1,639 research outputs found

    Computationally Efficient Implementation of Convolution-based Locally Adaptive Binarization Techniques

    Full text link
    One of the most important steps of document image processing is binarization. The computational requirements of locally adaptive binarization techniques make them unsuitable for devices with limited computing facilities. In this paper, we have presented a computationally efficient implementation of convolution based locally adaptive binarization techniques keeping the performance comparable to the original implementation. The computational complexity has been reduced from O(W2N2) to O(WN2) where WxW is the window size and NxN is the image size. Experiments over benchmark datasets show that the computation time has been reduced by 5 to 15 times depending on the window size while memory consumption remains the same with respect to the state-of-the-art algorithmic implementation

    The malaria system microApp: A new, mobile device-based tool for malaria diagnosis

    Get PDF
    Background: Malaria is a public health problem that affects remote areas worldwide. Climate change has contributed to the problem by allowing for the survival of Anopheles in previously uninhabited areas. As such, several groups have made developing news systems for the automated diagnosis of malaria a priority. Objective: The objective of this study was to develop a new, automated, mobile device-based diagnostic system for malaria. The system uses Giemsa-stained peripheral blood samples combined with light microscopy to identify the Plasmodium falciparum species in the ring stage of development. Methods: The system uses image processing and artificial intelligence techniques as well as a known face detection algorithm to identify Plasmodium parasites. The algorithm is based on integral image and haar-like features concepts, and makes use of weak classifiers with adaptive boosting learning. The search scope of the learning algorithm is reduced in the preprocessing step by removing the background around blood cells. Results: As a proof of concept experiment, the tool was used on 555 malaria-positive and 777 malaria-negative previously-made slides. The accuracy of the system was, on average, 91%, meaning that for every 100 parasite-infected samples, 91 were identified correctly. Conclusions: Accessibility barriers of low-resource countries can be addressed with low-cost diagnostic tools. Our system, developed for mobile devices (mobile phones and tablets), addresses this by enabling access to health centers in remote communities, and importantly, not depending on extensive malaria expertise or expensive diagnostic detection equipment.Peer ReviewedPostprint (published version

    Accelerated hardware video object segmentation: From foreground detection to connected components labelling

    Get PDF
    This is the preprint version of the Article - Copyright @ 2010 ElsevierThis paper demonstrates the use of a single-chip FPGA for the segmentation of moving objects in a video sequence. The system maintains highly accurate background models, and integrates the detection of foreground pixels with the labelling of objects using a connected components algorithm. The background models are based on 24-bit RGB values and 8-bit gray scale intensity values. A multimodal background differencing algorithm is presented, using a single FPGA chip and four blocks of RAM. The real-time connected component labelling algorithm, also designed for FPGA implementation, run-length encodes the output of the background subtraction, and performs connected component analysis on this representation. The run-length encoding, together with other parts of the algorithm, is performed in parallel; sequential operations are minimized as the number of run-lengths are typically less than the number of pixels. The two algorithms are pipelined together for maximum efficiency

    A comparative study of image processing thresholding algorithms on residual oxide scale detection in stainless steel production lines

    Get PDF
    The present work is intended for residual oxide scale detection and classification through the application of image processing techniques. This is a defect that can remain in the surface of stainless steel coils after an incomplete pickling process in a production line. From a previous detailed study over reflectance of residual oxide defect, we present a comparative study of algorithms for image segmentation based on thresholding methods. In particular, two computational models based on multi-linear regression and neural networks will be proposed. A system based on conventional area camera with a special lighting was installed and fully integrated in an annealing and pickling line for model testing purposes. Finally, model approaches will be compared and evaluated their performance..Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    A Development of a New Image Analysis Technique for Detecting the Flame Front Evolution in Spark Ignition Engine under Lean Condition

    Get PDF
    The aim of herein work is to develop an automatized algorithm for detecting, as objectively as possible, the flame front evolution of lean/ultra-lean mixtures ignited by low temperature plasma-based ignition systems. The low luminosity characterizing the latter conditions makes both kernel formation and combustion development difficult to detect accurately. Therefore, to estimate the igniter capability to efficiently ignite the mixture, ever more performing tools are required. The present work proposes a new image analysis technique, based on a dual-exposure fusion algorithm and on Convolutional Neural Networks (CNNs), to process low brightness images captured via high-speed camera on an optical engine. The performance of the proposed algorithm (PA) is compared to the one of a base reference (BR) algorithm used by the same research group for the imaging analysis. The comparison shows the capability of PA to quantify the flame radius of consecutive combustion cycles with lower dispersion if compared to BR and to correctly detect some events considered as misfires or anomalies by BR. Moreover, the proposed method shows greater capability to detect, in advance, the kernel formation with respect to BR, thus allowing a more detailed analysis of the performance of the igniters. A metric quantitative analysis is carried out, as well, to confirm the above-mentioned results. Therefore, PA results to be more suitable for analyzing ultra-lean combustions, heavily investigated to meet the increasingly stringent legislation on the internal combustion engines. Finally, the proposed algorithm allows us to automatically estimate the flame front evolution, regardless of the user’s interpretation of the phenomenon

    Skip Trie Matching for Real-Time OCR Output Error Corrrection on Smartphones

    Get PDF
    Many Visually Impaired individuals are managing their daily activities with the help of smartphones. While there are many vision-based mobile applications to identify products, there is a relative dearth of applications for extracting useful nutrition information. In this report, we study the performance of existing OCR systems available for the Android platform, and choose the best to extract the nutrition facts information from U.S grocery store packages. We then provide approaches to improve the results of text strings produced by the Tesseract OCR engine on image segments of nutrition tables automatically extracted by an Android 2.3.6 smartphone application using real-time video streams of grocery products. We also present an algorithm, called Skip Trie Matching (STM), for real-time OCR output error correction on smartphones. The algorithm’s performance is compared with Apache Lucene’s spell checker. Our evaluation indicates that the average run time of the STM algorithm is lower than Lucene’s. (68 pages

    Contextual cropping and scaling of TV productions

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-011-0804-3. Copyright @ Springer Science+Business Media, LLC 2011.In this paper, an application is presented which automatically adapts SDTV (Standard Definition Television) sports productions to smaller displays through intelligent cropping and scaling. It crops regions of interest of sports productions based on a smart combination of production metadata and systematic video analysis methods. This approach allows a context-based composition of cropped images. It provides a differentiation between the original SD version of the production and the processed one adapted to the requirements for mobile TV. The system has been comprehensively evaluated by comparing the outcome of the proposed method with manually and statically cropped versions, as well as with non-cropped versions. Envisaged is the integration of the tool in post-production and live workflows
    • …
    corecore