NiB optimization is allowed run to 
the very end. Dividing the DUD-E sets into training and test sets does not necessarily 
solve the problem, as the benchmarking sets are still relatively homogenic (Chen et 
al., 2019; Lagarde et al., 2015). The BR-NiB-optimized model only finds the 
molecules that are the most similar to the active ones in the training set. In many 
cases, the successful separation of actives and decoys is actually a relatively easy 
task, as the ligands of a certain target are often structurally relatively similar, at least 
in the literature, and there are not many really different molecule chemotypes that 
would bind to the same location (Müller, 2003). By getting a high similarity score 
for one active molecule, the model likely gives a good score for many other active 
molecules as well, and the targets with a structurally more diverse set of active 
molecules are intelligibly more demanding cases for the NIB methodologies. 
However, other methods, such as QSAR, struggle with these similar problems as 
well (Gramatica, 2013; Yang, 2010; Zhao et al., 2017). In actual VS usage, stopping 
the BR-NiB run somewhere at mid-point could be beneficial to limit the overfitting, 
but determination of the best end point is difficult. It could be also used models from 
several generations to calculate the total score for the molecule poses. 
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The best results were typically obtained when combining the shape and ESP 
score instead of using them separately in R-NiB. The only exceptions were the very 
nonpolar cavities, such as MR, in which the shape score alone produced the best 
results. However, with BR-NiB, the NIB model optimization based only on the shape 
score was relatively often the most successful approach. In some cases, it is possible 
that the shape score just recognizes better a certain subgroup of molecules than the 
combination score. However, it is difficult to evaluate why BR-NiB produced 
constantly better results for PDE5 and PPARγ when optimizing the cavity using only 
the shape score. Although neither of the binding cavities is exceptionally nonpolar, 
both are very large. It is possible that in spacious cavities, the shape is a more 
universal and, thus, more useful feature than electrostatics in separating the active 
molecules from the inactive ones, as the polar interactions are already well optimized 
in the docking sampling. It is also probable that polar cavity atoms are too specific 
for certain types of ligands. As none of the ligands contains a matching part for every 
polar atom in the NIB model, the ESP gives too conflicting results. 

6.4 The practical usability of the methods 
Although the results are very promising, the further confirmation of the usefulness 
of the BR-NiB or R-NiB method would require large in vitro testing beyond the 
scope of this thesis. In fact, testing only a handful of the top-ranked molecules for 
each target and finding one or two hits can always be considered just good luck, as 
well as not finding anything can be diagnosed as bad luck. Moreover, the 
performance of the R-NiB and BR-NiB methods, as well as any other rescoring 
technique, is always dependent on the performance of the initial docking sampling. 
If the docking fails in reproducing at least somewhat relevant binding poses, the 
rescoring process has little chances. 

However, the requirements for performing the NIB methods do not otherwise 
differ from other structure-based approaches. Both R-NiB and BR-NiB require at 
least a target protein structure. To perform BR-NiB, at least some active (and decoy) 
ligand data is also required, and even R-NiB would benefit from having an active 
ligand pose available to limit the NIB model dimensions. Thus, at least the BR-NiB 
method is not suitable for targets without any known compounds. The main 
weakness of these NIB methodologies is that they are typically based on only one 
target protein structure. Although it is possible to use several target structures for 
docking, or create NIB models based on different binding cavity orientations or 
cavities bound by diverse ligands, the successful usage of these approaches in the 
actual screening remains unclear. However, side chain rotations, more or less 
conserved water molecules and very spacious cavities are a challenge also for other 
structure-based methodologies (Orgován et al., 2019; Teague, 2003). When correctly 
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applied, the NIB model optimization could be a solution for at least some of these 
problems, but it always needs a reliable benchmarking set. 

The quality of the benchmarking sets is a relevant issue, as they always include 
some erroneous data (Lagarde et al., 2015; Réau et al., 2018). Active molecules in 
the COX2 set are mostly very similar to celecoxib (Study III; Figure S11), which is 
the reason why ligand-based similarity comparison worked well with this particular 
set. Although several features are said to be unbiased in the DUD-E sets, such as 
molecular weight, net charge and rotatable bond number, the benchmarking sets also 
include, for example, analogue biases that cause problems for ML approaches (Chen 
et al., 2019; Mysinger et al., 2012; Sieg et al., 2019). However, similar problems 
occur also with other benchmarking sets, and a completely bias-free molecule set is 
difficult to generate (Wallach and Heifets, 2018). It should be also noted that in DUD 
and DUD-E, as with several other benchmarking sets, the decoys are generated 
computationally or randomly picked from a large compound library, and there is no 
guarantee that all of these picks are actually inactive and could not be false decoys 
(Niinivehmas et al., 2016; Réau et al., 2018) 

Effective optimization of the NIB model with exhaustive search would be an 
optimal problem only for quantum computers (Grover, 1998). Although based on a 
greedy search method, in practice, the most limiting part in the usage of BR-NiB is 
still the time consumption. However, thanks to the possibilities of parallel 
computing, the BR-NiB can be performed within a day or two even for the 
demanding cases. Nevertheless, large input models and benchmarking sets take time 
to process. In the case of any target, several NIB models need typically to be 
generated with different settings and optimized with the BR-NiB method to select 
the best one. Thus, speeding up the optimization process would be highly beneficial. 
Although it seemed to be favourable to remove (or retain) several cavity atoms 
clearly worsening the results already after the first generation, defining the universal 
thresholds for the automatic search might turn out to be difficult. However, it should 
be noted that the proof of concept of the BR-NiB method, rather than optimizing the 
time consumption, was the main focus in Study IV.
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7 Summary and conclusions 

Because the scoring functions of the docking programs have very case-selective 
ability to separate the active molecules from the inactive ones, there is a need for 
more efficient methods. In this thesis, two novel docking rescoring methods, which 
rely on the negative image of the protein binding cavity, are introduced. Studies I-
III show that the first method, R-NiB, is fast and effective to separate active 
molecules from the inactive ones. Based on the in silico benchmarking results, R-
NiB works well with alternative docking software and various protein targets. 
Because the calculation times are rapid, the R-NiB method suites well for HTVS. 
Instructions for performing the NIB techniques and model generations are described 
in Study II. These studies show that by carefully generating the applied NIB models, 
R-NiB can greatly improve the results of VS studies. However, with targets 
containing diverse ligand sets, it is advisable to generate several NIB models 
selectively, for example, focusing on agonists and antagonists binding volumes. 

When reliable benchmarking sets are available, it is possible to optimize the NIB 
model with the second method, termed BR-NiB, before using it for the actual virtual 
screening. It was shown in Study IV that BR-NiB improved the scoring performance 
to the next level, outperformed the original docking scoring function with all tested 
targets and worked also with alternative docking programs. In particular, the early 
enrichment, a key factor when working with libraries containing even millions of 
molecules, was remarkably improved. Additionally, it was shown in silico that the 
hit rates of the BR-NiB method could be satisfying for real HTVS experiments. 
Although the optimization process of a single NIB model can be time-consuming, 
the investment is clearly profitable. In the next step, the usability of the R-NiB and 
BR-NiB methods should be confirmed in practical use with extensive in vitro studies. 
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