2 research outputs found

    Data S1: Data

    Get PDF
    We present the evaluation of two well-known, low-cost consumer-grade EEG devices: the Emotiv EPOC and the Neurosky MindWave. Problems with using the consumer-grade EEG devices (BCI illiteracy, poor technical characteristics, and adverse EEG artefacts) are discussed. The experimental evaluation of the devices, performed with 10 subjects asked to perform concentration/relaxation and blinking recognition tasks, is given. The results of statistical analysis show that both devices exhibit high variability and non-normality of attention and meditation data, which makes each of them difficult to use as an input to control tasks. BCI illiteracy may be a significant problem, as well as setting up of the proper environment of the experiment. The results of blinking recognition show that using the Neurosky device means recognition accuracy is less than 50%, while the Emotiv device has achieved a recognition accuracy of more than 75%; for tasks that require concentration and relaxation of subjects, the Emotiv EPOC device has performed better (as measured by the recognition accuracy) by ∼9%. Therefore, the Emotiv EPOC device may be more suitable for control tasks using the attention/meditation level or eye blinking than the Neurosky MindWave device

    L-Tetrolet Pattern-Based Sleep Stage Classification Model Using Balanced EEG Datasets

    Get PDF
    Background: Sleep stage classification is a crucial process for the diagnosis of sleep or sleep-related diseases. Currently, this process is based on manual electroencephalogram (EEG) analysis, which is resource-intensive and error-prone. Various machine learning models have been recommended to standardize and automate the analysis process to address these problems. Materials and methods: The well-known cyclic alternating pattern (CAP) sleep dataset is used to train and test an L-tetrolet pattern-based sleep stage classification model in this research. By using this dataset, the following three cases are created, and they are: Insomnia, Normal, and Fused cases. For each of these cases, the machine learning model is tasked with identifying six sleep stages. The model is structured in terms of feature generation, feature selection, and classification. Feature generation is established with a new L-tetrolet (Tetris letter) function and multiple pooling decomposition for level creation. We fuse ReliefF and iterative neighborhood component analysis (INCA) feature selection using a threshold value. The hybrid and iterative feature selectors are named threshold selection-based ReliefF and INCA (TSRFINCA). The selected features are classified using a cubic support vector machine. Results: The presented L-tetrolet pattern and TSRFINCA-based sleep stage classification model yield 95.43%, 91.05%, and 92.31% accuracies for Insomnia, Normal dataset, and Fused cases, respectively. Conclusion: The recommended L-tetrolet pattern and TSRFINCA-based model push the envelope of current knowledge engineering by accurately classifying sleep stages even in the presence of sleep disorders.</jats:p
    corecore